银杏叶提取物类脂质体成型工艺及体外细胞摄取、转运机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏叶提取物(Ginkgo biloba Extract,EGB)是目前治疗心脑血管疾病的有效药物之一,具有确切的心脑血管药理活性,且毒副作用低。但目前EGB口服制剂存在生物利用度低、半衰期短,每天需服药多次,有效成分不能跨过血脑屏障发挥疗效的不足。因此,本文制备EGB类脂质体制剂(EGBN),用来控制药物的释放速度,使血药浓度稳定,且使EGB的有效成分向大脑的转运,增强EGB对脑部疾病的治疗作用。并建立Caco-2细胞模型和体外血脑屏障(BBB)模型,对EGBN在细胞模型的摄取和转运特征进行考察,探讨其跨血脑屏障的机制。
     本文采用反相高效液相色谱法,建立体外分析EGBN中黄酮醇苷的方法,结果表明本法操作简便、灵敏度高,重现性好。对黄酮醇苷的强降解实验和pH稳定性实验进行考察,并计算其在不同条件下的降解速率常数,结果表明黄酮醇苷在酸性条件下稳定,在pH4.5和pH5.5的磷酸盐缓冲液中稳定。
     为了提高EGBN的稳定性,便于服用、贮存及运输,本文采用喷雾干燥法将EGBN混悬液制备成类脂质体粉末,以粒径分布、包封率为检测指标,通过单因素和正交设计试验法优化喷雾干燥法制备EGBN粉末的工艺,确定最佳工艺条件为:进口温度130°C、混悬液与载体材料的比例为10︰0.8(ml/g)、空气流量357L/h、蠕动泵速度1.5ml/min。
     本文对EGBN粉末进行质量评价研究,用激光粒度分析仪测定粒径大小为680.2±90.0nm;用扫描电镜观察其形态,大多呈球形;zeta电位仪测定zeta电位为-33.6±1.6mV;测定黄酮醇苷包封率为77.5±1.0%;比较EGB原药、辅料、EGBN的DSC曲线,结果证明EGB被高度包封在类脂质体内;初步稳定性试验结果表明EGBN粉末在不同温度(4~8°C、25±2°C)下放置3个月后,包封率稳定(p>0.05),稳定性良好。采用透析法考察黄酮醇苷的体外释放度,结果表明黄酮醇苷的累积释放率在不同的介质中有显著差异(p<0.05),累积释放率的排序为:磷酸缓冲液(pH6.8)>醋酸缓冲液(pH4.0)>盐酸溶液(pH1.0),在磷酸缓冲液(pH6.8)中的释放情况最好,在12h内其累积释放率达到80%以上,且可持续释放至48h。
     为了提高EGBN粉末患者使用的顺应性,本文考察了EGBN胶囊的成型工艺研究。测定粉末的休止角,结果表明加入0.2%的微粉硅胶作为助流剂,可以改善EGBN粉末的流动性;并对EGBN胶囊吸湿性、装量差异、崩解时限等进行考察,均符合2010版《中国药典》(一部)附录胶囊项下规定。
     本文成功地建立了Caco-2体外模型,并考察EGBN在Caco-2单层细胞的摄取和转运特征,用于评价EGBN在肠道的吸收机理。结果表明EGBN在Caco-2单层细胞的转运是通过细胞内吞的主动转运和被动扩散相结合的方式进行的。EGBN能增加药物被Caco-2细胞的摄取,并且能阻止P-gp的外排作用,从而增加药物被小肠吸收的能力,提高药物的口服生物利用度。
     本文建立了RBE4细胞模型,并进行EGBN的细胞摄取研究,结果表明类脂质体能增加药物被微血管内皮细胞的摄取。本文采用RBMVEC和星形胶质细胞共培养成功地建立了体外BBB模型,并考察EGBN在体外BBB模型的转运行为。结果表明,EGBN能阻止P-gp的外排作用,转运可能是通过细胞内吞的主动转运和被动扩散相结合的方式进行。
     综上所述,类脂质体可以包封银杏叶提取物,具有缓释作用,能提高药物在肠道的吸收,增加药物向BBB的转运。类脂质体可以代替传统普通剂型作为EGB的新型口服给药系统。
Ginkgo biloba Extract (EGB) was reported as one of the most effictive drugs forthe treatment of cerebrovascular disease. However, the oral administration of thecurrent EGB products faces several challenging issues such as low bioavailability,short half time of flavonoid glycosides in vivo and the difficulties in drug transportingacross BBB. Based on the above reasons, the aim of the current study was to developa niosomal formulation (EGBN) as a new oral carrier for EGB. Caco-2cell modeland in vitro BBB cell model were established successfully in order to investigate themechanism of cellular uptake and transport for EGBN.
     The RP-HPLC method was developed in order to quantify the major componentsof EGB, namely Ginkgo flavonoid glycosides. The method was shown to be linear,precise, sensitive, selective and accurate. Then this method was applied in the forceddegradation studies of these three components to give a better understanding of theforced stability for them. The degradation rate constants and half-life were calculated.The results showed that Ginkgo flavonoid glycosides were stable in acid conditionand the phosphate buffer of pH4.5and5.5.
     In this study, spray drying method was used to prepare EGBN powder in order toimprove the stability, transport and administration of EGBN. The single factor andorthogonal factorial design were used to optimize the EGBN powder in terms ofparticle size and drug entrapment efficiency (EE). The best condition of preparationfor EGBN was: the aspirator setting, airflow meter, inlet temperature and the speed ofpump were kept at the scale of100%,357L/h,130°C and1.5ml/min, respectively.
