Escherichia coli脂多糖对牙周靶细胞—成骨细胞和骨髓单核细胞的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成骨细胞和破骨细胞为骨组织的主要功能细胞,成骨细胞增殖和分化可形成新骨;破骨细胞活动则诱导骨吸收。有研究表明牙槽骨丢失是骨吸收增加或骨形成降低或两者共同作用的结果,因此作为牙周组织靶细胞的成骨细胞和破骨细胞前体细胞-骨髓单核/巨噬细胞在牙周炎的发生、发展中发挥重要的作用。同时牙龈卟啉菌(Porphyromonas gingival,Pg)和伴放线杆菌(Actinobacillus actinomycetemcomitan,Aa)等革兰氏阴性菌细胞壁的主要成分脂多糖(Lipopolysaccharide,LPS)为一种非常重要的细胞因子,可作用于牙周组织介导牙周炎的发生和牙周组织损伤。但大肠杆菌(Escherichia coli)LPS对牙周组织靶细胞-成骨细胞和骨髓单核细胞分化和功能的影响目前还不清楚。本研究着眼于以上两个靶细胞在牙槽骨吸收中的作用,探讨了Escherichia coli LPS对成骨细胞和骨髓单核细胞的影响及其可能的作用机理和药物干预机制。
     本论文综合应用激光共聚焦显微术、流式细胞术、细胞免疫化学和免疫印迹等现代研究技术,分别从细胞、分子水平研究了LPS对成骨细胞分化的影响及其诱导破骨细胞骨吸收作用,并探讨了PI3K/Akt信号通路在以上模型中的作用。此外,还研究了中药单体葛根素对成骨细胞骨形成和E.coli-LPS诱导的骨吸收干预及其可能的作用机理。
     本研究利用LPS诱导成骨细胞凋亡研究了LPS对成骨细胞生长和分化的影响。结果表明LPS能明显抑制成骨细胞骨形成,并诱导成骨细胞凋亡、骨架F-actin重排、线粒体膜电位丢失和Akt的去磷酸化。阻断PI3K活性可明显促进LPS抑制成骨细胞生长和Akt失活,而且应用PI3K激活剂IGF-Ⅰ(insulin-like growth factorⅠ,IGF-Ⅰ)可减弱PI3K抑制剂LY24002诱导的成骨细胞生长抑制和Akt去磷酸化作用,但是IGF-Ⅰ对LPS所刺激的上述反应没有影响。提示LPS可抑制成骨细胞增殖分化,其机制可能是通过诱导细胞凋亡和Akt失活而进行,但与PI3K活性无关。
     同时,本研究还建立LPS诱导骨吸收模型,探讨了LPS诱导破骨细胞形成和骨吸收作用。结果显示LPS能诱导破骨细胞形成、骨吸收并激活Akt而导致p-AktSer473和p-AktThr308水平明显增加。而且PI3K的另一抑制剂Wortmanin可显著抑制破骨细胞形成和Akt的活化,并诱导成熟破骨细胞凋亡,表明LPS诱导破骨细胞分化、吸收和存活可能与PI3K/Akt信号通路激活有关。
     此外,本研究还探讨了葛根提取物-葛根素对骨形成和骨吸收的干预作用。结果发现葛根素可明显促进骨形成并诱导Akt活化和核转位,且这种活化作用能被LY294002所阻断。同时,葛根素还可显著抑制LPS诱导的骨吸收和Akt活化,并促进成熟破骨细胞及其前体细胞-骨髓单核细胞凋亡。由此可知,葛根素可促进骨形成和抑制LPS诱导骨吸收,其机理可能与PI3K/Akt通路激活或灭活相关。
     综上所述,本研究主要创新体现在:
     1.本研究通过建立LPS诱导成骨细胞凋亡模型,论证了E.coli-LPS可抑制牙周靶细胞-成骨细胞增殖与分化而影响牙槽骨形成。
     2.利用LPS诱导破骨细胞形成和骨吸收证实了E.coli-LPS可刺激牙周另一靶细胞-骨髓单核细胞分化为破骨细胞,并促进骨吸收,提示刺激骨髓单核细胞的分化、融合可诱导或加重牙槽骨吸收。
     3.本研究通过对PI3K/Akt通路在E.coli-LPS诱导牙周靶细胞凋亡和骨吸收模型中的作用研究,为深入探讨LPS诱导的牙槽骨吸收和牙周炎发病机制提供一个新的信号通路,并为研制开发治疗该病药物提供新的作用靶点和一定的理论基础。
     4.本研究还证实了葛根素可促进骨形成和抑制E.coli-LPS诱导的破骨细胞形成和骨吸收,因此葛根素可用于预防和辅助治疗LPS感染的牙周病,并为该药在牙周疾病上的应用提供了一定的理论依据。
Bone tissue is composed of two distinct coll populations, namely the bone-forming ostcoblasts (OBs) derived from the mesenchymal stromal lineage, and the bone-resorbing osteoclasts (OCs), which arc of haematopoietic stem cell origin. Previous studies indicated that alveotar bone destruction results from the increase of bone resorption by OCs, or the reduction of bone formation by OBs, and or an imbalance between the two aspects. Then, the gingival giant cells such as osteoblasts and bone marrow monocytes (BMMs) play important roles in periodontitis. In addition, lipopolysaccharide (LPS) from gram-negative bacteria such as Porphyromonas gingival (Pg), Actinobacillus actinomycctemcomitan (Aa) has been considered a key factor in the development of chronic inflammation leading to the destruction of periodontal tissue. However, the effect of LPS from Escherichia coli on the above cells remains unknown. This study was perfomed to observe the role of osteoblasts and BMMs in gingival resorption, and periodontal disease, and to understand its possible mechanism. And anti-resorptive drug was also investigated in this study.
     In the present study, confocal laser scanning microscopy, flow cytometry, and immunofluroscence and western Blots were used to observe the effect of E.coli-LPS on ostcoblasts differentiation and ostcoclasts resorption in vitro, and further to understand the role of phosphatidylinositol 3-kinasc/Akt (PI3K/Akt) pathway in the process. In addition, we examined the effects of puerarin on bone formation and LPS-induced osteolysis and studied their possible molecullar mechanisms.
     Calvaria ostcoblasts isolated from newborn SD rats were used to observe the effect of LPS on osteoblastic growth and differentiation. Data showed that LPS significantly inhibited osteoblastic bone formation, and resulted in osteoblastic apoptosis and F-actin rearrangment. This dysfuction was accompanied by loss of mitochondrial membrane potential (ΔΨm) and dephosphorylation of Akt. Inhibition of PI3K with LY294002 enhanced LPS-induced inhibition of ostcoblasts growth and dephosphorylation of Akt.Furthmore, the PI3K stimulator IGF-Ⅰwas found to significantly weaken LY294002-triggercd dephosphorylation of Akt and growth inhibition. But LPS effect on Akt was not affected by IGF-Ⅰ. This meant that LPS inhibited osteoblasts differentiation and induced cell apoptosis might be through inactivation of Akt, but independently of PI3K.
     To study whether LPS induced bone resorption, osteoclasts were obtained from bone marrow monocytes (BMMs) of 6-9 weeks SD rats, and found evidence of PI3K/Akt pathway in the process. Results indicated that LPS significantly stimulated osteoclasts formation, bone resorption and activation of Akt at Ser473 and Thr308, which was obviously blocked by another PI3K specific inhibitor Wortmanin. Furthermore, Wortmanin triggered rapid apoptosis of mature osteoclasts and Akt inavtivation. These findings suggested that LPS stimulated osteoclasts differentiation, resorption and survival, which might be mediated by activation of the PI3K/Akt signaling pathway.
     In addition, this study examined the effects of puerarin from Chinese Pueraria lobata (Wild.) Ohwi on bone formation and on LPS-induced osteolysis. Data suggested that puerarin caused a significant increase in cell viability, alkaline phosphatase (ALP) activity and mineral nodules formation in osteoblasts, suggesting that puerarin had a stimulatory effect on osteoblastic bone formation. The functional improvement by puerarin was accompanied by activation and translocation of Akt. Furthermore, the activation of Akt and its redistribution were blocked by LY294002. These results indicated that puerarin stimulated activation of Akt in a PI3K-dependent manner. Then, puerarin can promote bone formation in cultured rat osteoblasts, which might be mediated by activation of the PI3K/Akt pathway. On the other hand, puerarin significantly inhibited LPS-induced osteolysis, and triggered rapid apoptosis of mature osteoclasts and their precursor cells. And puerarin blocked LPS-stimulated Akt activation, and caused an obvious decrease in Akt phosphorylation at Ser473 and Thr308, implying an important role for Akt pathway in the anti-osteolysis action. These resuts indicated puerarin could protect against LPS-stimulated alveolar bone loss by triggering cell apoptosis and inactivation of Akt. Taken together, puerarin from Chinese Pueraria lobata (Wild.) Ohwi might stimulate bone formation and inhibit bone resorption by activation or inactivation of PI3K/Akt pathwy.
     Based on the above results, some innovative points have been drawn as below:
     1. LPS from Escherichia coli inhibited osteoblastic growth and differentiation, suggesting that E. coli-LPS may prevent new bone formation in gingival bone tissue.
     2. E. coli-LPS induced osteoclasts formation and bone resorption, indicating that E.coli-LPS can regulate periodontal BMMs, and result in the reduction of alveolar bone resorption.
     3. We studied the roe of PI3K/Akt pathway in the E.coli LPS-triggered osteoblasts apoptosis and osteolysis, and offerd a new signaling pathway for understanding periodontal bone resorption, and some academic data for developing anti-resorption drugs.
     4. Puerarin from Pueraria lobata (Wild.) Ohwi might stimulate bone formation and inhibit LPS-inducd bone resorption, which have therapeutic value in effective in treating alveolar bone destruction and periodontitis, and offer some data for its application in these diseases.
引文
[1] Ito HO, Shuto T, Koga T, et al. Lipopolysacchaddes from Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans promote osteoclastic differentiation in vitro. Arch Oral Biol, 1996, 41(5):439~44.
    [2] Daly CG, Seymour GJ, Kieser JB. Bacterial endotoxin: a role in chronic inflammatory periodontal disease. J Oral Pathol, 1980, 9 (1):1~15.
    [3] Wilson M. Biological activities of lipopolysaccharides from oral bacteria and their relevance to the pathogenesis of chronic periodontitis. Sci Prog, 1995, 78 (Pt 1):19~34.
    [4]Ashimoto A, Chen C, Slots J, et al. Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions. Oral Microbiol Immunol, 1996,11 (4):266-273.
    
