基于刚性配体和模板效应构筑的MOF孔道材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔性金属-有机框架化合物(Metal-organic frameworks MOF)在气体吸附和存储、离子交换、分子识别、催化、化合物选择性分离和手性分离以及光、电、磁等领域有巨大的潜在应用,已经发展成为一种新型的多功能材料,引起了人们的极大兴趣。MOF与传统分子筛材料相比不仅由于具有不同于分子筛的孔道特征、迷人的拓扑结构,而且还具有更加优良吸附和存储特性。MOF可以按照晶体工程的原理,通过选择特定几何构型的刚性有机配体和有机溶剂模板,在一定程度上实现多孔性MOF的定向设计和合成。
     本论文选用不同构型的刚性的有机羧酸和含氮配体和金属离子并结合不同尺度的有机溶剂和离子(作为溶剂和离子模板)来合成金属-有机框架孔道材料。我们考察其对所构筑的化合物网络结构的影响的同时,也考察这类化合物作为多功能材料在离子交换、气体吸附及荧光等方面的潜在应用。
     通过水热和溶剂热技术,我们合成了二十三个化合物,通过元素分析、IR、XRPD、TG、1H NMR和单晶X-射线衍射对晶体结构进行了表征,对部分化合物的氮气吸附性质、主客体性质、液相离子交换性质和荧光性质进行了初步研究讨论。这些研究结果主要包括以下四个方面:
     1、合成了一系列不同尺度的酰胺类溶剂DMF、DMA、DEE、DEP、DPE、DPP作为模板,利用BTC羧酸为配体,与过渡金属在水热条件下反应,成功得到了十二个孔径不同的三维MOF孔道材料。Zn_2(BTC)(NO_3)(DMA)_3(1)[Zn_(11)(BTC)6(NO_3)_4·9DEE](2)[Zn_11(BTC)_6(NO_3)_4·8DEP](3)[Zn(BTC)][(CH_3)_2NH_2]·DMA (4)[Zn_3(BTC)_3][(CH_3)_2NH_2]_3·3DMA (5)[Zn_9(BTC)_6(OH)_2][(CH_3)2NH_2]_2·3DMA (6)[Zn_9(BTC)_5(OH)_3(C_2O_4)][(CH_3)_2NH_2]_2·6DEE (7)[Cd(BTC)][(CH_3)_2NH_2]·DMA (8)Cd_2(BTC)(NO_3)(DMA)_3(9)Cd_2(BTC)(NO_3)(DEE)_3(10)Co_2(BTC)(NO_3)(DMA)_3(11)Co_2(BTC)(NO_3)(DEE)_3(12)
     我们发现溶剂模板的尺度越大,得到的孔的尺度也越大,孔道的拓扑结构也会更新颖。从而探索了一种合成新颖的MOF孔材料和调控MOF孔道尺寸的方法。首次实现了系统利用溶剂模板的尺度来调控孔道的尺度和结构。首次利用situ-1HNMR对MOF孔材料的溶剂交换和离子交换行为进行了表征。
     2、以有机胺阳离子为模板,利用不同的刚性羧酸配体成功得到三个孔径不同的三维阴离子型MOF。[(CH_3)_2NH_2][Cd(BPDC)_(1.5)]·2DMA (13)[(CH_3)_2NH_2][Cd(BPDC)_(1.5)]·2DMA (14)[Me_2NH_2]2[Cd_2(NH_2BDC)_3]·4DMA (15)
     发现这些阴离子框架基本上都是低对称的。对这些阴离子型框架的离子交换行为我们利用1H NMR进行了跟踪。
     3、合成和利用刚性桥联含N配体如3-BPH,4-BPH与刚性的羧酸配体一起和过渡金属作用,合成得到4个不同结构的混合配体柱支撑型的MOF。Co_2(BPDC)_2(4-BPH)·4DMF (16)Cd(BPDC)(4-BPH)·2DMF (17)Co_4(BTC)(C_2H_2N2O_2)0.5(4-BPH)0.5(DMF)_2·H_2O (18)Ni_2(BDC)_2(3-BPH)_2(H_2O)·4DMF (19)
     研究结构表明这类MOF具有灵活多变的配位方式,通过其空间构型的可调整性以及氮原子的配位作用,可以合成得到柱支撑型结构新颖的MOF孔材料。
     4、合成和利用刚性多齿含N配体TPB、IP与刚性的羧酸配体一起和过渡金属作用,合成得到4个不同结构的混合配体的MOF。[Cu (TPB)][SO_4] H_2O (20)Zn(TPB)(BDC)·2H_2O (21)Co_2(BPTC)(IP)_4·12H_2O (22)Ni(BPTC)(IP)_2·6H_2O (23)
     研究结构表明这类含N配体TPB、IP并不容易形成三维多孔的框架。意外地,我们得到了一个稳定的超分子框架,孔道尺度为1.2nm。
Porous Metal-organic frameworks (MOF) as novel multifunctional materials, haveattracted more and more attention because of their flexible structures, various topologies,potential applications in gas storage, ion-exchange, adsorption, molecular recognization,catalysts, selective separation and chiral separation along with optics, electrics, magnetismand enantiomeric separation. These open frameworks possess not only crystalline porousstructure, but also better performance in gas sorption and storage comparing with traditionalzeolites. In addition, according to the principle of crystal engineering, it is possible thatrational design and synthesis of porous MOFs by selecting special organic ligands, metalsand templates.
     In this dissertation, we synthesize N-donor and carboxylate ligands, and use solventwith different size as templates to construct porous MOFs. We also investigate fluorescentproperty of the compound as multi-functional material with potential applications.Under hydrothermal and solvothermal conditions, we have synthesized23porousMOF. These compounds have been structurally characterized by the elemental analysis, IR,XRPD, TG,1H NMR and single-crystal X-ray diffraction. Moreover, the ions-exchange, N2absorption and fluorescence properties of some MOFs have been studied and discussed.These results include the following four issues:
     1. We synthesize a series of solvents with different size and then choose1,3,5-benzenetricarboxylate (BTC) coupled with metal ions to evaluating influence ofsolvents with different size. We successfully obtain twelve different3D porous MOFs:Zn_2(BTC)(NO_3)(DMA)_3(1)[Zn_(11)(BTC)_6(NO_3)_4·9DEE](2)[Zn_(11)(BTC)_6(NO_3)_4·8DEP](3)[Zn(BTC)][(CH_3)_2NH_2]·DMA (4)[Zn_3(BTC)_3][(CH_3)_2NH2]3·3DMA (5)[Zn_9(BTC)_6(OH)_2][(CH_3)_2NH_2]_2·3DMA (6)[Zn_9(BTC)_5(OH)_3(C_2O_4)][(CH_3)_2NH_2]_2·6DEE (7)[Cd(BTC)][(CH_3)_2NH_2]·DMA (8)Cd_2(BTC)(NO_3)·(DMA)_3(9)Cd_2(BTC)(NO_3)·(DEE)_3(10)Co_2(BTC)(NO_3)·(DMA)_3(11)Co_2(BTC)(NO_3)·(DEE)_3(12)
     Using solvents with different size as space-templating method, a cheap and easysynthesis approach have been successfully applied to synthesize MOFs. Not only does thisapproach can systematically control the pore size, but it also allows access to new structuresand topologies previously unrealized in MOFs. In general, that is ‘the larger the solventssize, the larger the pores’. The ion exchange behavior, gas absorbtion and the fluorescentproperty were studied and discussed.