     EGBN powders were formulated and characterized in terms of morphology,particle size, zeta potential, entrapment efficiency, angle of repose, differentialscanning calorimetry (DSC) analysis and in vitro release study. EGBN had a particlesize of680.2±90.0nm and zeta potential of-33.6±1.6mV. SEM was used to investigate the morphology of prepared niosomes and the result showed that theniosomes were nearly spherical in shape. The entrapment efficiency of Ginkgoflavonoid glycosides from EGBN was77.5±1.0%. The interactions between EGBand niosomes were also studied by DSC analysis and the result suggested that EGBwas entrapped in the lipid bilayer of niosome and formed a new phase instead of asimple physical mix between EGB and excipients. Stability studies showed that theentrapment efficiency of EGBN hardly changed by storing at4-8°C and25±2°C fora period of3months (p>0.05). The in vitro release study suggested that EGBNcould prolong the release of flavonoid glycosides from niosome in phosphate buffersolution (pH6.8) up to48hrs.
     The angle of repose, hygroscopicity, content uniformity and disintegration timeof EGBN powder were detected in accordance with Chinese Pharmacopeia.
     The monolayer of Caco-2model was established successfully and used toinvestigate the mechanism of cellular uptake and transport for EGBN into epithelialcells. The results showed that EGBN has the ability to enhance the cellular uptake byCaco-2cells and to block the efflux function of P-gp, which could lead to increasingabsorption for drug by intestine tract.
     RBE4cell was selected as cellular uptake model for BBB. The results showedthat niosome could enhance the cellular uptake by microvascular endothelial cell. Theco-culture in vitro BBB model was developed and eventually used to elucidate themechanism of brain delivery of EGBN. The results suggested that EGBN has theability to block the efflux function of P-gp thus increase the drug across to brain. Themechanism of transport was a combination process of endocytosis and passivediffusion.
     In summary, niosome offers an effective practical means of delivering drugcandidate (EGB) to the brain via oral administration and thus to replace theconventional formulations.
引文
1. Mohammad S. Alavijeh, M.C., M. Zeeshan Qaiser, Alan M. Palmer, Drugmetabolism and pharmacokinetics, the blood-brain barrier, and central nervoussystem drug discovery. NeuroRX,2005.2(4): p.554-571.
    2. Gloria Lee, S.D., Meera Hong and Reina Bendayan, Drug Transporters in theCentral Nervous System: Brain Barriers and Brain Parenchyma Considerations.Pharmacological Reviews2001.53(4): p.569-596.
    3. D., E.P., eine Farbenanalytische Studies, in Das Sauerstoff-bedürfnis desOrganismus: Hirschwald.1885.
    4. Goldmann E., E., Vitalfarbung am zentralnervensystem. Beitrag zurPhysio-Pathologie des Plexus chorioideus und der Hirnhaute., in Berlin: Konigl.akademie der Wissenschaften.1913.
    5. T. S. Reese, M.J.K., Fine structural localization of a blood-brain barrier toexogenous peroxidase. The Journal of Cell Biology,1967.34(1): p.207-217.
    6. M. W. Brightman, T.S.R., Junctions between intimately apposed cell membranesin the vertebrate brain. The Journal of Cell Biology,1969.40(3): p.648-677.
    7. Pardridge, W.M., Peptide Drug Delivery to the Brain.1991, Raven Press: NewYork.
    8. Eng H. Lo, A.B.S., Vladimir P. Torchilin, N.Joan Abbott, Drug delivery todamaged brain. Brain Research Reviews,2001.38(1-2): p.140-148.
    9. C. Orte, J.G.L., T. M. Finn, A. R. Reid, G. Allt A comparison of bloodbrainbarrier and blood-nerve barrier endothelial cell markers. Anatomy andEmbryology,1999.199(6): p.509-517.
    10. Levin, V.A., Relationship of octanol/water partition coefficient and molecularweight to rat brain capillary permeability. Journal of Medicinal Chemistry,1980.23(682-684).
    11. de Lange E.C.M., D.M., Considerations in the Use of Cerebrospinal FluidPharmacokinetics to Predict Brain Target Concentrations in the Clinical Setting:Implications of the Barriers Between Blood and Brain. ClinicalPharmacokinetics,2002.41(10): p.691-703.
    12. David F.V Lewis, M.D., Substrate SARs in human P450s. Drug Discovery Today,2002.7(17): p.918-925.
    13. Han van de Waterbeemd, D.A.S., Kevin Beaumont, Don K. Walker,Property-design: optimization of drug absorption and pharmacokinetics.ChemInform,2001.32(27): p.1313-1333.
    14. Jiunn H. Lin, A.Y.H.L., Role of Pharmacokinetics and Metabolism in DrugDiscovery and Development. Pharmacological Reviews,1997.49(4): p.403-449.
    15. Gupta, S.P., QSAR studies on drugs acting at the central nervous system.Chemical Reviews,1989.89(8): p.1765-1800.
    16. Sumio Ohtsuki, T.T., Contribution of carrier-mediated transport systems to theblood-brain barrier as a supporting and protecting interface for the brain;importance for CNS drug discovery and development. Pharmaceutical Research,2007.24(9): p.1745-1758.
    17. Masanori Tachikawa, M.F., Tetsuya Terasaki, Sumio Ohtsuki, MasahikoWatanabe, Distinct cellular expressions of creatine synthetic enzyme GAMT andcreatine kinases uCK-Mi and CK-B suggest a novel neuron–glial relationshipfor brain energy homeostasis. European Journal of Neuroscience,2004.20(1): p.144-160.
    18. Quentin R. Smith, J.S., ed. Blood-brain barrier amino acid transport.Introduction to the Blood-Brain Barrier: Methodology, Biology and Pathology,ed. W.M. Pardridge.1998, Cambridge University Press.188-197.