    [5] Gallardo F, Plaza JC, Prevalence of Porphyromonas gingivalis, Prevotella intermedia and Actinobacillus actinomycetemcomitans in patients with rapidly aggressive periodontitis. Med Oral, 2000, 5:151-158.
    
    [6] Suda K, Woo JT, Nagai M, et al. Lipopolysaccharide supports survival and fusion of osteoclasts independent of TNF-a, IL-1 and RANKL. J Cell Physiol, 2002,190 (1): 101-108.
    
    [7] Jiang J, Zuo J, Holliday LS. The synergistic effect of peptidoglycan and lipopolysaccaride on osteoclast formation.Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003, 96(6):738-743.
    
    [8] Mitov IG, Terziski DG. Immunoprophyiaxia and immunotherapy of gramnegative sepsis and shock. with antibodies to core glycolipids and lipids A of bacterial lipopolysaccharides. Infection, 1991,19 (6): 383-390.
    
    [9] Loomer P M, Sigusch B, Tenenbaum HC, et al. Direct effects of metabolic products and sonicated extracts of Porphyromonas gingivalis 2561 on osteogenesis in vitro. Infect Immun, 1994, 62 (4):1289-1297.
    
    [10] Meghji S, Henderson B, Wilson M, et al. Inhibition of bone DNA and collagen production by surface-associated material from bacteria implicated in the pathology of periodontal disease. J Periodontol, 1992,63 (9):736-742.
    
    [11] Millar S J, Goldstein EG, Hausmann E, et al. Modulation of bone metabolism by two chemically distinct lipopolysaccharide fractions from bacteroides gingivalis. Infect Immun, 1986,51 (1):302-306.
    
    [12]Kadono H, Kido JI, Nagata T, et al. Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract from Porphyromonas gingivalis. Infect Immun, 1999, 67 (6): 2841-2846.
    
    [13] Pelt P, Zimmermann B, Bernimoulin JP, et al. Effects of lipopolysaccharide extracted from Prevotella intermedia on bone formation and on the release of osteolytic mediators by fetal mouse osteoblasts in vitro. Arch Oral Biol, 2002,47 (12):859-866.
    
    [14] Tanaka H, Tanabe N, Shoji M, et al. Nicotine and lipopolysaccharide stimulate the formation of osteoclast-like cells by increasing macrophage colony-stimulating factor and prostaglandin E2 production by osteoblasts. Life Sci, 2006,78 (15):1733- 1740.
    
    [15] Miyauchi M, Hiraoka M, Takata T, et al. Immuno-localization of COX-1 and COX-2 in the rat molar periodontal tissue after topical application of lipopolysaccharide. Arch Oral Biol, 2004, 49 (9):739-746.
    
    [16] Miyauchi M, Sato S, Kitagawa S, Takata T, et al. Cytokine expression in rat molar gingival periodontal tissues after topical application of lipopolysaccharide. Histochem Cell Biol, 2001, 116 (1):57-62.
    