     2. By choosing organic amine cations as a template and different rigid carboxylateligands, we successfully obtain three different3D MOFs with anionic frameworks.[(CH_3)_2NH_2][Cd(BPDC)_(1.5)]·2DMA (13)[(CH_3)_2NH_2][Cd(BPDC))_(1.5)]·2DMA (14)[Me_2NH_2]_2[Cd_2(NH_2BDC)_3]·4DMA (15)
     We found that these anionic frameworks are basically low-symmetric, which aredifferent with the neutral framework and easier to form chiral structures. The ion exchangebehavior, gas absorbtion and the fluorescent property are studied and discussed.
     3. By using rigid N-donor ligands such as3-BPH,4-BPH and so on, together with rigidcarboxylic acid ligands and transition metal ions, we synthesized four mixed ligand basedMOFs with different structures.Co_2(BPDC)_2(4-BPH)·4DMF (16)Cd(BPDC)(4-BPH)·2DMF (17)Co4(BTC)(C_2H_2N_2O_2)0.5(4-BPH)0.5(DMF)2·H_2O (18)Ni_2(BDC)_2(3-BPH)_2(H_2O)·4DMF (19)
     It shows that these MOFs possess flexible coordination modes. Through its adjustablespatial configuration and role of the coordination of nitrogen atoms, novel pillared MOFshave been synthesized. The gas absorbtion property are also studied and discussed
     4. Using multi N-containing ligands such as TPB, IP and so on, together with rigidcarboxylic acid ligands and transition metal ions, we synthesized four mixed ligand basedMOFs with different structures.[Cu (TPB)][SO_4] H_2O (20)Zn(TPB)(BDC)·2H_2O (21)Co_2(BPTC)(IP)_4·12H_2O (22)Ni(BPTC)(IP)_2·6H_2O (23)
     Study shows that the ligands TPB, IP are not easy to form three-dimensional porousframeworks. Unexpectedly, we get a stable supramolecular framework, where the pore size is1.2nm.
引文
[1] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionalityin isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
    [2] Noro S, Kitagawa S, Kondo M, et al. A new, methane adsorbent, porouscoordination polymer [{CuSiF6(4,4'-bipyridine)(2)}(n)][J]. Angew Chem, Int Ed,2000,39(12):2082-+.
    [3] Noro S, Kitaura R, Kondo M, et al. Framework engineering by anions and porousfunctionalities of Cu(II)/4,4'-bpy coordination polymers[J]. J Am Chem Soc,2002,124(11):2568-2583.
    [4] Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J].Chem Soc Rev,2009,38(5):1213-1214.
    [5] Duren T, Bae Y S, Snurr R Q. Using molecular simulation to characterisemetal-organic frameworks for adsorption applications[J]. Chem Soc Rev,2009,38(5):1237-1247.
    [6] Ferey G, Serre C. Large breathing effects in three-dimensional porous hybridmatter: facts, analyses, rules and consequences[J]. Chem Soc Rev,2009,38(5):1380-1399.
    [7] Han S S, Mendoza-Cortes J L, Goddard W A. Recent advances on simulation andtheory of hydrogen storage in metal-organic frameworks and covalent organicframeworks[J]. Chem Soc Rev,2009,38(5):1460-1476.
    [8] Kurmoo M. Magnetic metal-organic frameworks[J]. Chem Soc Rev,2009,38(5):1353-1379.
    [9] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation inmetal-organic frameworks[J]. Chem Soc Rev,2009,38(5):1477-1504.
    [10] Ma L Q, Abney C, Lin W B. Enantioselective catalysis with homochiralmetal-organic frameworks[J]. Chem Soc Rev,2009,38(5):1248-1256.
    [11] Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organicframeworks[J]. Chem Soc Rev,2009,38(5):1294-1314.
    [12] Uemura T, Yanai N, Kitagawa S. Polymerization reactions in porous coordinationpolymers[J]. Chem Soc Rev,2009,38(5):1228-1236.
    [13] Zacher D, Shekhah O, Woll C, et al. Thin films of metal-organic frameworks[J].Chem Soc Rev,2009,38(5):1418-1429.
    [14] O’Keeffe M, Yaghi O M. Deconstructing the Crystal Structures of Metal–OrganicFrameworks and Related Materials into Their Underlying Nets[J]. Chem Rev,2012:112(2):675-702.
    [15] Zhao D, Timmons D J, Yuan D Q, et al. Tuning the Topology and Functionalityof Metal-Organic Frameworks by Ligand Design[J]. Acc Chem Res,2011,44(2):123-133.
    [16] Robson R. A net-based approach to coordination polymers[J]. J Chem Soc DaltonTrans,2000,3735-3744..
    [17] Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionallystable and highly porous metal-organic framework[J]. Nature,1999,402(6759):276-279.
    [18] Kitagawa S, Uemura K. Dynamic porous properties of coordination polymersinspired by hydrogen bonds[J]. Chem Soc Rev,2005,34(2):109-119.
    [19] Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, et al. Secondarybuilding units, nets and bonding in the chemistry of metal-organic frameworks[J]. ChemSoc Rev,2009,38(5):1257-1283.
    [20] O'Keeffe M, Peskov M A, Ramsden S J, et al. The Reticular Chemistry StructureResource (RCSR) Database of, and Symbols for, Crystal Nets[J]. Acc Chem Res,2008,41(12):1782-1789.
    [21] Furukawa H, Kim J, Ockwig N W, et al. Control of Vertex Geometry, StructureDimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of CrystallineMetal-Organic Frameworks and Polyhedra[J]. J Am Chem Soc,2008,130(35):11650-11661.
    [22] Delgado-Friedrichs O, Foster M D, O'Keeffe M, et al. What do we know aboutthree-periodic nets?[J]. J Solid State Chem,2005,178(8):2533-2554.
    [23] Furukawa H, Miller M A, Yaghi O M. Independent verification of the saturationhydrogen uptake in MOF-177and establishment of a benchmark for hydrogen adsorption inmetal-organic frameworks[J]. J Mater Chem,2007,17(30):3197-3204.
    [24] Li Y, Yang R T. Gas adsorption and storage in metal-organic frameworkMOF-177[J]. Langmuir,2007,23(26):12937-12944.
    [25] Li Q W, Zhang W Y, Miljanic O S, et al. Docking in Metal-OrganicFrameworks[J]. Science,2009,325(5942):855-859.
    [26] Ferey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-basedsolid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
    [27] Barthelet K, Marrot J, Riou D, et al. A breathing hybrid organic-inorganic solidwith very large pores and high magnetic characteristics[J]. AngewandteChemie-International Edition,2001,41(2):281-+.
    [28] Serre C, Millange F, Thouvenot C, et al. Very large breathing effect in the firstnanoporous chromium(III)-based solids: MIL-53orCr-III(OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}(x). H2Oy[J]. J Am Chem Soc,2002,124(45):13519-13526.