    19. Jian Yi Li, R.J.B., William M Pardridge, Cloned Blood-Brain Barrier AdenosineTransporter Is Identical to the Rat Concentrative Na+Nucleoside CotransporterCNT2. Journal of Cerebral Blood Flow and Metabolism,2001.21(8): p.929-926.
    20. Young-Sook Kang, S.O., Hitomi Takanaga, Masatoshi Tomi, Ken-ichi Hosoya,Tetsuya Terasaki, Regulation of taurine transport at the blood–brain barrier bytumor necrosis factor-α, taurine and hypertonicity. Journal of Neurochemistry,2002.83(5): p.1188-1195.
    21. Paulo Costa, J.M.S.L., Modeling and comparison of dissolution profiles.European Journal of Pharmaceutical Sciences,2001.13: p.123-133.
    22. A K Kumagai, J.B.E.a.W.M.P., Adsorptive-mediated endocytosis of cationizedalbumin and a beta-endorphin-cationized albumin chimeric peptide by isolatedbrain calipparies. Model system of blood-brain barrier transport. Journal ofBiological Chemistry,1987.262: p.15214-15219.
    23. W M Pardridge, D.T.a.J.B., Transport of histone through the blood-brain barrier.Journal of Pharmacology and Experimental Therapeutics,1989.251: p.821-826.
    24. P. M. Jones, A.M.G., The ABC transporter structure and mechanism:perspectives on recent research. Cellular and Molecular Life Sciences,2004.61(6): p.682-699.
    25. Levêque D, J.F., P-glycoprotein and pharmacokinetics. Anticancer Research,1995.15(2): p.331-336.
    26. Khew-Voon Chin, I.P., Michael M. Gottesman, Function and regulation of thehuman multidrug resistance gene. Advances in Cancer Research,1993.60: p.157-180.
    27. Michel Demeule, A.R., Julie Jodoin, Alain Laplante, Claude Dagenais, FranceBerthelet, Albert Moghrabi, Richard Béliveau, Drug transport to the brain: keyroles for the efflux pump P-glycoprotein in the blood-brain barrier. VascularPharmacology,2002.38(6): p.339-348.
    28. Alfred H. Schinkel, J.W.J., Mammalian drug efflux transporters of the ATPbinding cassette (ABC) family: an overview. Advanced Drug Delivery Reviews,2003.55(1): p.3-29.
    29. Neuwelt EA, F.E., Diehl J, Vu LH, Rapoport S,Hill S Reversible osmoticblood-brain barrier disruption in humans: implications for the chemotherapy ofmalignant brain tumors. Neurosurgery,1980.7(1): p.44-52.
    30. Miller, G., Breaking down barriers. Science,2002.297(5584): p.1116-1118.
    31. HASHIZUME, K.M.B., KEITH L. MD, Increased endothelial vesiculartransport correlates with increased blood-tumor barrier permeability induced bybadykinin and leukotriene C4. Journal of Neuropathology and ExperimentalNeurology,2002.61: p.725-735.
    32. Grondin R, Z.Z., Ai Y, Gash DM, Gerhardt GA Intracranial delivery ofproteins and peptides as a therapy for neurodegenerative diseases. Progress inDrug Research,2003.61: p.101-123.
    33. Sakane T, A.M., Yamashita S, Nadai T, Hashida M, Sezaki H, The transport of adrug to the cerebrospinal fluid directly from the nasal cavity: the relation to thelipophilicity of the drug. Chemical and Pharmaceutical Bulletin,1991.39(9): p.2456-2458.
    34. BEGLEY, D.J., The blood-brain barrier: principles for targeting peptides anddrugs to the central nervous system. Journal of Pharmacy and Pharmacology,1996.48(2): p.136-146.
    35. William M. Pardridge, L.J.M., Transport of steroid hormones through the ratbloodbrain barrier: primary role of albumin-bound hormone. Journal of ClinicalInvestigation,1979.64(1): p.145-154.
    36. Ken A. Witt, T.P.D., ed. CNS drug delivery: Opioid peptides and the blood-brainbarrier. Drug Addiction.From Basic Research to Therapy, ed. W.S. Rao S.Rapaka.2008.511-533.
    37. T M Allen, J.M.E., Effect of liposome size and drug release properties onpharmacokinetics of encapsulated drug in rats. Journal of Pharmacology andExperimental Therapeutics,1983.226(2): p.539-544.
    38. Lars Ingebrigtsen, M.B., Determination of the size distribution of liposomes bySEC fractionation, and PCS analysis and enzymatic assay of lipid content.AAPS PharmSciTech,2002.3(2): p.9-15.
    39. Ningya Shi, Y.Z., Chunni Zhu, Ruben J. Boado, William M. Pardridge,Brain-specific expression of an exogenous gene after i.v. administration.Proceedings of the National Academy of Sciences of the United States ofAmerica,2001.98(22): p.12754-12759.
    40. Baillie, A.J., Florence, A. T., Hume, L. R., Muirhead, G. T., Rogerson, A., Thepreparation and properties of niosomes-non-ionic surfactant vesicles. Journal ofPharmacy and Pharmacology,1985.37(12): p.863-868.
    41. Azmin, M.N., Florence, A. T., Handjani-vila, R. M., Stuart, J. F. B.,Vanlerrberghe, G., Whittaker, J. S., The effect of non-ionic surfactant vesicle(niosome) entrapment on the absorption and distribution of methotrexate in mice.Journal of Pharmacy and Pharmacology,1985.37(4): p.237-242.
    42. Azmin, M.N., Florence, A. T., Handjani-vila, R. M., Stuart, J. F. B.,Vanlerrberghe, G., Whittaker, J. S., The effect of niosome and polysorbate80onthe metabolism and excretion of methotrexate in mouse. Journal ofMicroencapsulation,1986.3(2): p.95-100.