    [17] Nair SP, Meghji S, Henderson B, et al. Bacteria induced bone destruction: mechanisms and misconceptions. Infect Immun, 1996, 64 (7):2371~2380.
    [18] Abu-Amer Y, Ross FP, Teitelbaum SL, et al. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest, 1997, 100 (6):1557~1565.
    [19] Sakuma Y, Tanaka K, Suda M, et al. Impaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype. Infect Immun, 2000, 68 (12): 6819~6825.
    [20] Ueda N, Koide M, Nishihara T, et al. Involvement of prostaglandin E2 and interleukin-1β in the differentiation and survival of osteoclasts induced by lipopolysaccharide from Actinobacillus actinomycetemcomitans Y4. J Periodontal Res, 1998, 33:509~516.
    [21] Umezu A, Kaneko N, Itoh H, et al. Appearance of osteoclasts by injections of lipopolysaccharides in rat periodontal tissue. J Periodont Res, 1989, 24 (6): 378~383.
    [22] Roberts FA, Richardson GJ, Michalek SM. Effects of Porphyromonas gingivalis and Escherichia coli Lipopolysaccharides on mononuclear phagocyte. Infect Immun, 1997, 65 (8): 3248-3254.
    [23] Schytte Blix IJ, Helgeland K, Lyberg T, et al. Lipopolysaccharide from Actinobacillus actinomycetemcomitans stimulates production of IL-1β, TNF-a, IL-6 and IL-1 receptor antagonist in human whole blood. J Periodontal Res, 1999, 34 (1): 34~40.
    [24] Nakamura T, Nitta H, Ishikawa I. Effect of low dose Actinobacillus actinomycetemcomitans lipopolysaccharide pretreatment on cytokine production by human whole blood. J Periodontal Res, 2004, 39 (2): 129~35.
    [25] Jiang YL, Mehta CK, Hsu TY, et al. Bacteria induce osteoclastogenesis via an osteoblast-independent pathway. Infection Immun, 2002, 70 (6): 3143~3148.
    [26] Umezu A, Kaneko N, Toyama Y, et al. Appearance of osteoclasts by injections of lipopolysaccharide in rat periodontal tissue. J Periodont Res,1989, 13: 378~383.
    [27] Jiang J, Zuo J, Hurst IR, et al. The synergistic effect of peptidoglycan and lipopolysaccaride on osteoclast formation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003, 96 (6):738~743.
    [28] Hou L, Sasaki H, Stashenko P. Toll-like receptor 4-deficient mice have reduced bone destruction following mixed anaerobic infection. Infection Immunity, 2000, 68 (8): 4681~4687.
    [29] Layman DL, Diedrich DL. Growth inhibitory effects of endotoxins from bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro. Periodontol, 1987, 58 (3): 387~392.
    [30] 李虹,王顺靖,萧卓然,等.牙周病优势菌群内毒素脂多糖对人牙龈成纤维细胞生长繁殖的影响.华西口腔医学杂志,1993,11(2):145~147.
    [31] Batruff JB, Yukna RA, Layman DL, et al. Outer membrane vesicles from Porphyromonas gingivalis affect the growth and function of cultered human gingival fibroblasts and umblical vein endothelial cells. J Periodontol, 2005, 76 (6): 972~979.
    [32] Imatani T, Kato T, Okuda K. Production of inflammatory cytokines by human gingival fibroblasts stimulated by cell-surface preparations of Porphyromonas gingivalis. Oral Microbiol Immunol, 2001, 16: 65~72.
    [33] Almasri A, Wisithphrom K, Olson B, et al. Nicotine and lipopolysaccharide affect cytokine expression from gingival fibroblasts. J Periodontol, 2007, 78 (3): 533~541.
    [34] Takiguchi H, Yamaguchi M, Abiko Y, et al. Contribution of IL-1 beta to the enhancement of Campylobacter rectus lipopolysaccharide-stimulated PGE2 production in old gingival fibroblasts in vitro. Mech Ageing Dev, 1997, 98(1): 75~90.
    [35] 陈莉丽,严杰,朱仲珍.牙龈卟啉菌内毒素对鼠成纤维细胞和人牙龈组织的损害.中华口腔医学杂志,1998,33(6):380.
    [36] Sugimoto Y, Whitman M, Erikson RL, et al. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. PNAS (USA), 1984, 81: 2117~2121.
    [37] Macara IG, Marinetti GV, Balduzzi PC. Biochemistry transforming protein of avian sarc phosphatidylinositol kinase activity (tumor viruses/tyrosine kinases/phorbol esters). PNAS (USA), 1984, 81: 2728~2732.
    [38] David AF, Rachel EM, Lewis CC. Phosphoinositide kinases. Annu Rev Biochem, 1998, 67: 481~507.
    [39] Koyasu S. The role of PI3K in imnmne cells. Nat lmmunol, 2003, 4(4): 313~319.
    [40] Canfley LC. The phosphoinositide 3-kinase pathway. Science, 2002, 296 (5573):1655-1657.
    [41] Jones PF, Jakubowicz T, Pitossi FJ, et al. Molecular cloning and identification of a serine/threonine protein kinase of the second messenger subfamily. PNAS, 1991, 88(10): 4171~4175.
    [42] Bellacosa A, Testa JR, Staal SP, et al. A retroviral oncogene akt, encoding a serine-threonine kinase containing an SH2-like region. Science, 1991, 254(5029): 274~277.
    [43] Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem, 1991, 201(2): 475~481.
    [44] Haslam RJ, Koide HB, Hemminhd BA. Pleckstrin domain homology. Nature, 1993, 363: 309~310.
    [45] Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature, 1995, 376: 599~602.
    [46] Testa JR, Bellacosa A. Akt plays a central role in tumorigenesis. PNAS (USA), 2001, 98(20): 10983~10985.
    [47] Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Gen Dev, 1999, 13: 2905~2927.
    [48] Balendran A, Currie R, Alessi DR, et al. Evidence that 3-phosphoinositide-dependent protein kinase-1 mediates phosphorylation of p70 S6 kinase in vivo at Thr412 as well as Thr252. J Biol Chem, 1999, 274(52): 37400~37406.
    [49] Christopher LC, Lewis CC. Phosphoinositide 3-kinase and the regulation of cell growth. Biochim Biophys Acta, 1996, 1288: M11~M16.
    [50] Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J, 2000,346:561-576.
    
    [51] Balendran A, Casamayor A, Alessi DR, et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol, 1999,9(8):393-404.
    
    [52] Gottschalk AR, Doan A, Stokoe D, et al. Inhibition of phosphatidylinositol-3 kinases on cell death through a protein kinase B (PKB)-dependent mechanism and growth arrest through a PKB-independent mechanism. Int J Radiat Oncol Biol Phys, 2005, 61 (4):1183-1188.
    
    [53} Wektfall SD, Hendry IR, Davis JS, et al. Putative role of the phosphatidylinositol 3-kinase-Akt signaling pathway in the survival of granulosa cells. Endocrine, 2000,12 (3):315-321.
    
    [54] Salinas SD, Hendry IR, Cuadrado A, et al. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci, 2000,15 (2):156-169.
    
    [55] Ugi S, Imamura T, Ebina Y, et al. Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (Protein Kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol, 2004,24 (19): 8778-8789.
    
    [56] Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. PNAS (USA), 1999,13;96 (8):4240-4245.
    
    [57] Nakashima N, Sharma PM, Olefsky JM, et al. The Tumor Suppressor PTEN Negatively Regulates Insulin Signaling in 3T3-L1 Adipocytes. J Biol Chem, 2000,275 (17): 12889-12895.
    
    [58] Bulter M, Makay RA, Popoff IJ, et al. Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice. Diabetes, 2002,51 (4): 1028-1034.
    
    [59] Hill MM, Feng J, Hemmings BA. Identification of a plasma membrane Raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1.Curr Biol, 2002,12 (14): 1251-1255.
    
    [60] Fuse M, Tanaka T, Tatsuno I, et al. Regulation of geranylgeranyl pyrophosphate synthase in the proliferation of rat FRTL-5 cells: involvement of both cAMP-PKA and PI3-AKT pathways. Biochem Biophys Res Commun, 2004, 315(4):1147-1153.
    