    [29] Ferey G, Serre C, Mellot-Draznieks C, et al. A hybrid solid with giant poresprepared by a combination of targeted chemistry, simulation, and powder diffraction[J].Angewandte Chemie-International Edition,2004,43(46):6296-6301.
    [30] Mellot-Draznieks C, Dutour J, Ferey G R. Hybrid organic-inorganic frameworks:Routes for computational design and structure prediction[J]. AngewandteChemie-International Edition,2004,43(46):6290-6296.
    [31] Serre C, Millange F, Surble S, et al. A route to the synthesis of trivalenttransition-metal porous carboxylates with trimeric secondary building units[J]. AngewandteChemie-International Edition,2004,43(46):6286-6289.
    [32] Mellot-Draznieks C, Serre C, Surble S, et al. Very large swelling in hybridframeworks: A combined computational and powder diffraction study[J]. J Am Chem Soc,2005,127(46):16273-16278.
    [33] Chui S S Y, Lo S M F, Charmant J P, et al. A Chemically FunctionalizableNanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283(5405):1148-1150.
    [34] Young-wan P, Sang-eom C, Hyunuk K, et al. Crystal Structure and Guest Uptakeof a Mesoporous Metal-Organic Framework Containing Cages of3.9and4.7nm inDiameter13[J]. Angew Chem Int Ed,2007,46(43):8230-8233.
    [35] Yan Y, Yang S, Blake A J, et al. A mesoporous metal–organic frameworkconstructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24]cuboctahedra[J]. Chem Commun,2011,47(36):9995.
    [36] Hayashi H, Cote A P, Furukawa H, et al. Zeolite a imidazolate frameworks[J]. NatMater,2007,6(7):501-506.
    [37] Wang B, Cote A P, Furukawa H, et al. Colossal cages in zeolitic imidazolateframeworks as selective carbon dioxide reservoirs[J]. Nature,2008,453(7192):207-U206.
    [38] Banerjee R, Furukawa H, Britt D, et al. Control of Pore Size and Functionality inIsoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective CaptureProperties[J]. J Am Chem Soc,2009,131(11):3875-3877.
    [39] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeoliticimidazolate frameworks and application to CO2capture[J]. Science,2008,319(5865):939-943.
    [40] Sumida K, Hill M R, Horike S, et al. Synthesis and Hydrogen Storage Propertiesof Be12(OH)12(1,3,5-benzenetribenzoate)4[J]. J Am Chem Soc,2009,131(42):15120-15121.
    [41] Horike S, Dinca, x30c, et al. Size-Selective Lewis Acid Catalysis in aMicroporous Metal-Organic Framework with Exposed Mn2+Coordination Sites[J]. J AmChem Soc,2008,130(18):5854-5855.
    [42] Prior T J, Bradshaw D, Teat S J, et al. Designed layer assembly: athree-dimensional framework with74%extra-framework volume by connection of infinitetwo-dimensional sheets[J]. Chem Commun,2003,(4):500-501.
    [43] Kitaura R, Iwahori F, Matsuda R, et al. Rational Design and Crystal StructureDetermination of a3-D Metal Organic Jungle-Gym-like Open Framework[J]. Inorg Chem,2004,43(21):6522-6524.
    [44] El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, et al. Designed synthesis of3Dcovalent organic frameworks[J]. Science,2007,316(5822):268-272.
    [45] Tilford R W, Gemmill W R, zur Loye H C, et al. Facile synthesis of a highlycrystalline, covalently linked porous boronate network[J]. Chem Mater,2006,18(22):5296-5301.
    [46] Perry J J, Perman J A, Zaworotko M J. Design and synthesis of metal-organicframeworks using metal-organic polyhedra as supermolecular building blocks[J]. Chem SocRev,2009,38(5):1400-1417.
    [47] Katsibardi K, Moschovi M A, Theodoridou M, et al. Enterovirus-associatedhemophagocytic syndrome in children with malignancy: report of three cases and review ofthe literature[J]. European Journal of Pediatrics,2008,167(1):97-102.
    [48] Banerjee M, Das S, Yoon M, et al. Postsynthetic Modification Switches anAchiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials[J].J Am Chem Soc,2009,131(22):7524-+.
    [49] Banerjee M, Das S, Yoon M, et al. Postsynthetic Modification Switches anAchiral Framework to Catalytically Active Homochiral Metal−Organic PorousMaterials[J]. J Am Chem Soc,0(0).
    [50] van den Berg A W C, Arean C O. Materials for hydrogen storage: current researchtrends and perspectives[J]. Chem Commun,2008,(6):668-681.
    [51] Guo X D, Zhu G S, Li Z Y, et al. Rare earth coordination polymers with zeolitetopology constructed from4-connected building units[J]. Inorg Chem,2006,45(10):4065-4070.
    [52] Shimizu G K H, Vaidhyanathan R, Taylor J M. Phosphonate and sulfonate metalorganic frameworks[J]. Chem Soc Rev,2009,38(5):1430-1449.
    [53] Gandara F, Garcia-Cortes A, Cascales C, et al. Rare earth arenedisulfonatemetal-organic frameworks: An approach toward polyhedral diversity and variety offunctional compounds[J]. Inorg Chem,2007,46(9):3475-3484.
    [54] Gandara F, de Andres A, Gomez-Lor B, et al. A rare-earth MOF series:Fascinating structure, efficient light emitters, and promising catalysts[J]. Crystal Growth&Design,2008,8(2):378-380.
    [55] Zaworotko M J. Materials science-Designer pores made easy[J]. Nature,2008,451(7177):410-411.
    [56] Ockwig N W, Delgado-Friedrichs O, O'Keeffe M, et al. Reticular chemistry:Occurrence and taxonomy of nets and grammar for the design of frameworks[J]. Acc ChemRes,2005,38(3):176-182.
    [57] Rosi N L, Kim J, Eddaoudi M, et al. Rod packings and metal-organic frameworksconstructed from rod-shaped secondary building units[J]. J Am Chem Soc,2005,127(5):1504-1518.
    [58] Fang Q R, Zhu G S, Jin Z, et al. Mesoporous metal-organic framework with rareetb topology for hydrogen storage and dye assembly[J]. Angew Chem, Int Ed,2007,46(35):6638-6642.
    [59] Batten S R, Harris A R, Jensen P, et al. Copper(I) dicyanamide coordinationpolymers: ladders, sheets, layers, diamond-like networks and unusual interpenetration[J].Journal of the Chemical Society-Dalton Transactions,2000,(21):3829-3835.
    [60] Kondo M, Shimamura M, Noro S, et al. Microporous materials constructed fromthe interpenetrated coordination networks. Structures and methane adsorption properties[J].Chem Mater,2000,12(5):1288-1299.
    [61] Batten S R. Topology of interpenetration[J]. Crystengcomm,2001,(18).
    [62] Batten S R. Glorious uncertainty-challenges for network design[J]. J Solid StateChem,2005,178(8):2475-2479.
    [63] Ferey G. Hybrid porous solids: past, present, future[J]. Chem Soc Rev,2008,37(1):191-214.
    [64] Fletcher A J, Thomas K M, Rosseinsky M J. Flexibility in metal-organicframework materials: Impact on sorption properties[J]. J Solid State Chem,2005,178(8):2491-2510.