    43. Sahin, N.O., ed. Niosomes as Nanocarrier Systems. Nanomaterials andNanosystems for Biomedical Applications ed. M.R. Mozafari.2007, Springer.67-81.
    44. M Carafa, E.S., G Lucania, Lidocaine-loaded non-ionic surfactantvesicles:characterization and in vitro permeation studies. International Journalof Pharmaceutics,2002.231(1): p.21-32.
    45. Ijeoma F. Uchegbu, S.P.V., Non-ionic surfactant vesicles (niosomes): physicaland pharmaceutical chemistry. Advances in Colloid and Interface Science,1995.172(1-2): p.33-70.
    46. Ijeoma F. Uchegbu, S.P.V., Non-ionic surfactant based vesicles (niosomes) indrug delivery. International Journal of Pharmaceutics,1998.172(1-2): p.33-70.
    47. Christine Dufes, A.G.S., Laurence Tetley, Alexander I. Gray, Dave G. Watson,Jean-Christophe Olivier, William Couet, Ijeoma F. Uchegbu Niosomes andPolymeric Chitosan Based Vesicles Bearing Transferrin and Glucose Ligands forDrug Targeting. Pharmaceutical Research2000.17(10): p.1250-1258.
    48. Marco Bragagni, N.M., Carla Ghelardini, Paola Mura, Development andCharacterization of Niosomal Formulations of Doxorubicin Aimed at BrainTargeting. Journal of Pharmacy and Pharmaceutical Sciences2012.15(1): p.184-196Marco Bragagni1, Natascia Mennini1, Carla Ghelardini1, Paola Mura1
    49. P. R. Lockman, R.J.M., M. A. Khan, D. D. Allen, Nanoparticle technology fordrug delivery across the blood-brain barrie. Drug Development and IndustrialPharmacy,2002.28(1): p.1-13.
    50. Ye im Akta, M.Y., Karine Andrieux, R. Neslihan Gürsoy, Maria JoseAlonso,Eduardo Fernandez-Megia, Ramón Novoa-Carballal, Emilio Qui oá,Ricardo Riguera, Mustafa F. Sargon, H. Hamdi elik, Ayhan S. Demir, A. AtillaH ncal, Turgay Dalkara, Y lmaz apan, Patrick Couvreur, Development andBrain Delivery of Chitosan-PEG Nanoparticles Functionalized with theMonoclonal Antibody OX26. Bioconjugate Chemistry,2005.16(6): p.1503-1511.
    51. Ilium, L., Chitosan and Its Use as a Pharmaceutical Excipient. PharmaceuticalResearch,1998.15(9): p.1326-1331.
    52. Brahma N. Singh, K.H.K., ed. Encyclopedia of Pharmaceutical Technology.Drug delivery: oral route. Vol.5.2007,2007Inferma health care USA.1242-1261.
    53. Foster K. A., Y.M., Audus K. L, Microparticulate uptake mechanisms of in vitrocell culture models of the respiratory epithelium. Journal of Pharmacy andPharmacology,2001.53(1): p.57-66.
    54. Sanders E., A.C.T., A study of particulate intestinal absorption andhepatocellular uptake: Use of polystyrene latex particles. Experimental CellResearch,1961.22: p.137-145.
    55. Artursson P., P.K., Luthman K., Caco-2monolayers in experimental andtheoretical predictions of drug transport. Advanced Drug Delivery Reviews,2001.46(1-3): p.27-43.
    56. Desai, M.P., et al., The Mechanism of Uptake of Biodegradable Microparticles inCaco-2Cells Is Size Dependent. Pharmaceutical Research,1997.14(11): p.1568-1573.
    57. Bikram Singh, P.K., Gopichand, R.D. Singh, P.S. Ahuja, Biology and chemistryof Ginkgo biloba. Fitoterapia,2008.79(6): p.401-418.
    58. Ellnain-Wojtaszek M, K.Z., Kasprzak J, Investigation of the free radicalscavenging activity of Ginkgo biloba L. leaves. FITOTERAPIA,2003.74(1): p.6.
    59. Lena M. Goh, P.J.B., Chee S. Yong, Examination of antioxidant activity ofGinkgo biloba leaf infusions. Food Chemistry,2003.82(2): p.275-282.
    60. Kawaii S., T.Y., Katase E., Ogawa K., Yano M., Antiproliferative activity offlavonoids on several cancer cell lines. Bioscience Biotechnology andBiochemstry,1999.63(5): p.896-899.
    61. Elattar TM, V.A., The inhibitory effects of curcumin, genistein, quercetin andcisplatin on the growth of oral cancer cells in vitro. Anticancer Research,2000.20(3A): p.1733-1738.
    62. Oyama Y, C.L., Ueha T, Kanemaru K, Noda K., Ginkgo biloba extract protectsbrain neurons against oxidative stress induced by hydrogen peroxide. BrainResearch,1996.712(2): p.349-352.
    63. Guidetti C, P.S., Lucchini S, Cambieri M, Marzatico F, Prevention of neuronalcell damage induced by oxidative stress in-vitro: effect of different Ginkgo bilobaextracts. J Pharm Pharmacol,2001.53(3): p.387-392.
    64. Oken BS, S.D., Kaye JA., The efficacy of Ginkgo biloba on cognitive function inAlzheimer disease. Arch Neurol,1998.55(11): p.1409-1415.
    65. Burschka MA, H.H., Reineke T, van Bebber L, Caird DM, M sges R., Effect oftreatment with Ginkgo biloba extract EGb761(oral) on unilateral idiopathicsudden hearing loss in a prospective randomized double-blind study of106outpatients. Eur Arch Otorhinolaryngol,2001.258(5): p.213-219.