    [61] Yoshida Y, Togi K, Tanaka M, et al. CCN1 protects cardiac myocytes from oxidative stress via beta1 integrin-Akt pathway. Biochem Biophys Res Commun, 2007, 355 (3):611-618.
    
    [62] Rane MJ, Pan Y, Klein JB, et al. Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem, 2003, 278 (30):27828-27835.
    
    [63] Zhang F, Cheng J, Rafii S, et al. Adenovirus E4 gene promotes selective endothelial cell survival and angiogenesis via activation of the vascular endothelial-cadherin/Akt signaling pathway. J Biol Chem, 2004,279 (12):11760-11766.
    
    [64]Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature, 1995, 376 (6541):599-602.
    
    [65] Adi S, Wu NY, Rosenthal SM. Growth factor-stimulated phosphorylation of Akt and p70 (S6K) is differentially inhibited by LY294002 and Wortmannin. Endocrinology, 2001,142 (1):498-501.
    
    [66] Yao, R., Cooper, G. M., Requirement for phosphaticylinositol-3 kinase in the prevention of apoptosis by the nerve growth factor. Science, 1995, 267: 2003.
    
    [67] Richards JS, Sharma SC, Falender AE, et al. Expression of FKHR, FKHRL1, and AFX genes in the rodent ovary: evidence for regulation by IGF-I, estrogen, and the gonadotropins. Mol Endocrinol, 2002,16(3):580-599.
    
    [68] Brownawell AM, Kops GJ, Macara IG, et al. Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX. Mol Cell Biol, 2001,21 (10): 3534-3546.
    
    [69] Lin A, Karin M. NF-κB in cancer: amarked target. Cancer Biol, 2003,13 (2):107-114.
    
    [70] Ozes ON, Mayo LD, Gustin JA, et al. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 1999,401 (6748):82-85.
    
    [71] Tanaka H, Fujita N, Tsuruo T. 3-Phosphoinositide-dependent protein kinase-1-mediated IkappaB kinase beta (IkkB) phosphorylation activates NF-kappaB signaling. J Biol Chem. 2005, 280 (49):40965-40973.
    
    [72] Pugazhenthi S, Nesterova A, Sable C, et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem, 2000,275 (15):10761-10766.
    
    [73] Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997,91(2):231-241.
    
    [74] Kumar S, Lavin MF. The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ, 1996,3:255-267.
    
    [75] Stennicke HR, Salvesen GS. Properties of the caspases. Biochimica Biophysica Acta, 1998, 1387:17-31.
    
    [76] Eamshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem, 1999, 68:383-424.
    
    [77]Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science, 1998,282:1318-1321.
    
    [78]Takahashi IQ, Suda TU. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun, 1999, 256:449-455.
    
    [79] Yasuda H, Shima N, Suda T, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. PNAS (USA), 1998, 95: 3597-3602.
    
    [80] Fuller K, Owens JM, Chambers TJ, et al. Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med, 1993,178:1733-1744
    
    [81] Dai XM, Ryan GR, Stanley ER, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood, 2002, 99: 111-120
    
    [82]Nakamura I, Lipfert L, Duong LT, et al. Convergence of alpha (v) beta (3) integrin-and macrophage colony- stimulating factor-mediated signals on phospholipase C gamma in prefusion osteoclasts. J Cell Biol, 2001,152:361-373.
    
    [83] Lee SE, Woo KM, Kim HH, et al. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone, 2002, 30:71-77.
    
    [84]Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med, 2001,79 (5-6): 243-253.
    
    [85] Wong B R, Besser D, Choi Y, et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell, 1999,4 (6): 1041- 1049.
    
    [86] Xing L, Venegas A M, Schwartzberg PL, et al. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Genes Dev, 2001,15:241 -253.
    
    [87] Nakamura I, Takahashi N, Suda T, et al. Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS letters, 1995,361 (1): 79-84.
    
    [88] Kelley TW, Graham MM, Marsh CB, et al. Macrophage colony-stimulating factor promotes cell survival through Akt/protein kinase B. J Biol Chem, 1999,274: 26393-26398.
    
    [89] Gingery A, Bradley E, Oursler MJ, et al. Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkB pathways to maintain osteoclast survival. J Cell Biochem, 2003, 89:165-179.
    
    [90] Dai X-M, Ryan GR, Stanley ER, et al. Targeted disruption of the mouse colony stimulating factor 1 receptor gene results on osteopetrosis mononuclear phagocyte deficiency increased primitive progenitor cell frequencies and reproductive defects.Blood, 2002, 99:111- 120.
    
    [91] Ha H, Kwak HB, Kim HH, et al. Membrane rafts play a crucial role in receptor activator of nuclear factor kappaB signaling and osteoclast function. J Biol Chem, 2003, 278:18573- 18580.
    
    [92] Luegmayr E, Glantschnig H, Rodan GA, et al. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ, 2004,11 (S1): S108-S118.
    
    [93] Baran CP, Tridandapani S, Helgason CD, et al. The inositol 5' - phosphatase SHIP-1 and the Src kinase Lyn negatively regulate macrophage colony- stimulating factor- induced Akt activity. J Biol Chem, 2003,278(40) :38628-38636.
    
    [94] Miyazaki T, Sanjay A, Baron R, et al. Src Kinase Activity Is Essential for Osteoclast Function. J Biol Chem, 2004,279(17): 17660-17666.
    
    [95]Lakkakorpi PT, Wesolowski G, Rodan SB, et al. Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading. Exp Cell Res. 1997, 237(2): 296-306.
    