    [65] Uemura K, Matsuda R, Kitagawa S. Flexible microporous coordinationpolymers[J]. J Solid State Chem,2005,178(8):2420-2429.
    [66] Serre C, Mellot-Draznieks C, Surble S, et al. Role of solvent-host interactions thatlead to very large swelling of hybrid frameworks[J]. Science,2007,315(5820):1828-1831.
    [67] Tanaka D, Kitagawa S. Template effects in porous coordination polymers[J].Chem Mater,2008,20(3):922-931.
    [68] Dobrzanska L, Lloyd G O, Raubenheimer H G, et al. A discrete metallocycliccomplex that retains its solvent-templated channel structure on guest removal to yield aporous, gas sorbing material[J]. J Am Chem Soc,2005,127(38):13134-13135.
    [69] Yang M, Jiang F L, Chen Q H, et al. Solvent and temperature influence structuralvariation from nonporous2D->3D parallel polycatenation to3D microporousmetal-organic framework[J]. Crystengcomm,2011,13(12):3971-3974.
    [70] Michaelides A, Skoulika S. Anion-Induced Formation of Lanthanide-OrganicChains From3D Framework Solids. Anion Exchange in a Crystal-to-Crystal Manner[J].Crystal Growth&Design,2009,9(5):2039-2042.
    [71] Ma L Q, Lin W B. Chirality-controlled and solvent-templated catenationisomerism in metal-organic frameworks[J]. J Am Chem Soc,2008,130(42):13834-13835.
    [72] Ling Y, Liao T B, Chen Z X, et al. Systematic exploration of a rutile-typezinc(II)-phosphonocarboxylate open framework: the factors that influence the structure[J].Dalton Trans,2010,39(44):10712-10718.
    [73] Komori-Orisaku K, Hoshino K, Yamashita S, et al. Water Molecules as Binders inTransformation of2D Coordination Polymer Cu(4,4'-bpy)(2)(OTf)(2)(n) into ParallelAligned3D Architectures[J]. Bull Chem Soc Jpn,2010,83(3):276-278.
    [74] Chen X D, Wan C Q, Sung H H Y, et al. Control of Channel Size for SelectiveGuest Inclusion with Inlaid Anionic Building Blocks in a Porous Cationic Metal-OrganicHost Framework[J]. Chem Eur J,2009,15(26):6518-6528.
    [75] Carlucci L, Ciani G, Maggini S, et al. Heterometallic Modular Metal-Organic3DFrameworks Assembled via New Tris-beta-Diketonate Metalloligands: NanoporousMaterials for Anion Exchange and Scaffolding of Selected Anionic Guests[J]. Chem Eur J,2010,16(41):12328-12341.
    [76] Cao M L, Mo H J, Ye B H. Architecture of Hydrogen-Bonded Three-DimensionalNbO Net Based on Hydrogen Carbonate or Trimesic Acid Using a Hydrophobic,Predesigned, Cubic Cation Co(H(2)O)(6)subset of Co(8)L(12) as a Template[J]. CrystalGrowth&Design,2009,9(1):546-554.
    [77] Bernini M C, Snejko N, Gutierrez-Puebla E, et al. Structure-Directing andTemplate Roles of Aromatic Molecules in the Self-Assembly Formation Process of3DHolmium-Succinate MOFs[J]. Inorg Chem,2011,50(13):5958-5968.
    [78] Pan Q H, Chen Q A, Song W C, et al. Template-directed synthesis of three newopen-framework metal(II) oxalates using Co(III) complex as template[J]. Crystengcomm,12(12):4198-4204.
    [79] Mercer D J, Vukotic V N, Loeb S J. Linking [2]rotaxane wheels to create a newtype of metal organic rotaxane framework[J]. Chem Commun,47(3):896-898.
    [80] Jahan M, Bao Q L, Yang J X, et al. Structure-Directing Role of Graphene in theSynthesis of Metal-Organic Framework Nanowire[J]. J Am Chem Soc,132(41):14487-14495.
    [81] Guo D W, Yao S Y, Zhang G, et al. Chiral frameworks of ammonium zinc(II)sulfate synthesized using an achiral template[J]. Crystengcomm,12(10):2989-2995.
    [82] Feng J D, Tang S W, Shao K Z, et al. Helical channels, low framework densityand structure-directing effect: a novel non-centrosymmetric zinc phosphate NIS-4preparedby ionothermal reaction[J]. Crystengcomm,12(11):3448-3451.
    [83] Hong D Y, Hwang Y K, Serre C, et al. Porous Chromium Terephthalate MIL-101with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorptionand Catalysis[J]. Adv Funct Mater,2009,19(10):1537-1552.
    [84] Dybtsev D N, Chun H, Kim K. Rigid and Flexible: A Highly PorousMetal–Organic Framework with Unusual Guest-Dependent Dynamic Behavior[J]. AngewChem Int Ed,2004,43(38):5033-5036.
    [85] Jorge G, Freek K. Metal-Organic Framework Membranes High Potential, BrightFuture?[J]. Angew Chem Int Ed,49(9):1530-1532.
    [86] Zhi-Yuan G, Xiu-Ping Y. Metal-Organic Framework MIL-101forHigh-Resolution Gas-Chromatographic Separation of Xylene Isomers and Ethylbenzene[J].Angew Chem Int Ed,9999(9999): NA.
    [87] Cheetham A K, Rao C N R, Feller R K. Structural diversity and chemical trendsin hybrid inorganic-organic framework materials[J]. Chem Commun,2006,(46):4780-4795.
    [88] Chen S S, Chen M, Takamizawa S, et al. Porous cobalt(II)-imidazolatesupramolecular isomeric frameworks with selective gas sorption property[J]. ChemCommun,2011,47(17):4902-4904.
    [89] Hong S, Oh M, Park M, et al. Large H-2storage capacity of a newpolyhedron-based metal-organic framework with high thermal and hygroscopic stability[J].Chem Commun,2009,(36):5397-5399.
    [90] Czaja A U, Trukhan N, Muller U. Industrial applications of metal-organicframeworks[J]. Chem Soc Rev,2009,38(5):1284-1293.
    [91] Chen S M, Zhang J, Wu T, et al. Multiroute Synthesis of Porous AnionicFrameworks and Size-Tunable Extraframework Organic Cation-Controlled Gas SorptionProperties[J]. J Am Chem Soc,2009,131(44):16027-+.
    [92] Coudert F-X, Mellot-Draznieks C, Fuchs A H, et al. Prediction of Breathing andGate-Opening Transitions Upon Binary Mixture Adsorption in Metal-OrganicFrameworks[J]. J Am Chem Soc,2009,131(32):11329-11331.
    [93] Li C S, Xue L, Che Y X, et al. Synthesis, structure and magnetic properties of twomu-oxo and thiocyanato-bridged manganese(II)-mercury(II) coordination polymers[J].Inorg Chim Acta,2007,360(11):3569-3574.
    [94] Mulfort K L, Hupp J T. Chemical reduction of metal-organic framework materialsas a method to enhance gas uptake and binding[J]. J Am Chem Soc,2007,129(31):9604-+.