    66. TA, v.B., Chemical analysis of Ginkgo biloba leaves and extracts. Journal ofChromatography A,2002.967(1): p.21-55.
    67.中国药典,国家药典委员会, Editor.2010,中国医药科技出版社.
    68. Filippo Drago, M.L.F., Melina Cro, Sebastiano Giuffrida, Pharmacokinetics andBioavailability of a Ginkgo Biloba Extract. Journal of Ocular Pharmacology andTherapeutics,2002.18(2): p.197-202.
    69. Zhipeng Chen, J.S., Hongxuan Chen, Yanyu Xiao, Dan Liu, Jun Chen,Hao Cai,Baochang Cai, Comparative pharmacokinetics and bioavailability studies ofquercetin, kaempferol and isorhamnetin after oral administration of Ginkgobiloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgobiloba extract solid dispersions in rats. Fitoterapia,2010.81(8): p.1045-1052.
    70. Shinjiro Yamamoto, K.N., Chihiro Ishikawa, Megumi Yamamoto, Enhancedinhibitory effects of extracts from Ginkgo biloba L. leaves encapsulated in hybridliposomes on the growth of tumor cells in vitro. Biochemical EngineeringJournal,2002.12: p.125-130.
    71.金叶,银杏叶提取物类脂质体的制备工艺研究.2009,吉林大学:长春.
    72. Wells, P.J., Aulton, M., ed. Aulton's Pharmaceutics: the Design and Manufactureof Medicines. Pharmaceutical preformulation.2007, Churchill Livingstone:London.336-360.
    73. International Conference on Harmonisation. in Validation of AnalyticalProcedures.2005. United States: Food and Drug Administration.
    74. Huynh-Ba, K., ed., ed. Handbook of Stability Testing in PharmaceuticalDevelopment. Vol. XVII.2009, Springer: Newmark.389.
    75. El Maghraby, G.M., Williams, A. C., Vesicular systems for deliveringconventional small organic molecules and larger macromolecules to andthrough human skin. expert Opinion on Biological Therapy,2009.6(2): p.149-163.
    76. Bangham AD, S.M., Watkins JC, Diffusion of univalent ions across the lamellaeof swollen phospholipids. Journal of Molecular Biology,1965.13(1): p.238-252.
    77. Kiwada, H., Niimura, H., Fujisaki, Y., Yamada, S.,&Kato, Y., Application ofsynthetic alkyl glycoside vesicles as drug carriers. I preparation and physicalproperties. Chemical and pharmaceutical bulletin,1985.33(2): p.753-759.
    78. F Szoka, J., D Papahadjopoulos, Procedure for preparation of liposomes withlarge internal aqueous space and high capture by reverse-phase evaporation.Proceedings of the National Academy of Sciences of the United States ofAmerica,1978.75(9): p.4194-4198.
    79. DFH Wallach, J.P., ed. New type of lipid vesicle: novasome. LiposomeTechnology, ed. G. Gregoriadis. Vol.2.1993, CRC Press: Florida.141-156.
    80. Susan M. Niemiec, C.R., Norman Weiner Influence of non-ionic liposomalcomposition on topical delivery of peptide drugs into pilosebaceous units: anin-vivo study using hamster ear model. Pharmaceutical Research1995.12(8): p.1184-1188.
    81. Herre Talsma, M.J.V.S., Johan C. H. Borchert, Daan J. A., A novel technique forthe one-step preparation of liposomes and nonionic surfactant vesicles withoutthe use of organic solvents. Liposome formation in a continuous gas stream: The'Bubble' method. Journal of Pharmaceutical Sciences,1994.83(3): p.276-280.
    82. Aranya Manosroi, R.C., Masahiko Abe, Jiradej Manosroi, Characteristics ofniosomes prepared by supercritical carbon dioxide (scCO2) fluid. InternationalJournal of Pharmaceutics,2008.352(1-2): p.248-255.
    83. Lawrence D. Mayer, L.C.L.T., Dicken S. C. Ko, Dana Masin, Richard S.Ginsberg, Pieter R. Cullis, Marcel B. Bally, Influence of vesicle size, lipidcomposition, and drug-to-lipid ratio on the biological activity of liposomaldoxorubicin in mice. Cancer Research,1989.49: p.5922-5930.
    84. Koji Nakano, Y.T., Hiromitsu Yamamoto, Yoshiaki Kawashima, HirofumiTakeuchi, novel method for measuring rigidity of submicron-size liposomes withatomic force microscopy. International Journal of Pharmaceutics,2008.355(1-2):p.203-209.
    85. I. V. Zhigaltsev, A.P.K., V. G. Kucheryanu, G. N. Kryzhanovsky, S. N.Kolomeichuk, V. I. Shvets, V. V. Yurasov, Liposomes containing dopamineentrapped in response to transmembrane ammonium sulfate gradient as carriersystrem for dopamine delivery into the brain of Parkinsonian mice. Journal ofLiposome Research,2001.11(1): p.55-71.
    86. Tank Chintankumar J, B.C.H., Baria Ashok H, Patel Rakesh P, Formulation andevaluation of aceclofenac loaded maltodextrin based proniosome. Internationaljournal of ChemTech Research,2009.1(3): p.567-573.
    87. Aranya Manosroi, P.W., Jiradej Manosroi, Hideki Sakai, Fumio Sugawara,Makoto Yuasa, Masahiko Abe, Characterization of vesicles prepared withvarious non-ionic surfactants mixed with cholesterol. Colloids and surfaces B:Biointerfaces,2003.30: p.129-138.
    88. Almira I. Blazek-Welsh, D.G.R., SEM Imaging Predicts Quality of Niosomesfrom Maltodextrin-Based Proniosomes. Pharmaceutical Research,2001.18(5): p.656-661.