    [96] Pilkington MF, Sims SM, Dixon SJ. Wortmannin inhibits spreading and chemotaxis of rat osteoclasts in vitro. J Bone Miner Res, 1998, 13 (4): 688~694.
    [97] 杨明华,俞未一.大黄抑制内毒素对牙周膜细胞作用的研究.临床口腔医学杂志,2004,20(3):148-150。
    [98] 罗义刚,沈文律,胡钶.丹参对抗内毒素体外实验研究.汕头大学医学院学报,2000,13(3):16~17.
    [99] 解建设,孙孝珍,孟宪安,许美莲.中药治疗牙周炎概况.首都医药,2005,12(1):42~43.
    [100] 王兵,张翠英.养胃清热方治疗胃热上蒸型牙周炎的临床研究.上海中医药杂志,2006,40(6):42~43.
    [101] 张燕萍,刘建春.葛根素注射液治疗冠状动脉粥样硬化性心脏病心绞痛38例.河北中医,2002,24(7):499~499.
    [102] 刘素云,李拥军,齐华阁.葛根素注射液对急性心肌梗死患者梗死面积及心功能的影响.中华心血管病杂志,2001,29(7):394~396.
    [103] 龚坚,滕秋叶.葛根素对高血压病的疗效观察.微创医学,2001,20(1):60~60.
    [104] Fan LL, Sun LH, Dong SQ, et al. Protective effect of puerarin against myocardial reperfusion injury. Myocardial metabolism and ultrastructure. Chin Med J (Engl), 1992, 105 (6): 451~456.
    [105] 刘启功,王琳,陆再英,李树生,熊一力.葛根素对心肌梗塞犬冠脉侧枝循环的影响.中国中药杂志,1999,(24):304~306.
    [106] 苏晓灵,王嵘,周白丽,等.葛根素对心肌缺血再灌注损伤保护作用的实验研究.临床内科杂志,2004,21(11):779~781.
    [107] Zhang S, Chen S, Xu H, et al. Puerarin induces angiogenesis in myocardium of rat with myocardial Infarction. Biol Pharm Bull, 2006, 29 (5): 945~950.
    [108] 肖立中,黄志,马绍椿,等.葛根素对急性心肌梗死患者梗死面积的影响及其机制探讨.中国中西医结合杂志,2004,24):790~792.
    [109] 肖立中,高凌俊,马绍椿,等.葛根素与粒细胞集落刺激因子与治疗急性心肌梗死的对比研究.中国中西医结合杂志,2005,25(3):210~213.
    [110] 李和,黎文艺,汪昌树,等.葛根素对冠心病患者血浆内皮素和一氧化氮水平的影响.广东药学院学报,2002,18(3):252~253.
    [111] 丁继军,章同华,沈茜,等.葛根素对培养人主动脉内皮细胞脂质过氧化的保护作用.第二军医大学学报,1999,(20):240~242.
    [112] 石瑞丽,张建军.葛根素对缺氧性血管内皮细胞凋亡的保护作用.药学学报,2003,(38):103~107.
    [113] 韩冰,王坚,朱荃.丹皮酚等对AGEs抑制人脐静脉内皮细胞增殖的影响.中医药学刊,2002,20(5):681~681.
    [114] Zhu JH, Wang XX, Chen JZ. Effects of puerarin on number and activity of endothelial progenitor cells from peripheral blood. Acta Pharmacol Sin, 2004, 25: 1045~1051.
    [115] 石瑞丽,张建军.葛根素对缺氧性血管内皮细胞凋亡的保护作用.药学学报,2003,38(2):103~107.
    [116] Chen L, Chai Q, Chai X. Effect of puerarin on cerebral blood flow in dogs. Chin Mateda Med J,1995, 20: 560~562.
    [117] 王磊一,赵爱平,王福文,等.葛根素对大鼠急性脑缺血的保护作用.中国中药杂志,1997,22(12):752~754.
    [118] 桑韩飞,张英民,徐礼鲜,等.葛根素对兔脊髓缺血再灌注损伤的保护作用.第四军医大学学报,2001,22(5):414~417.
    [119] 高鹏,夏成青,王佩燕.葛根素对全脑缺血再灌流后脑组织诱导型一氧化氮合酶影响的实验观察.中华急诊医学杂志,2001,10(2):85~86.
    [120] 张蕊,曹焕军,高尔.葛根素对家兔脑缺血再灌注损伤的抗自由基作用.潍坊医学院学报,2002,24(4):267~269.
    [121] 杨黎,何世银.葛根素对大鼠脑缺血再灌注后炎性细胞因子变化的影响.中国老年学杂志,2003,23(3):173~174.
    [122] Xu XH, Zhang S, Zheng XX, et al. The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats. Planta Med, 2005, 71(7): 585~591.
    [123] 董丽萍,韩明,袁方,等.葛根素对大鼠星形胶质细胞的体外保护作用.中国应用生理学杂志,2001,17(2):141~143.
    [124] 高唱,王景周,王琳.葛根素对局灶性脑缺血/再灌流大鼠神经细胞凋亡的作用.中国急救医学,2003,23(1):14~15.
    [125] 郑东升,孟倩超,郑高利,等.葛根素和葛根异黄酮雌激素样作用.中药材,2002,25:566~568.
    [126] 郑东升,孟倩超,郑高利.葛根异黄酮对地塞米松致大鼠骨质疏松症的保护作用.中药材,2002,25(9):643~646.
    [127] 郑筱祥,龚维桂,郑高利.葛根异黄酮对去卵巢大鼠骨矿密度和骨强度的影响.中草药,2001,32:422~425.
    [128] 郑高利,张信岳,金锋.葛根异黄酮抑制去卵巢大鼠胫骨骨矿和微量元素丢失.中国现代应用药学,2002,19(4):257.
    [129] 李斌斌,于世凤.葛根素调控骨代谢的体外实验研究.北京大学学报(医学版),2003,35(1):74~77.
    [130] 袁林,苗蓁蓁,赵萍.葛根素对高血压缺血性脑卒中血ET-1、SOD和IMDA的影响.现代中西医结合杂志,2000,9(22):2197~2199.
    [131] 朱庆磊,何爱霞,吕欣然.葛根素对氧自由基的清除和抗氧化性损伤作用.解放军药学学报,2001,17(1):1~3.
    [132] 徐晓虹.葛根素抗D-半乳糖致衰老小鼠的脂质过氧化作用.中国中药杂志,2003,28(1):66~69.
    [133] 徐晓虹,赵铁桥.葛根素D-半乳糖诱导的小鼠记忆障碍的影响.中国药理学报,2002,23(7):587~590.
    [134] 徐晓虹.葛根素注射液对慢性乙醇中毒小鼠记忆障碍的改善作用.中国药学杂志,2003,38(1):31~34.
    [135] Yanagihara K, Tto A, Numoto M, et al. Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res, 1993, 53(23): 5815~5821.
    [136] 彭旭阳,齐振华,陈方平.葛根素诱导HL-60细胞分化和凋亡研究.湖南医科大学学报,2001,26(2):126~128.
    [137] Yu Z, Li W. Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Lett, 2006,238 (1): 53~60.
    [1] Millar S J, Goldstein EG, Hausmann E, et al. Modulation of bone metabolism by two chemically distinct lipopolysaccharide fractions from Bacteroides gingivalis. Infect Immun, 1986, 51(1): 302~306.
    [2] Meghji S, Henderson B, Wilson M, et al. Inhibition of bone DNA and collagen production by surface-associated material from bacteria implicated in the pathology of periodontal disease. J Periodontol, 1992, 63(9): 736~742.
    [3] Loomer PM, Sigusch B, Tenenbaum HC, et al. Direct effects of metabolic products and sonicated extracts of Porphyromonas gingivalis 2561 on osteogenesis in vitro. Infect Immun, 1994, 62 (4):1289-1297.
    
    [4]Loomer PM, Ellen RP, Tenenbaum HC. Characterisation of inhibitory effects of suspected periodontopathogens on osteogenesis in vitro. Infect Immun, 1995,63 (9): 3287-3296.
    
    [5]Murata T, Ansai T, Haneji T, et al. Extracts of Prevotella intermedia and Actinobaccillus actinomycetemcomitans inhibit alkaline phospatase activity in osteoblastic cells in vitro. Oral Dis, 1997, 3 (2): 106-112.
    
    [6] Shoji M, Tanabe N, Maeno M et al. Lipopolysaccharide stimulates the production of prostaglandin E2 and the receptor Ep4 in osteoblasts. Life Sci, 2006,78 (17): 2012-2018.
    
    [7]Kadono H, Kido JI, Nagata T, et al. Inhibition of osteoblastic cell differentiation by lipopolysaccharide extract from Porphyromonas gingivalis. Infect Immun, 1999,67 (6): 2841-2846.
    
    [8]Pelt P, Zimmermann B, Bernimoulin JP, et al. Effects of lipopolysaccharide extracted from Prevotella intermedia on bone formation and on the release of osteolytic mediators by fetal mouse osteoblasts in vitro. Arch Oral Biol, 2002,47 (12):859-866.
    