    [95] Xiang S, Zhou W, Gallegos J M, et al. Exceptionally High Acetylene Uptake in aMicroporous Metal-Organic Framework with Open Metal Sites[J]. J Am Chem Soc,2009,131(34):12415-12419.
    [96] Zhang J-P, Chen X-M. Exceptional Framework Flexibility and Sorption Behaviorof a Multifunctional Porous Cuprous Triazolate Framework[J]. J Am Chem Soc,2008,130(18):6010-6017.
    [97] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organicframeworks[J]. Chem Soc Rev,2009,38(5):1330-1352.
    [98] Smolka S, Barth M, Benson O. Highly efficient fluorescence sensing with hollowcore photonic crystal fibers[J]. Opt Express,2007,15(20):12783-12791.
    [99] Chuncan W, Fan Z, Chu L, et al. Microstructured optical fiber for in-phase modeselection in multicore fiber lasers[J]. Opt Express,2008,16(8):5505-5515.
    [100] Cani S P N, De Francisco C A, Spadoti D H, et al. Requirements for efficientRaman amplification and dispersion compensation using microstructured optical fibers[J].Fiber Integr Opt,2007,26(5):255-270.
    [101] Bahloul F, Pagnoux D, Labontec L, et al. Numerical analysis of the azimuthalperiodicity in the two lowest order modes of microstructured fibres applied to the precisedetermination of the cutoff wavelength[J]. Optics Communications,2008,281(10):2789-2798.
    [102] Afshar S, Warren-Smith S C, Monro T M. Enhancement of fluorescence-basedsensing using microstructured optical fibres[J]. Opt Express,2007,15(26):17891-17901.
    [103] Chen B L, Yang Y, Zapata F, et al. Luminescent open metal sites within ametal-organic framework for sensing small molecules[J]. Adv Mater,2007,19(13):1693-+.
    [104] Hao X R, Wang X L, Qin C, et al. A3D chiral nanoporous coordinationframework consisting of homochiral nanotubes assembled from octuple helices[J]. ChemCommun,2007,(44):4620-4622.
    [105] Kaneko W, Ohba M, Kitagawa S. A flexible coordination polymer crystalproviding reversible structural and magnetic conversions[J]. J Am Chem Soc,2007,129(44):13706-13712.
    [106] Opelt S, Turk S, Dietzsch E, et al. Preparation of palladium supported on MOF-5and its use as hydrogenation catalyst[J]. Catal Commun,2008,9(6):1286-1290.
    [107] Gandara F, Gornez-Lor B, Gutierrez-Puebla E, et al. An indium layered MOF asrecyclable lewis acid catalyst[J]. Chem Mater,2008,20(1):72-76.
    [108] Xamena F, Abad A, Corma A, et al. MOFs as catalysts: Activity, reusability andshape-selectivity of a Pd-containing MOF[J]. J Catal,2007,250(2):294-298.
    [109] David F, Sonia A, Catherine P. Metal-Organic Frameworks: Opportunities forCatalysis[J]. Angew Chem Int Ed,2009,9999(9999): NA.
    [110] Markus T, Ying L, Bjn B, et al. Heterogeneous Catalytic Oxidation by MFU-1:A Cobalt(II)-Containing Metal-Organic Framework[J]. Angew Chem Int Ed,2009,9999(9999): NA.
    [111] Xu G, Zhang X, Guo P, et al. MnII-based MIL-53Analogues: Synthesis UsingNeutral Bridging Ligands and Application in Liquid-Phase Adsorption and Separation ofC6-C8Aromatics[J]. J Am Chem Soc.
    [112] Nouar F, Eckert J, Eubank J F, et al. Zeolite-like Metal-Organic Frameworks(ZMOFs) as Hydrogen Storage Platform: Lithium and Magnesium Ion-Exchange andH2-(rho-ZMOF) Interaction Studies[J]. J Am Chem Soc,2009,131(8):2864-2870.
    [113] Zhang J P, Lin Y Y, Zhang W X, et al. Temperature-or guest-induced drasticsingle-crystal-to-single-crystal transformations of a nanoporous coordination polymer[J]. JAm Chem Soc,2005,127(41):14162-14163.
    [114] Worel N, Greinix H T, Supper V, et al. Prophylactic red blood cell exchange forprevention of severe immune hemolysis in minor ABO-mismatched allogeneic peripheralblood progenitor cell transplantation after reduced-intensity conditioning[J]. Transfusion,2007,47(8):1494-1502.
    [115] Du M, Zhang Z H, Tang L F, et al. Molecular tectonics of metal-organicframeworks (MOFs): A rational design strategy for unusual mixed-connected networktopologies[J]. Chem Eur J,2007,13(9):2578-2586.
    [116] Vagin S I, Ott A K, Hoffmann S D, et al. Synthesis and Properties of(Triptycenedicarboxylatio)zinc Coordination Networks[J]. Chem Eur J,2009,15(23):5845-5853.
    [117] Hao X R, Wang X L, Su Z M, et al. Two unprecedented porous anionicframeworks: organoammonium templating effects and structural diversification[J]. DaltonTrans,2009,(40):8562-8566.
    [118] Fei H H, Rogow D L, Oliver S R J. Reversible Anion Exchange and CatalyticProperties of Two Cationic Metal-Organic Frameworks Based on Cu(I) and Ag(I)[J]. J AmChem Soc,132(20):7202-7209.
    [119] Seidel S R, Stang P J. High-Symmetry Coordination Cages via Self-Assembly[J].Acc Chem Res,2002,35(11):972-983.
    [120] Mavrandonakis A, Klontzas E, Tylianakis E, et al. Enhancement of HydrogenAdsorption in Metal-Organic Frameworks by the Incorporation of the Sulfonate Group andLi Cations. A Multiscale Computational Study[J]. J Am Chem Soc,2009.
    [121] Bhakta R K, Herberg J L, Jacobs B, et al. Metal-Organic Frameworks AsTemplates for Nanoscale NaAlH4[J]. J Am Chem Soc,2009.
    [122] Cohen S M. New approaches for medicinal applications of bioinorganicchemistry[J]. Current Opinion in Chemical Biology,2007,11(2):115-120.
    [123] Han S S, Goddard W A. Lithium-doped metal-organic frameworks for reversibleH-2storage at ambient temperature[J]. J Am Chem Soc,2007,129(27):8422-+.
    [124] Himsl D, Wallacher D, Hartmann M. Improving the Hydrogen-AdsorptionProperties of a Hydroxy-Modified MIL-53(Al) Structural Analogue by Lithium Doping[J].Angewandte Chemie-International Edition,2009,48(25):4639-4642.
    [125] Cao D P, Lan J H, Wang W C, et al. Lithium-Doped3D Covalent OrganicFrameworks: High-Capacity Hydrogen Storage Materials[J]. AngewandteChemie-International Edition,2009,48(26):4730-4733.
    [126] Seayad A M, Antonelli D M. Recent advances in hydrogen storage inmetal-containing inorganic nanostructures and related materials[J]. Advanced Materials,2004,16(9-10):765-777.
    [1] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionalityin isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
    [2] Ockwig N W, Delgado-Friedrichs O, O'Keeffe M, et al. Reticular chemistry:Occurrence and taxonomy of nets and grammar for the design of frameworks[J]. Acc ChemRes,2005,38(3):176-182.