    89. Tianqing Liu, R.G.,, Wei Hua, Jing Qiu, Structure behaviors of hemoglobin inPEG6000/Tween80/Span80/H2O niosome system. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007.293(1-3): p.255-261.
    90.徐辉碧,杨., ed.纳米医药.2004,清华大学出版社.84-96.
    91.施斌,羟基喜树碱隐形纳米囊泡肿瘤靶向研究, in药学院.2005,复旦大学:上海. p.61.
    92. Naresh Ahuja, V.S., Vijay Kumar Bishnoi, Atul Garg, Monika Hisoria, JoyatiSharma, Kunal Nepali, Formulation and evaluation of lansoprazole niosome.Rasayan Journal of Chemistry,2008.1(3): p.561-563.
    93. Toshimitsu Yoshiokaa, B.S., Alexander T. Florence, Preparation and propertiesof vesicles (niosomes) of sobitan monoesters (Span20,40,60, and80) and asorbitan triester (Span85). International Journal of Pharmaceutics,1994.105(1):p.1-6.
    94. Ahmed S. Guinedi, N.D.M., Samar Mansour, Rania M. Hathout, Preparationand evaluation of reverse-phaseevaporation and multilamellarniosomes asophthalmiccarriers of acetazolamide. International Journal of Pharmaceutics,2005.306(1-2): p.71-82.
    95. S. Srinivas, Y.A.K., A. Hemanth, M. Anitha, Preparation and evaluation ofniosomes containing aceclofenac. Digest Journal of Nanomaterials andBiostructures,2010.5(1): p.249-254.
    96. Yongmei Hao, F.Z., Na Li, Yanhong Yang, Kean Li, Studies on a highencapsulation of colchicine by a niosome system. International Journal ofPharmaceutics,2002.244: p.73-80.
    97. David W. Fry, J.C.W., I.David Goldman, Rapidseparation of low molecularweight solutes from liposomes without dilution. Analytical Biochemistry,1978.90(2): p.809-815.
    98. Wei-tong Sun, G.-h.H., Jie-sheng Ye, Na Zhang, Determination of EncapsulationEfficiencies of Liposomes and Nanoliposomes by Protamine AggregationMethod Chinese Pharmaceutical Journal,2006.41(22): p.1716-1719.
    99. SUO Xu-bin, D.Y.-j., JING Shui-quan, DU Song, LI Chun-lei, ZHONG Hai-jun,HAO Ai-jun, Determination of the entrapment efficiency of astragalosideliposome with HPLC-ELSD and macroreticular resin. Chinese PharmaceuticalJournal,2004.40(9): p.680-681.
    100. Abbas Pardakhty, J.V., Abdolhossein Rouholamini, In vitro study ofpolyoxyethylene alkyl ether niosomes for delivery of insulin. InternationalJournal of Pharmaceutics,2007.328: p.130-141.
    101. Varaporn Buraphacheep Junyaprasert, V.T., Tasaneeya Supaperm, Effect ofCharged and Non-ionic Membrane Additives on Physicochemical Properties andStability of Niosomes AAPS PharmSciTech,2008.9(3): p.851-859.
    102. Di L, K.E., Fan K, McConnell OJ, Carter GT, High throughput artificialmembrane permeability assay for blood-brain barrier. European Journal ofMedicinal Chemistry,2003.38(3): p.223-232.
    103. Clark, D.E., Rapid calculation of polar molecular surface area and itsapplication to the prediction of transport phenomenal prediction of intestinalabsorption. Journal of Pharmaceutical Sciences,1999.88(8): p.807-814.
    104. Poelma FG, T.J., Evaluation of a chronically isolated internal loop in the rat forthe study of drug absorption kinetics. Journal of Pharmaceutical Science,1987.76(6): p.433-436.
    105. Kai M, H.K., Kaida I, Aki H, Yamamoto M, Permeation-enhancing effect ofaloe-emodin anthrone on water-soluble and poorly permeable compounds in ratcolonic mucosa. Biological and Pharmaceutical Bulletin2002.25(12): p.1608-1613.
    106. Hess S, R.V., Hoffman A., Investigation of the enhancing mechanism of sodiumN-[8-(2-hydroxybenzoly) amino] caprylate effect on the intestinal permeabilityof polar molecules utilizing a votage clamp method. European Journal ofPharmaceutical Sciences,2005.25(2-3): p.307-312.
    107. Amidon GL, S.P., Fleisher D., Estimating human oral fraction dose absorbed: acorrelation using rat intestinal membrane permeability for passive andcarrier-mediated compounds. Pharmaceutical Research,1988.5(10): p.651-654.
    108. Pang KS, C.W., Ulm EH., Disposition of enalapril in the perfused ratintestine-liver preparation: absorption, metabolism and first-pass effect. TheJournal of Pharmacology and experimental therapeutics,1985.233(3): p.788-795.
    109. Per Artursson, K.P., Kristina Luthman, Caco-2monolayers in experimental andtheoretical predictions of drug transport. Advanced Drug Delivery Reviews,1996.22: p.67-84.
    110. Allen R. Hilgers, R.A.C., Philip S. Burton, Caco-2cell monolayers as a modelfor drug transport across the intestinal mucosa. Pharmaceutical Research,1990.7(9): p.902-910.
    111. Fogh J, F.J., Orfeo T, One hundred and twenty-seven cultured human tumor celllines producing tumors in nude mice. Journal of the National Cancer Institute,1977.59(1): p.221-226.
    112. Artursson P., M.C., Epithelial transport of drugs in cell culture. II: Effect ofextracellular calcium concentration on the paracellular transport of drugs ofdifferent lipophilicities across monolayers of intestinal epithelial (Caco-2) cells.Journal of Pharmaceutical Science,1990.79(7): p.595-600.