    [9] Tanaka H, Tanabe N, Shoji M, et al. Nicotine and lipopolysaccharide stimulate the formation of osteoclast-like cells by increasing macrophage colony-stimulating factor and prostaglandin E2 production by osteoblasts. Life Sci, 2006,78 (15): 1733-1740.
    
    [10] Miyauchi M, Hiraoka M, Takata T, et al. Immuno-localization of COX-1 and COX-2 in the rat molar periodontal tissue after topical application of lipopolysaccharide. Arch Oral Biol, 2004, 49 (9):739-746.
    
    [11] Chang H, Jin TY, Zhou YF, et al. Modulation of isoflavones on bone-nodule formation in rat calvaria osteoblasts in vitro. Biomed Environ Sci, 2003,16 (1): 83-89.
    
    [12]Grzanka A, Grzanka D, Orlikowska M. Cytoskeletal reorganization during process of apoptosis induced by cytostatic drugs in K-562 and HL-60 leukemia cell lines. Biochem Pharmacol, 2003, 66 (8), 1611-1617.
    
    [13]Farley JR, Stilt-Coflfing B. Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cell.Calcif Tissue Int, 2001, 68 (1): 43-52.
    
    [14]Bellows CG, Aubin JE, Antosz ME, et al. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int, 1986,38 (3):143-154.
    
    [15]Onishi T, Kinoshita S, Shintani S, et al. Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch Oral Biol, 1999, 44 (4):361-371.
    
    [16]Robertson PB, Lantz M, Holt SC, et al. Collagenolytic activity associated with Bacteroides species and Actinobacillus actinomycetemcomitans. J Periodont Res, 1982,17 (3): 275-283.
    
    [17]Hausmann E, Raisz L, Miller WA. Endotoxin: stimulation of bone resorption in tissue culture. Science, 1970,168 (933):862-864.
    
    [18] Hausmann E, Weinfeld N, Miller WA. Effects of lipopolysaccharide on bone resorption in tissue culture. Calcif Tissue Res, 1972, 9 (4):272-282.
    
    [19]Iino Y, Hopps RM. The bone resorbing activities in tissue culture of lipopolysaccharides from the bacteria Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Capnocytophaga ochracea isolated from human mouths. Arch. Oral Biol, 1984,29 (1):59-63.
    
    [20]Sismey-Durrant HJ, Hopps RM. The effect of lipopolysaccharide from the oral bacterium Bacteroides gingivalis on osteoclastic resorption of sperm-whale dentine slices in vitro. Arch Oral Biol, 1987,32 (12):911-913.
    
    [21]Sveen K, Skaug N. Bone resorption stimulated by lipopolysaccharides from Bacteroides, Fusobacterium and Veillonella, and by the lipid A and the polysaccharide part of Fusobacterium lipopolysaccharide. J Dent Res, 1980,88(6):535-542.
    
    [22] Bom-van Noorloos AA, van der Meer JW, Burger EH, et al. Bacteroides gingivalis stimulates bone resorption via interleukin-1 production by mononuclear cells: the relative role for B. gingivalis endotoxin. J Clin Periodontol, 1990,17 (7 Pt 1):409-413.
    
    [23] Wilson M. Biological activities of lipopolysaccharides from oral bacteria and their relevance to the pathogenesis of chronic periodontitis. Sci Prog, 1995,78 (Pt 1):19-34.
    
    [24]Agarwal S, Piesco NP, Riccelli AE, et al. Differential expression of IL-1, TNF-a, IL-6, and IL-8 in human monocytes in response to lipopolysaccharides from different microbes. J Dental Res, 1995,74: 1057-1065.
    
    [25]Heath JK, Atkinson SJ, Meikle MC, et al. Bacterial antigens induce collagenase and prostaglandin E2 synthesis in human gingival fibroblasts through a primary effect on circulating mononuclear cells. Infect Immun, 1987,55 (9): 2148-2154.
    [1] Lakics V, Vogel SN. Lipopolysaccharide and ceramide use divergent signaling pathways to induce cell death in murine macrophages. J Immunol, 1998, 161(5): 2490~2500.
    [2] Choi KB, Wong F, Karsan A, et al. Lipopolysaccharide mediates endothelial apoptosis by a FADD-dependent pathway. J Biol Chem, 1998, 273: 20185~20188.
    [3] Munshi N, Fernandis AZ, Ganju RK, et al. Lipopolysaccharide-induced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor. J Immunol, 2002, 168 (11): 5860~5866.
    [4] Zhang YS, Tu ZG. Regulation of alpha 1-adrenoceptor on rat hepatocyte apoptosis induced by D-galactosamine and lipopolysaccharide. Acta Pharmacologia Sinica, 2000, 21(7): 627~632.
    [5] Atencia R, Asumendi A, Garcia-Sanz M. Role of cytoskeleton in apoptosis. Vitam Horm, 2000, 58: 267~297.
    [6] Da Silva Correia J, Soldau K, Ulevitch RJ, et al. Lipopolysacchadde is in close proximity to each of the proteins in its membrane receptor complex transfer from CD14 to TLR4 and MD-2. J Biol Chem, 2001, 276 (24): 21129~21135.
    [7] De Franco AL, Crowley MT, Morrison DC, et al. Endotoxin in Health and Disease. Marcel Deck-ker Inc., New York, 1999, 473~483.
    [8] Medvedev AE, Kopydlowski KM, Vogel SN. Inhibition of lipopolysacchadde-induced signal transduction in endotoxintolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol, 2000,164 (11): 5564-5574.
    
    [9]Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cellular Signal, 2001,13 (2): 85-94.
    
    [10]Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells.J Biol Chem, 2002,277 (35): 32124-32132.
    
    [11]Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res,1999,253 (1): 210-229.
    
    [12]Xiao GH, Jeffers M, Testa JR, et al. Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. PNAS (USA), 2001,98 (1): 247-252.
    
    [13]Nakagami Y, Nishimura S, Oda T, et al. A novel compound RS-0466 reverses-amyloid-induced cytotoxicity through the Akt signaling pathway in vitro. Eur J Pharmacol, 2002,457 (1): 11 - 17.
    
    [14] Luo HR, Hattori H, Snyder SH, et al. Akt as a mediator of cell death. PNAS (USA), 2003,100 (20): 11712-11717.
    
    [15]Neri LM, Borgatti P, Capitani S, et al. The nuclear phosphoinositide 3-kinase/AKT pathway:a new second messenger system. Biochim Biophys Acta, 2002,1584 (2-3): 73-80.
    
    [16] Yip-Schneider MT, Wiesenauer CA, Schmidt CM. Inhibition of the phosphatidylinositol 3'-kinase signaling pathway increases the responsiveness of pancreatic carcinoma cells to sulindac. J Gastrointest Surg, 2003,7 (3): 354-363.
    
    [17] Lee SB, Hong SH, Um HD, et al. Co-induction of cell death and survival pathways by phosphoinositide 3-kinase. Life Sci, 2005,78 (1): 91-98.
    
    [18] Uddin S, Hussain A, Bhatia KG, et al. Inhibition of phosphatidylinositol 3-kinase induces preferentially killing of PTEN-null T leukemias through AKT pathway. Biochem Biophys Res Commun, 2004, 320 (3): 932-938.
    