    [3] Hayashi H, Cote A P, Furukawa H, et al. Zeolite a imidazolate frameworks[J]. NatMater,2007,6(7):501-506.
    [4] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeoliticimidazolate frameworks and application to CO2capture[J]. Science,2008,319(5865):939-943.
    [5] Furukawa H, Kim J, Ockwig N W, et al. Control of Vertex Geometry, StructureDimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of CrystallineMetal-rganic Frameworks and Polyhedra[J]. J Am Chem Soc,2008,130(35):11650-11661.
    [6] O'Keeffe M, Peskov M A, Ramsden S J, et al. The Reticular Chemistry StructureResource (RCSR) Database of, and Symbols for, Crystal Nets[J]. Acc Chem Res,2008,41(12):1782-1789.
    [7] Wang B, Cote A P, Furukawa H, et al. Colossal cages in zeolitic imidazolateframeworks as selective carbon dioxide reservoirs[J]. Nature,2008,453(7192):207-U206.
    [8] Banerjee R, Furukawa H, Britt D, et al. Control of Pore Size and Functionality inIsoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective CaptureProperties[J]. J Am Chem Soc,2009,131(11):3875-3877.
    [9] Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J].Chem Soc Rev,2009,38(5):1213-1214.
    [10] Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, et al. Secondarybuilding units, nets and bonding in the chemistry of metal-organic frameworks[J]. ChemSoc Rev,2009,38(5):1257-1283.
    [11] Yu J H, Xu R R. Rational Approaches toward the Design and Synthesis ofZeolitic Inorganic Open-Framework Materials[J]. Accounts of Chemical Research,2010,43(9):1195-1204.
    [12] Jiang J X, Yu J H, Corma A. Extra-Large-Pore Zeolites: Bridging the Gapbetween Micro and Mesoporous Structures[J]. Angewandte Chemie-International Edition,2010,49(18):3120-3145.
    [13] Fang Q, Zhu G, Xue M, et al. Amine-Templated Assembly of Metal–OrganicFrameworks with Attractive Topologies[J]. CRYSTAL GROWTH&DESIGN,2008,8(1):319–329.
    [14] Tanaka D, Kitagawa S. Template effects in porous coordination polymers[J].Chem Mater,2008,20(3):922-931.
    [15] Ferey G. Hybrid porous solids: past, present, future[J]. Chem Soc Rev,2008,37(1):191-214.
    [16] Zacher D, Baunemann A, Hermes S, et al. Deposition of microcrystalline
    [Cu-3(btc)(2)] and [Zn-2(bdc)(2)(dabco)] at alumina and silica surfaces modified withpatterned self assembled organic monolayers: evidence of surface selective and orientedgrowth[J]. J Mater Chem,2007,17(27):2785-2792.
    [17] Kepert C J, Rosseinsky M J. A porous chiral framework of coordinated1,3,5-benzenetricarboxylate: quadruple interpenetration of the (10,3)-a network[J]. ChemCommun,1998,(1):31-32.
    [18] Prior T J, Rosseinsky M J. Chiral Direction and Interconnection of HelicalThree-Connected Networks in Metal-Organic Frameworks[J]. Inorg Chem,2003,42(5):1564-1575.
    [19] Guo X D, Zhu G S, Li Z Y, et al. Rare earth coordination polymers with zeolitetopology constructed from4-connected building units[J]. Inorg Chem,2006,45(10):4065-4070.
    [20] Li Z Y, Zhu G S, Guo X D, et al. Synthesis, structure, and luminescent andmagnetic properties of novel lanthanide metal-organic frameworks with zeolite-liketopology[J]. Inorg Chem,2007,46(13):5174-5178.
    [21] Nouar F, Eubank J F, Bousquet T, et al. Supermolecular Building Blocks (SBBs)for the Design and Synthesis of Highly Porous Metal-Organic Frameworks[J]. J Am ChemSoc,2008,130(6):1833-1835.
    [22] Ma S, Sun D, Simmons J M, et al. Metal-Organic Framework from an AnthraceneDerivative Containing Nanoscopic Cages Exhibiting High Methane Uptake[J]. J Am ChemSoc,2007,130(3):1012-1016.
    [23] Chen S M, Zhang J, Wu T, et al. Multiroute Synthesis of Porous AnionicFrameworks and Size-Tunable Extraframework Organic Cation-Controlled Gas SorptionProperties[J]. J Am Chem Soc,2009,131(44):16027-+.
    [24] Yaghi O M, Davis C E, Li G, et al. Selective Guest Binding by Tailored Channelsin a3-D Porous Zinc(II)-Benzenetricarboxylate Network[J]. J Am Chem Soc,1997,119:2861-2868.
    [25] He J H, Zhang Y T, Pan Q H, et al. Three metal-organic frameworks preparedfrom mixed solvents of DMF and HAc[J]. Microporous Mesoporous Mater,2006,90(1-3):145-152.
    [26] Sheldrick G. A short history of SHELX[J]. Acta Crystallographica Section A,2008,64(1):112-122.
    [27] Spek A L. Single-crystal structure validation with the program PLATON[J]. JAppl Crystallogr,2003,36:7-13.
    [28] Serre C, Millange F, Thouvenot C, et al. Very large breathing effect in the firstnanoporous chromium(III)-based solids: MIL-53or Cr-III(OH)centerdot{O2C-C6H4-CO2}center dot{HO2C-C6H4-CO2H}(x)center dot H2Oy[J]. J Am ChemSoc,2002,124(45):13519-13526.
    [29] Mellot-Draznieks C, Serre C, Surble S, et al. Very large swelling in hybridframeworks: A combined computational and powder diffraction study[J]. J Am Chem Soc,2005,127(46):16273-16278.
    [30] Ferey G, Serre C. Large breathing effects in three-dimensional porous hybridmatter: facts, analyses, rules and consequences[J]. Chem Soc Rev,2009,38(5):1380-1399.
    [31] Chui S S Y, Lo S M F, Charmant J P, et al. A Chemically FunctionalizableNanoporous Material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283(5405):1148-1150.
    [32] Andrew D B. Solvent hydrolysis and templating effects in the synthesis ofmetal–organic frameworks[J]. CrystEngComm,2005.
    [33] Vilar R. Anion-templated synthesis[J]. Angewandte Chemie-International Edition,2003,42(13):1460-1477.
    [34] Bovey F A. Nuclear Magnetic Resonance Spectroscopy[M]. New York:Academic Press,1969.
    [35] Pople H A, Schneider W G, Bernstein H J. High Resolution Nuclear MagneticResonance[M]. New York: McGraw-Hill,1967.
    [1] Delgado-Friedrichs O, Foster M D, O'Keeffe M, et al. What do we know aboutthree-periodic nets?[J]. J Solid State Chem,2005,178(8):2533-2554.
    [2] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionalityin isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
    [3] Tranchemontagne D J, Mendoza-Cortes J L, O'Keeffe M, et al. Secondary buildingunits, nets and bonding in the chemistry of metal-organic frameworks[J]. Chem Soc Rev,2009,38(5):1257-1283.