    113. Michelle D. Peterson, W.M.B., Mark S. Mooseker, An in vitro model for theanalysis of intestinal brush border assembly II. Changes in expression andlocalization of brush border proteins during cell contact-induced brush borderassembly in Caco-2cells. Journal of Cell Science,1993.105: p.461-472.
    114. Delie Florence, R.W., A Human Colonic Cell Line Sharing Similarities WithEnterocytes as a Model to Examine Oral Absorption: Advantages andLimitations of the Caco-2Model. Critical Reviews in Therapeutic Drug CarrierSystems,1997.14(3): p.66.
    115. Saito H, I.K., Dipeptide transporters in apical and basolateral membranes of thehuman intestinal cell line Caco-2. American Journal of Physiology,1993.265: p.289-294.
    116. Hidalgo I.J, L.J., Carrier-mediated transport and efflux mechanisms in Caco-2cells. Advanced Drug Delivery Reviews,1996.22(1-2): p.53-66.
    117. Hirohashi T, S.H., Chu XY, Function and expression of multidrugresistance-associated protein family in human colon adencarcinoma cells(Caco-2)1. Journal of Pharmacology and Experimental Therapeutics,2000.292(1): p.265-270.
    118. Gan L. S. L., T.D.R., Applications of the Caco-2model in the design anddevelopment of orally active drugs: elucidation of biochemical and physicalbarriers posed by the intestinal epithelium. Advanced Drug Delivery Reviews,1997.23(1): p.77-98.
    119. Sambuy, Y., et al., The Caco-2cell line as a model of the intestinal barrier:influence of cell and culture-related factors on Caco-2cell functionalcharacteristics. Cell Biology and Toxicology,2005.21(1): p.1-26.
    120. Artursson P, K.J., Correlation between oral drug absorption in humans andapparent drug permeability coefficients in human intestinal epithelial (Caco-2)cells. Biochemical and Biophysical Research Communications,1991.175(3): p.880-885.
    121. Keepers YP, P.P., Peters GJ, van Ark-Otte J, Winograd B, Pinedo HM,Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays forin vitro chemosensitivity testing. European Journal of Cancer,1991.27(7): p.897-900.
    122. Augustijns PF, B.T., Gan LSL, Hendren RW, Thakker DR, Evidence for apolarized efflux system in Caco-2cells capable of modulating cyclosporin Atransport. Biochemical and Biophysical Research Communications,1993.197(2): p.360-365.
    123. Vaidyanathan JB, W.T., Cellular uptake and efflux of the tea flavonoid(-)epicatechin-3-gallate in the human intestinal cell line Caco-2. Journal ofPharmacology and Experimental Therapeutics,2003.307(2): p.745-752.
    124. Fischer T, E.E., McCaffery JM, DeVries L, Farquhar MG., Clathrin-coatedvesicles bearing GAIP possess GTPase-activating protein activity in vitro.Proceedings of the National Academy of Sciences of the United States ofAmerica,1999.96(12): p.6722-6227.
    125. Adilakshmi T, L.R., Ribosomal protein S25mRNA partners with MTF-1and Lato provide a p53-mediated mechanism for survival or death. Journal ofBiological Chemistry,2002.277(6): p.4147-4151.
    126. Biganzoli E, C.L., Rossi R, Brunati MC and Nolli ML, Use of a Caco-2cellculture model for the characterization of intestinal absorption of antibiotics. IlFarmaco,1999.54(9): p.594-599.
    127. P. Artursson, J.K., Correlation between oral drug absorption in humans andapparent drug permeability coefficients in human intestinal epithelial (Caco-2)cells. Biochemical and Biophysical Research Communications,1991.175(3): p.880-885.
    128. Roberta L. Grant, C.Y., Donna Gabaldon, Daniel Acosta, Evaluation ofsurfactantcytotoxicity potential by primary cultures of ocular tissues: I.Characterization of rabbit corneal epithelial cells and initial injury and delayedtoxicity studies. Toxicology,1992.76(2): p.152-176.
    129. Desai M. P., L.V., Walter E., Levy R. J., Amidon G. L., The mechanism of uptakeof biodegradable microparticles in Caco-2cells is size dependent.Pharmaceutical Research,1997.14(11): p.1568-1573.
    130. Mine Y, Z.J., Surfactants Enhance the Tight-Junction Permeability of FoodAllergens in Human Intestinal Epithelial Caco-2Cells. International Archives ofAllergy and Immunology,2003.130(2): p.135-142.
    131. Xianyi Sha, G.Y., Yunjuan Wu, Junchan Li, Xiaoling Fang, Effect ofself-microemulsifying drug delivery systems containing Labrasol ontightjunctions in Caco-2cells. European Journal of Pharmaceutical Sciences,2005.24(5): p.477-486.
    132. Dekker, M., ed. The Blood-Brain Barrier and Drug Delivery to the CNS. Usingnanoparticles to target drugs to the central nervous system, ed. J.K. Renad A.2000: New York.205-223.
    133. Jamal Temsamani, J.-M.S., Anthony R Rees, Michel Kaczorek, Brain drugdelivery technologies: novel approaches for transporting therapeutics.Pharmaceutical Science&Technology Today,2000.3(5): p.155-162.
    134. L, P., Peptide drug delivery into the central nervous system. Progress in drugresearch,1998.51: p.95-131.
    135. Lo, E.H., Singhal, A.B., Torchilin, V.P., Abbott, N.J., Drug delivery to damagedbrain. Brain Research Reviews,2001.38(1-2): p.140-148.
    136. Nicholas Bodor, P.B., Recent advances in the brain targeting ofneuropharmaceuticals by chemical delivery systems. Advanced Drug DeliveryReviews,1999.36(2-3): p.229-254.