    [19] Gottschalk AR, Doan A, Stokoe D, et al. Inhibition of phosphatidylinositol-3 kinases on cell death through a protein kinase B (PKB)-dependent mechanism and growth arrest through a PKB-independent mechanism. Int J Radiat Oncol Biol Phys, 2005,61 (4): 1183-1188.
    
    [20] Hong H, Liu GQ. Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sci, 2004,74 (24): 2959-2973.
    
    [21]Green DR. Reed JC. Mitochondria and apoptosis. Science,1998,281:1309-1312.
    
    [19] Kroemer G, Petit P, Mignotte B, et al. The biochemistry of programmed cell death. FASEB,1995, 9: 1277-1287.
    [22] Brown SB, Bailey K, Savill J. Actin is cleaved during constitutive apoptosis. J Biochem, 1997,323 (Pt1): 233-237.
    
    [23] Bursch W, Hochegger K, Hermann RS, et al. Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci, 2000,113 (7): 1189-1198.
    
    [24] Grzanka A, Grzanka D, Orlikowska M. Cytoskeletal reorganization during process of apoptosis induced by cytostatic drugs in K-562 and HL-60 leukemia cell lines. Biochem Pharmacol, 2003, 66 (8): 1611-1617.
    
    [25] Nicholson KM, Quinn DM, Warr JR, et al. LY294002, an inhibitor of phosphatidylinositol-3-kinase, causes preferential induction of apoptosis in human multidrug resistant cells. Cancer Lett, 2003,190 (1): 31-36.
    
    [26] Akeno N, Robins J, Clemens TL, et al. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2. Endocrinology, 2002,143 (2):420-425.
    
    [27] Brar BK, Stephanou A, Latchman DS, et al. Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or ischaemic stress. J Mol Cell Cardiol, 1999,31(1): 135-146.
    
    [28] Andree HA, Reutelinger CP, Willems GM, et al. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem, 1990,265 (9): 4923-4928.
    
    [29] Boldyrev A, Song R, Carpenter O, et al. Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species. Neurosci, 1999,94 (2): 571-577.
    
    [30]Fujita H, Utsumi T, Utsumi K, et al. Involvement of Ras/extracellular signal-regulated kinase, but not Akt pathway in risedronate-induced apoptosis of U937 cells and its suppression by cytochalasin B. Biochem Pharmacol,2005,69 (12): 1773-1784.
    [1] Suda K, Woo JT, Nagai M, et al. Lipopolysaccharide supports survival and fusion of osteoclasts independent of TNF-a, IL-1 and. RANKL. J Cell Physiol, 2002, 190 (1): 101~108.
    [2] Umezu A, Kaneko N, Toyama Y, et al. Appearance of osteoclasts by injections of lipopolysaccharide in rat periodontal tissue. J Periodont Res, 1989, 13: 378~383.
    [3] Jiang YL, Mehta CK, Hsu TY, et al. Bacteria Induce Osteoclastogenesis via an Osteoblast-independent Pathway. Infection Immun, 2002, 70 (6): 3143~3148.
    [4] Lakkakerpi PT, Wesolowski G, Rodan SB, et al. Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading. Exp Cell Res, 1997, 237 (2): 296~306.
    [5] Pilkington MF, Sims SM, Dixon SJ. Wortmannin inhibits spreading and chemotaxis of rat osteoclasts in vitro. J Bone Miner Res, 1998, 13(4): 688~694.
    [6] Nakamura I, Takahashi N, Suda T, et al. Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS lett, 1995, 361 (1): 79~84.
    [7] Kim HH, Kim JH, Lee ZH, et al. Inhibition of osteoclast differentiation and bone resorption by tanshinone IIA isolated from Salvia miltiorrhiza Bunge. Biochem Pharmacol, 2004, 67(9): 1647~1656.
    [8] Itoh K, Udagawa N, Takahashi N, et al. Lipopolysaccharide promotes the survival of osteoclasts via Toll-Like Receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J Immunol, 2003, 170 (7): 3688~3695.
    [9] Saito K, Ohara N, Nakayama K, et al. Infection-induced up-regulation of the costimulatory molecule 4-1BB in osteoblastic cells and its inhibitory effect on M-CSF/RANKL-induced in vitro osteoclastogenesis. J Biol Chem, 2004, 279(14): 13555~13563.
    [10] Gingery A, Bradley E, Oursler MJ, et al. Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem, 2003, 89 (1): 165~179.
    [11] Hotokezaka H, Sakai E, Nakayama K, et al. Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-alpha, lipopolysaecharide, or peptidoglycan. J Cell Biochem, 2006, Dec 14 [Epub ahead of print].
    [12] AkiyamaT, Miyazaki T, Tanaka S, et al. In vitro and in vivo assays for osteoclast apoptosis. Biol Proced, 2005,7 (1): 48-59.
    
    [13] Nair SP, Meghji S, Henderson B. Bacteria induced bone destruction: Mechanisms and misconceptions. Infect Immun, 1996,64 (7): 2371-2380.
    
    [14] Ueda N, Koide M, Nishihara T, et al. Involvement of prostaglandin E2 and interleukin-1β in the differentiation and survival of osteoclasts induced by lipopolysaccharide from Actinobacillus actinomycetemcomitans Y4. J Periodontal Res, 1998,33:509-516.
    
    [15]Takiguchi H.Yamaguchi M, Abiko Y, et al. Contribution of IL-1 beta to the enhancement of Campylobacter rectus lipopolysaccharide-stimulated PGE2 production in old gingival fibroblasts in vitro. Mech Ageing Dev, 1997,98 (1):75-90.
    
    [16] Jiang J, Zuo J, Holliday LS. The synergistic effect of peptidoglycan and lipopolysaccaride on osteoclast formation.Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003,96 (6):738-743.
    
    [17]Abu-Amer Y, Ross FP, Teitelbaum SL, et al. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J Clin Invest, 1997,100 (6): 1557- 1565.
    
    [18]Vaananen HK, Horton M. The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci, 1995,108 (Pt 8): 2729-2732.
    
    [19] Tormanen-Napankangas U, Soini Y, Paakko P, et al. Expression of caspases-3, -6 and -8 and their relation to apoptosis in non-small cell lung carcinoma. Int J Cancer, 2001, 93(2): 192-198
    
    [20] Plotkin LI, Manolagas SC, Bellido T. Dissociation of the pro-apoptotic effects of bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes with novel analogs. Bone, 2006, 39 (3): 443-452.
    
    [21]Moreau MF, Guillet C, Chappard D, et al. Comparative effects of five bisphosphonates on apoptosis of macrophage cells in vitro. Biochem Pharmacol, 2007,73(5):718-723.
    
    [22]Niwa S, Ishibashi O, Inui T. Brefeldin A inhibits osteoclastic bone resorption through induction of apoptosis. Life Sci, 2001,70 (3): 315-324.
    