    [4] Ockwig N W, Delgado-Friedrichs O, O'Keeffe M, et al. Reticular chemistry:Occurrence and taxonomy of nets and grammar for the design of frameworks[J]. Acc ChemRes,2005,38(3):176-182.
    [5] O'Keeffe M, Peskov M A, Ramsden S J, et al. The Reticular Chemistry StructureResource (RCSR) Database of, and Symbols for, Crystal Nets[J]. Acc Chem Res,2008,41(12):1782-1789.
    [6] O'Keeffe M. Design of MOFs and intellectual content in reticular chemistry: apersonal view[J]. Chem Soc Rev,2009,38(5):1215-1217.
    [7] O’Keeffe M, Yaghi O M. Deconstructing the Crystal Structures of Metal–OrganicFrameworks and Related Materials into Their Underlying Nets[J]. Chem Rev,2011:null-null.
    [8] Wang B, Cote A P, Furukawa H, et al. Colossal cages in zeolitic imidazolateframeworks as selective carbon dioxide reservoirs[J]. Nature,2008,453(7192):207-U206.
    [9] Tanaka D, Kitagawa S. Template effects in porous coordination polymers[J]. ChemMater,2008,20(3):922-931.
    [10] Uemura K, Matsuda R, Kitagawa S. Flexible microporous coordinationpolymers[J]. J Solid State Chem,2005,178(8):2420-2429.
    [11] Kitagawa S, Uemura K. Dynamic porous properties of coordination polymersinspired by hydrogen bonds[J]. Chem Soc Rev,2005,34(2):109-119.
    [12] He J H, Zhang Y T, Pan Q H, et al. Three metal-organic frameworks preparedfrom mixed solvents of DMF and HAc[J]. Microporous Mesoporous Mater,2006,90(1-3):145-152.
    [13] Yang J, Li G D, Cao J J, et al. Structural variation from1D to3D: Effects ofligands and solvents on the construction of lead(II)-organic coordination polymers[J]. ChemEur J,2007,13(11):3248-3261.
    [14] Millange F, Serre C, Guillou N, et al. Structural Effects of Solvents on theBreathing of Metal–Organic Frameworks[J]. Angew Chem Int Ed,2008,47:1–6.
    [15] Wang X Y, Wang L, Wang Z M, et al. Solvent-tuned azido-bridged Co2+layers:Square, honeycomb, and Kagome[J]. J Am Chem Soc,2006,128(3):674-675.
    [16] Senkovska I, Kaskel S. Solvent-induced pore-size adjustment in the metal-organicframework [Mg-3(ndc)(3)(dmf)(4)](ndc=naphthalenedicarboxylate)[J]. Eur J Inorg Chem,2006,(22):4564-4569.
    [17] Du M, Wang X G, Zhang Z H, et al. Solvent-directed layered Co(II) coordinationpolymers with unusual solid-state properties: from a nanoporous framework to the densepolythreading3-D aggregation[J]. Crystengcomm,2006,8(11):788-793.
    [18] Tynan E, Jensen P, Kruger P E, et al. Solvent templated synthesis ofmetal-organic frameworks: structural characterisation and properties of the3D networkisomers {[Mn(dcbp)]center dot(1)/2DMF}(n) and {[Mn(dcbp)]center dot2H(2)O}(n)[J].Chem Commun,2004,(7):776-777.
    [19] Andrew D B. Solvent hydrolysis and templating effects in the synthesis ofmetal–organic frameworks[J]. CrystEngComm,2005.
    [20] Yang M, Jiang F L, Chen Q H, et al. Solvent and temperature influence structuralvariation from nonporous2D->3D parallel polycatenation to3D microporousmetal-organic framework[J]. Crystengcomm,2011,13(12):3971-3974.
    [21] Serre C, Mellot-Draznieks C, Surble S, et al. Role of solvent-host interactions thatlead to very large swelling of hybrid frameworks[J]. Science,2007,315(5820):1828-1831.
    [22] Dobrzanska L, Lloyd G O, Raubenheimer H G, et al. A discrete metallocycliccomplex that retains its solvent-templated channel structure on guest removal to yield aporous, gas sorbing material[J]. J Am Chem Soc,2005,127(38):13134-13135.
    [23] Ma L Q, Lin W B. Chirality-controlled and solvent-templated catenationisomerism in metal-organic frameworks[J]. J Am Chem Soc,2008,130(42):13834-13835.
    [24] Yu J H, Xu R R. Rational Approaches toward the Design and Synthesis ofZeolitic Inorganic Open-Framework Materials[J]. Accounts of Chemical Research,2010,43(9):1195-1204.
    [25] Fang Q, Zhu G, Xue M, et al. Amine-Templated Assembly of Metal–OrganicFrameworks with Attractive Topologies[J]. CRYSTAL GROWTH&DESIGN,2008,8(1):319–329.
    [26] Austria C, Zhang J, Valle H, et al. Amine-Controlled Assembly of Metal-SulfiteArchitecture from1D Chains to3D Framework[J]. Inorg Chem,2007,46(16):6283-6290.
    [27] Xie L H, Liu S X, Gao B, et al. A three-dimensional porous metal-organicframework with the rutile topology constructed from triangular and distorted octahedralbuilding blocks[J]. Chem Commun,2005,(18):2402-2404.
    [28] Sheldrick G. A short history of SHELX[J]. Acta Crystallographica Section A,2008,64(1):112-122.
    [29] Li Z Y, Zhu G S, Guo X D, et al. Synthesis, structure, and luminescent andmagnetic properties of novel lanthanide metal-organic frameworks with zeolite-liketopology[J]. Inorg Chem,2007,46(13):5174-5178.
    [30] Jin Z, Zhu G S, Zou Y C, et al. Synthesis, structure and luminescent property of anew3D porous metal-organic framework with rutile topology[J]. J Mol Struct,2007,871(1-3):80-84.
    [31] Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organicframeworks[J]. Chem Soc Rev,2009,38(5):1330-1352.
    [32] Bovey F A. Nuclear Magnetic Resonance Spectroscopy[M]. New York:Academic Press,1969.
    [33] Pople H A, Schneider W G, Bernstein H J. High Resolution Nuclear MagneticResonance[M]. New York: McGraw-Hill,1967.
    [1] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionalityin isoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
    [2] Vodak D T, Braun M E, Kim J, et al. Metal-organic frameworks constructed frompentagonal antiprismatic and cuboctahedral secondary building units[J]. Chem Commun,2001,(24):2534-2535.
    [3] Kim J, Chen B L, Reineke T M, et al. Assembly of metal-organic frameworks fromlarge organic and inorganic secondary building units: New examples and simplifyingprinciples for complex structures[J]. J Am Chem Soc,2001,123(34):8239-8247.
    [4] Eddaoudi M, Li H L, Yaghi O M. Highly porous and stable metal-organicframeworks: Structure design and sorption properties[J]. J Am Chem Soc,2000,122(7):1391-1397.
    [5] Ferey G, Mellot-Draznieks C, Serre C, et al. Crystallized frameworks with giantpores: Are there limits to the possible?[J]. Acc Chem Res,2005,38(4):217-225.
    [6] Ferey G, Serre C. Large breathing effects in three-dimensional porous hybridmatter: facts, analyses, rules and consequences[J]. Chem Soc Rev,2009,38(5):1380-1399.