    137. Tetsuya Terasaki, K.-i.H., The blood–brain barrier effluxtransporters asadetoxifyingsystem for the brain. Advanced Drug Delivery Reviews,1999.36(2-3): p.195-209.
    138. Abbott N., H.C., Revest P., Greenwood J., Development and characterisation ofa rat brain capillary endothelial culture: towards an in vitro blood-brain barrier.Journal of Cell Science,1992.103(1): p.23-37.
    139. JD Fenstermacher, R.B., Methods for quantifying the transport of drugs acrossbrain barrier systems. Pharmacology&Therapeutics,1981.14: p.217-248.
    140. P. Panula, F.J., L. Rechardt Evidence for the presence of viable endothelial cellsin culture derived from dissociated rat brain. Experientia,1978.34(1): p.95-97.
    141. Bowman PD, E.S., Rarey KE, Betz AL, Goldstein GW Brain microvesselendothelial cells in tissue culture: a model for study of blood-brain barrierpermeability. Annals of Neurology,1983.14(4): p.396-402.
    142. LE DeBault, P.C., gamma-Glutamyl transpeptidase in isolated brain endothelialcells: induction by glial cells in vitro. Science,1980.207(4431): p.653-655.
    143. W M Pardridge, R.J.B., C R Farrell, Brain-type glucose transporter (GLUT-1) isselectively localized to the blood-brain barrier. Studies with quantitative westernblotting and in situ hybridization. Journal of Biological Chemistry,1990.265: p.18035-18040.
    144. C Cordon-Cardo, J.P.O.B., D Casals, L Rittman-Grauer, J L Biedler, M RMelamed, J R Bertino, Multidrug-resistance gene (P-glycoprotein) is expressedby endothelial cells at blood-brain barrier site. Proceedings of the NationalAcademy of Sciences of the United States of America,1989.86(2): p.695-698.
    145. Andreas Reichel, D.J.B., N. Joan Abbott An Overview of In Vitro Techniques forBlood-Brain Barrier Studies. Methods in Molecular Medicine,2003.89: p.307-324.
    146. Robert J Rist, I.A.R., Marcus W.K Chan, Pierre-Olivier b, Fran oise Roux,N.Joan Abbott, F-actin cytoskeleton and sucrose permeability of immortalizedrat brain microvascular endothelial cell monolayers:effects of cyclic AMP andastrocytic factors. Brain Research,1997.768(1-2): p.10-18.
    147.Durieu-Trautmann O, F.C., Creminon C, Foignant Chaverot N, Roux F, Claire M,Strosberg AD, Couraud PO, Nitric oxide and endothelin secretion by brainmicrovessel endothelial cells: regulation by cyclic nucleotides. Journal ofCellular Physiology,1993.155(1): p.104-111.
    148. Roux F, D.-T.O., Chaverot N, Claire M, Mailly P, Bourre JM, Strosberg JD,Couraud PO, Regulation of gammaglutamyl transpeptidase and alkalinephosphatase activities in immortalized rat brain microvessel endothelial cells.Journal of Cellular Physiology,1994.159(1): p.101-113.
    149. Wiebke Fischer, J.a., Reinhard H.H. Neubert, Matthias a, Uptake of codeine intointestinal epithelial (Caco-2) and brain endothelial (RBE4) cells. EuropeanJournal of Pharmaceutical Sciences,2010.41: p.31-42.
    150. Francesca Re, I.C., Cristiano Zona, Silvia Sesana, Maria Gregori, RobertaRigolio, Barbara La Ferla, Francesco Nicotra, Gianluigi Forloni, AlfredoCagnotto, Mario Salmona, Massimo Masserini, Giulio Sancini,Functionalization of liposomes with ApoE-derived peptides at different densityaffects cellular uptake and drug transport across a blood-brain barrier model.Nanomedicine: Nanotechnology, Biology and Medicine,2011.7(5): p.551-559.
    151. Wiebke Fischer, K.P., Linda Metzner, Reinhard H.H. Neubert, MatthiasBrandsch, Transport of valproate at intestinal epithelial (Caco-2) and brainendothelial (RBE4) cells: Mechanism and substrate specificity. European Journalof Pharmaceutical Sciences,2008.70(2): p.486-492.
    152. A.P, L., In vitro experimental models for the blood-brain barrier. DrugDiscovery Today,2004.9(5): p.204-205.
    153. Roux F., C.P.O., Rat brain endothelial cell lines for the study of blood–barrierpermeability and transport functions. Cellular and Molecular Neurobiology,2005.25(1): p.41-57.
    154. Jeliazkova-Mecheva V. V., B.D.J., A porcine astrocyte/endothelial cell coculturemodel of the blood-brain barrier. Brain Research Protocols,2003.12(2): p.91-98.
    155. Gaillard P. J., V.L.H., Nielsen J. L., Ivanov A., Atsumi R., Engman H,Establishment and functional characterization of an in vitro model of theblood-brain barrier, comprising a co-culture of brain capillary endothelial cellsand astrocytes. European Journal of Pharmaceutical Sciences,2001.12(3): p.215-222.
    156. Deli M., á.C., Kataoka Y., Niwa M., Permeability Studies on In VitroBlood–Brain Barrier Models: Physiology, Pathology, and Pharmacology.Cellular and Molecular Neurobiology,2005.25(1): p.59-127.
    157. Kreuter, J., et al., Apolipoprotein-mediated Transport of Nanoparticle-boundDrugs Across the Blood-Brain Barrier. Journal of Drug Targeting,2002.10(4): p.317-325.
    158. Ramge, P., et al., Polysorbate-80coating enhances uptake ofpolybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primarybrain capillary endothelial cells. European Journal of Neuroscience,2000.12(6):p.1931-1940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700