    [23]Xu J, Feng HT, Zheng MH, et al. Effects of Bafilomycin Al: an inhibitor of vacuolar H (+)-ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. J Cell Biochem, 2003, 88 (6): 1256-1264.
    [1] Xu XH, Zhang S, Zheng XX, et al. The Neuroprotection of puerarin against cerebral ischemia is associated with the prevention of apoptosis in rats. Planta Med, 2005, 71(7): 585~591.
    [2] Hsu FL, Liu IM, Cheng JT. Antihyperglycemic effect of pueradn in streptozotocin-induced diabetic rats. J Nat Prod, 2003, 66 (6): 788~792.
    [3] Song XP, Chert PP, Chai XS. Effects of puerarin on blood pressure and plasma renin activity in spontaneously hypertensive rats. Zhongguo YaoLi XueBao, 1988, 9(1): 55~58.
    [4] Xiao LZ, Huang Z, Ma SC, et al. Study on the effect and mechanism of puerarin on the size of infarction in patients with acute myocardial infarction. Zhongguo ZhongXiYi JieHe ZaZhi 2004; 24 (9): 790~792.
    [5] Duan S, Li YF, Luo XL. Effect of puerarin on heart function and serum oxidized-LDL in the patients with chronic cardiac failure. Hunan YiKe DaXue XueBao 2000; 25 (2): 176~178.
    [6] 郑高利,郑东升.葛根素和葛根总异黄酮的雌激素样.中药材,2002,25:566~568.
    [7] 臧洪敏,陈君长,刘亦恒,等.葛根素对成骨细胞生物学作用的实验研究.中国中药杂志,2005,30(24):1947~1949.
    [8] 郑高利,张信岳,方晓林,等.葛根异黄酮对去卵巢大鼠骨矿密度和骨强度的影响.中草药,2001,32(5):422~425.
    [9] Franke TF, Yang SI, Chart TO, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell, 1995, 81 (5): 727~736.
    [10] Coffer PJ, Jin J, Woodgett JR. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem J, 1998, 335 (Pt1):1~13.
    [11] Yang L, Wang L, Lin HK, et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun, 2003, 305 (3): 462~469.
    [12] Borgatti P, Martelli AM, Bellacosa A, et al. Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors. FEBS Lett, 2000, 477(1-2): 27~32.
    [13] Danciu TE, Adam RM, Hauschka PV, et al. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS, Lett 2003, 536(1): 193~197.
    [14] Kang HY, Cho CL, Huang KL, et al. Nongenomic androgen activation of phosphatidylinositol 3-kinase/Akt signaling pathway in MC3T3-E1 osteoblasts. J Bone Miner Res, 2004, 19 (7): 1181~1190.
    [15] Noda T, Tokuda H, Yoshida M, et al. Possible involvement of phosphatidylinositol 3-kinase/Akt pathway in insulin-like growth factor-I-induced alkaline phosphatase activity in osteoblasts. Horm Metab Res, 2005, 37 (5):270~274.
    [16] Farley J R, Stilt-Coflfing B. Apoptosis may determine the release of skeletal alkaline phosphatase activity from human osteoblast-line cell. Calcif Tissue Int, 2001, 68 (1): 43~52.
    [17] Bellows CG, Aubin JE, Antosa ME, et al. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria populations. Calcif Tissue Int, 1986, 38 (3): 143~154.
    [18] Nicholson KM, Ouinn DM, Wart JR, et al. LY294002, an inhibitor of phosphatidylinositol-3-kinase, causes preferential induction of apoptosis in human multidrug resistant cells. Cancer Lett, 2003, 190 (1): 31~36.
    [19] 王本祥.现代中药药理学.天津:天津科学技术出版社.1999,880.
    [20] Blarir H C, Iordan S E, Peterson TG, et al. Variable effects of tyrosine kinase inhibitor on avian osteoclastic activity and reduction of bone loss in ovariectiomized rats. J Cell Biochem, 1996, 61(4):629~637.
    [21] 郑东升,孟倩超,郑高利,等.葛根素和葛根异黄酮雌激素样作用.中药材,2002,25:566~568.
    [22] Peterson DN, Tkalcevic GT, Koza Taylor PH, et al. Identification of estrogen receptor beta 2, a functional variant of estrogen receptor beta expressd in normal rat tissues. Endocrionology,1998, 139 (3):1082~1092.
    [23] Lee KH, Choi EM. Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells. Biol Pharm Bull, 2005, 28 (10): 1948~1953.
    [24] Sugimoto E, Yamaguchi M. Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem Pharmacol, 2000, 59 (5):471~475.
    [25] Morabito N, Crisafulli A, Vergara C, et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo controlled study. J Bone Miner Res, 2002, 17(10): 1904~1912.
    [26] Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc), 2000, 65 (1): 59~67.
    [27] Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem, 1999, 68:965~1014.
    [28] Brazil DP, Park J, Hemmings BA. PKB binding proteins. Getting in on the Akt. Cell, 2002, 111: 293~303.
    [29] Neri LM, Borgatti P, Capitani S, et al. The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta, 2002, 1584: 73~80.
    [1] Zhang Y, Zeng XH, Zheng XX, et al. Stimulatory effect of puerarin on osteoblastic bone formation through activation of PI3K/Akt pathway in rat calvarial osteoblasts. Planta Medica, 2007, 73:1~7.
    [2] 郑高利,张信岳,方晓林,等.葛根异黄酮对去卵巢大鼠骨矿密度和骨强度的影响.中草药,2001,32(5):422~425.
    [3] 郑高利,郑东升.葛根素和葛根总异黄酮的雌激素样.中药材,2002,25:566~568.
    [4] Lo MY, Kim HT. Chondrocyte apoptosis induced by hydrogen peroxide requires caspase activation but not mitochondrial pore transition. J Orthop Res, 2004, 22 (6):1120~1125.
    [5] Yang YN, Zhao S, Song JG. Caspase dependent apoptosis and independent poly (ADP ribose) polymerase cleavage induced by transforming growth factor β1. Int J Biochem Cell Biol, 2004, 36 (6):223~234.
    [6] Shiozaki EN, Shi YG. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci, 2004, 29 (9):486~494.
    [7] Abraham MC, Shaham S. Death without caspases, caspases without death. Trends Cell Biol, 2004,14(4): 184~193.
    [8] Karvinen J, Elomaa A, Makinen ML, et al. Caspase multiplexing: simultaneous homogeneous time resolved quenching assay (TruPoint) for caspases 1, 3, and 6. Anal Biochem, 2004,325(2):317~325.
    [9] Kanno S, Hirano S, Kayama F. Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology, 2004, 196 (1-2):137~145.
    [10] Fonseca D, Ward WE. Daidzein together with high calcium preserve bone mass and biomechanical strength at multiple sites in ovariectomized mice. Bone, 2004, 35 (2): 489~497.
    [11] Ishida H, Uesugi T, Hirai K, et al. Preventive effects of the plant isoflavones, daizin and genistin, on bone loss in ovariectomized rats fed a calcium-deficient diet. Biol Pharm Bull, 1998, 21 (1): 62~66.
    [12] Morabito N, Crisafulli A, Vergara C, et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo controlled study. J Bone Miner Res, 2002,17 (10):1904-1912.
    
    [13]Jia TL, Wang HZ, Zhang RQ, et al. Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production. Biochem Pharmacol, 2003,65:709-715.
    
    [14]Lee KH, Choi EM. Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells. Biol Pharm Bull, 2005; 28 (10): 1948-1953.
    
    [15]Sugimoto E, Yamaguchi M. Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem Pharmacol, 2000,59 (5):471-475.
    
    [16]Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc), 2000,65 (1): 59-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700