    [7] Kitaura R, Iwahori F, Matsuda R, et al. Rational Design and Crystal StructureDetermination of a3-D Metal Organic Jungle-Gym-like Open Framework[J]. Inorg Chem,2004,43(21):6522-6524.
    [8] Eubank J F, Wojtas L, Hight M R, et al. The Next Chapter in MOF PillaringStrategies: Trigonal Heterofunctional Ligands To Access Targeted High-Connected ThreeDimensional Nets, Isoreticular Platforms[J]. J Am Chem Soc,2011:11042-11046.
    [9] Pichon A, Fierro C M, Nieuwenhuyzen M, et al. A pillared-grid MOF with largepores based on the Cu-2(O2CR)(4) paddle-wheel[J]. Crystengcomm,2007,9(6):449-451.
    [10] Chun H, Dybtsev D N, Kim H, et al. Synthesis, X-ray Crystal Structures, and GasSorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs:Implications for Hydrogen Storage in Porous Materials[J]. Chemistry–A European Journal,2005,11(12):3521-3529.
    [11] Wang Y L, Yuan D Q, Bi W H, et al. Syntheses and Characterizations of Two3DCobalt-Organic Frameworks from2D Honeycomb Building Blocks[J]. Crystal Growth&Design,2005,5(5):1849-1855.
    [12] Wang X Y, Wang Z M, Gao S. A pillared layer MOF with anion-tunable magneticproperties and photochemical [2+2] cycloaddition[J]. Chem Commun,2007,(11):1127-1129.
    [13] Song P, Li Y, He B, et al. Hydrogen storage properties of two pillared-layer Ni(II)metal-organic frameworks[J]. Microporous Mesoporous Mater,2011,142(1):208-213.
    [14] Luo F, Che Y-x, Zheng J-m. Layer-pillared metal-organic framework showingtwofold interpenetration and considerable solvent-accessible channels[J]. MicroporousMesoporous Mater,2009,117(1-2):486-489.
    [15] Delia M. Ciurtin Y-B D, Mark D. Smith, Tosha Barclay, Hans-Conrad zur Loye.[J]. Inorg Chem,2001,40:2825-2834.
    [16] Dong Y B, Smith M D, zur Loye H C. New inorganic/organic coordinationpolymers generated from bidentate Schiff-base ligands[J]. Inorg Chem,2000,39(21):4927-4935.
    [17] Sheldrick G. A short history of SHELX[J]. Acta Crystallographica Section A,2008,64(1):112-122.
    [18] Spek A L. Single-crystal structure validation with the program PLATON[J]. JAppl Crystallogr,2003,36:7-13.
    [19] O'Keeffe M, Peskov M A, Ramsden S J, et al. The Reticular Chemistry StructureResource (RCSR) Database of, and Symbols for, Crystal Nets[J]. Acc Chem Res,2008,41(12):1782-1789.
    [20] Yang G-S, Lan Y-Q, Zang H-Y, et al. Two eight-connected self-penetratingporous metal–organic frameworks: configurational isomers caused by different linkingmodes between terephthalate and binuclear nickel building units[J]. Crystengcomm,2009,11(2):274.
    [21] Maji T K, Mostafa G, Matsuda R, et al. Guest-Induced Asymmetry in aMetal-Organic Porous Solid with Reversible Single-Crystal-to-Single-Crystal StructuralTransformation[J]. J Am Chem Soc,2005,127(49):17152-17153.
    [22] Drabent K, Ciunik Z. Copper(I) Complexes withN(4)-Functionalized-1,2,4-Triazole and Bidentate Spacer Ligands: From One-toThree-Dimensional Architecture[J]. Crystal Growth&Design,2009,9(8):3367-3375.
    [23] Drabent K, Ciunik Z. Copper(I) Complexes withN-4-Functionalized-1,2,4-Triazole and Bidentate Spacer Ligands: From One-toThree-Dimensional Architecture[J]. Crystal Growth&Design,2009,9(8):3367-3375.
    [1] Ferey G. Hybrid porous solids: past, present, future[J]. Chem Soc Rev,2008,37(1):191-214.
    [2] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality inisoreticular MOFs and their application in methane storage[J]. Science,2002,295(5554):469-472.
    [3] Zhang J P, Horike S, Kitagawa S. A flexible porous coordination polymer functionalizedby unsaturated metal clusters[J]. Angewandte Chemie-International Edition,2007,46(6):889-892.
    [4] Uemura K, Matsuda R, Kitagawa S. Flexible microporous coordination polymers[J]. JSolid State Chem,2005,178(8):2420-2429.
    [5] Kaneko W, Ohba M, Kitagawa S. A flexible coordination polymer crystal providingreversible structural and magnetic conversions[J]. J Am Chem Soc,2007,129(44):13706-13712.
    [6] Banerjee R, Furukawa H, Britt D, et al. Control of Pore Size and Functionality inIsoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide SelectiveCapture Properties[J]. J Am Chem Soc,2009,131(11):3875-3877.
    [7] Nouar F, Eckert J, Eubank J F, et al. Zeolite-like Metal-Organic Frameworks (ZMOFs) asHydrogen Storage Platform: Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF)Interaction Studies[J]. J Am Chem Soc,2009,131(8):2864-2870.
    [8] Wang B, Cote A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworksas selective carbon dioxide reservoirs[J]. Nature,2008,453(7192):207-U206.
    [9] Hayashi H, Cote A P, Furukawa H, et al. Zeolite a imidazolate frameworks[J]. Nat Mater,2007,6(7):501-506.
    [10] Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolateframeworks and application to CO2capture[J]. Science,2008,319(5865):939-943.
    [11] Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J]. ChemSoc Rev,2009,38(5):1213-1214.
    [12] Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks[J].Chem Soc Rev,2009,38(5):1294-1314.
    [13] Horike S, Dinca, x30c, et al. Size-Selective Lewis Acid Catalysis in a MicroporousMetal-Organic Framework with Exposed Mn2+Coordination Sites[J]. J Am Chem Soc,2008,130(18):5854-5855.
    [14] Sumida K, Hill M R, Horike S, et al. Synthesis and Hydrogen Storage Properties ofBe12(OH)12(1,3,5-benzenetribenzoate)4[J]. J Am Chem Soc,2009,131(42):15120-15121.
    [15] Yang W, Greenaway A, Lin X, et al. Exceptional Thermal Stability in a SupramolecularOrganic Framework: Porosity and Gas Storage[J]. Journal of the American ChemicalSociety,2010,132(41):14457-14469.
    [16] Chen S S, Chen M, Takamizawa S, et al. Porous cobalt(II)-imidazolate supramolecularisomeric frameworks with selective gas sorption property[J]. ChemicalCommunications,2011,47(17):4902-4904.
    [17] Zhao D, Timmons D J, Yuan D Q, et al. Tuning the Topology and Functionality ofMetal-Organic Frameworks by Ligand Design[J]. Accounts of Chemical Research,2011,44(2):123-133.
    [18] Seidel S R, Stang P J. High-Symmetry Coordination Cages via Self-Assembly[J].Accounts of Chemical Research,2002,35(11):972-983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700