海带岩藻聚糖分级纯化及对肉仔鸡巨噬细胞免疫调节的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从海带中提取岩藻聚糖并进行分级纯化,通过肉鸡饲喂试验及细胞培养试验,系统地探讨了海带岩藻聚糖(FLJ)及其级分(Fraction)对肉鸡巨噬细胞免疫功能的调控作用,为研究开发海带岩藻聚糖作为饲料添加剂提供了理论依据。
     1、海带岩藻聚糖的提取和分级纯化
     经过正交试验获得了海带岩藻聚糖的最佳提取条件,分别为物料比1:25,浸提时间6h,浸提温度100℃。在此条件下,海带岩藻聚糖提取物的得率为16.21%,海带岩藻聚糖得率为5.47%。通过DEAE纤维柱和Sephacryl凝胶柱对海带岩藻聚糖进行分级纯化,得到5个级分,分子量分别为40KD、74KD、163KD、240KD、360KD,各级分中海带岩藻聚糖的纯度大于90%,通过薄层层析分析表明,各个级分均以岩藻糖为主,且含有比例不同的葡萄糖、木糖和鼠李糖,通过紫外光谱和红外光谱分析,表明5个级分均不含有蛋白质和核酸,而且具有多糖特有的振动峰。
     2、海带岩藻聚糖对肉鸡生产性能和免疫功能的影响
     试验采用单因子设计,将600只1日龄AA肉鸡随机分为4个处理组,每组设6个重复,分别为添加0(对照组)、100 mg/kg(低剂量组)、500 mg/kg(中剂量组)和1000mg/kg(高剂量组)的海带岩藻聚糖,测定肉鸡生产性能和免疫功能。研究结果显示,日粮中添加海带岩藻聚糖对肉鸡生产性能无显著影响,可提高42日龄肉鸡脾脏和胸腺指数,促进ConA诱导的T淋巴细胞转化,提高CD4+T淋巴细胞亚群比例,提高腹腔巨噬细胞iNOS活性和NO产生量,促进呼吸爆发。表明海带岩藻聚糖可提高肉鸡的免疫机能,同时提示肉鸡腹腔巨噬细胞和T淋巴细胞可能是海带岩藻聚糖发挥作用的靶细胞。
     3、海带岩藻聚糖及其级分对体外培养肉鸡巨噬细胞免疫功能的影响
     通过三个独立试验分别研究不同剂量海带岩藻聚糖及其级分对体外培养肉鸡巨噬细胞功能的影响。试验采用单因子设计,每个试验分为7个处理组,分别为岩藻聚糖组、5个级分组和空白对照组,每个处理组设8个重复。研究结果表明,中、高剂量海带岩藻聚糖对体外培养肉鸡巨噬细胞的免疫功能具有促进作用,能够提高巨噬细胞吞噬活性,促进巨噬细胞呼吸爆发、NO的产生量和iNOS的酶活,促进巨噬细胞分泌细胞因子IL-1;不同级分对肉鸡巨噬细胞免疫功能的调控作用不同,其中FractionⅢ和FractionⅣ的促进作用最强,而FractionⅤ仅在中剂量条件下提高了巨噬细胞NO和iNOS的活性,对其他免疫指标无显著作用。
     4、海带岩藻聚糖及其级分对氧化应激条件下巨噬细胞功能的影响
     试验采用单因子设计,分为8个处理组,分别为空白对照组、氧化损伤组、氧化损伤+岩藻聚糖组、氧化损伤+5个级分组,每个处理组设8个重复。本试验结果表明,tBOOH诱导肉鸡巨噬细胞氧化损伤,同时显著抑制巨噬细胞的免疫功能,此时添加海带岩藻聚糖及其级分可缓解巨噬细胞的氧化损伤,并提高巨噬细胞的免疫功能。海带岩藻聚糖不同级分的抗氧化活性不同,以FractionⅢ和FractionⅣ的作用最强,同时FractionⅢ和FractionⅣ对巨噬细胞免疫功能的促进作用也最强,由此表明,海带岩藻聚糖对巨噬细胞的免疫促进作用与其抗氧化活性有关。
     5、海带岩藻聚糖及其级分对肉鸡巨噬细胞钙信号传导的影响
     由两个单独的试验组成,采用单因子完全随机设计。第一个试验共设6个处理,分别为海带岩藻聚糖及其5个级分,测定细胞培养液中加入多糖后的钙信号变化。试验结果显示,海带岩藻聚糖及其级分影响肉鸡巨噬细胞胞内钙离子浓度,其中岩藻聚糖、FractionⅢ、FractionⅣ显著升高胞内钙离子浓度,FractionⅠ、FractionⅡ和FractionⅤ显著降低胞内钙离子浓度。第二个试验共设8个处理,分别为A23187组、EGTA组、岩藻聚糖、岩藻聚糖+EGTA、FractionⅢ、FractionⅢ+EGTA、FractionⅣ、FractionⅣ+EGTA,测定不同处理组的钙离子浓度和巨噬细胞存活率、吞噬活性、NO、iNOS、细胞因子等免疫指标。用A23187升高胞内钙离子浓度,巨噬细胞免疫功能加强,用EGTA螯合细胞外钙,巨噬细胞免疫功能降低,同时岩藻聚糖、FractionⅢ、FractionⅣ加入EGTA后,细胞钙离子浓度显著降低,巨噬细胞的吞噬功能、呼吸爆发、NO、iNOS、细胞因子IL-1均显著降低。结果表明,海带岩藻聚糖、FractionⅢ、FractionⅣ促进巨噬细胞免疫功能与其促进细胞钙离子浓度的升高有关。
     综合上述体内、体外试验结果,可以得出:海带岩藻聚糖可显著提高肉鸡腹腔巨噬细胞的吞噬活性、呼吸爆发、NO、iNOS活性和细胞因子的分泌,调节肉鸡的免疫功能。不同岩藻聚糖级分对肉鸡巨噬细胞免疫功能的促进作用不同,以FractionⅢ、Ⅳ的作用最为显著。海带岩藻聚糖及其级分对肉鸡巨噬细胞免疫功能的影响与其抗氧化能力和调节细胞内钙离子浓度有关。
1、Extracted and purified Fucoidan from Laminaria japonica
     The fucoidans was extracted and isolated from Laminaria japonica by the method of water boiling and ethanol precipitation. The optimized condition were as follows: radio of samples to water,1:25; time, 6h; temperature,100℃.Under the conditions shown above, the resulted content of Fucoidan was 5.47%. Fucoidan was further purified by ion exchange chromatography DEAE and gel filtration chromatography Sephacryl into five different Fractions, FractionⅠto FractionⅤ. Their molecular weights were 40KD、74KD、163KD、240KD、360KD respectively. The polysaccharide was composed of fucose, glucose, xylose, rhamnose according to thin-layer chromatography. All five Fractions exhibited character vibration peak of polysaccharide and had no protein and nucleic acid.
     2、Effects of Fucoidan isolated from Laminaria japonica on growth performance and immunity of broilers
     The trial was conducted to study the effects of Fucoidan extracted from Laminaria japonica on the immunity and growth performance of broilers. Total of 600 broilers were randomly allotted to one of four dietary treatments, with six replicate pens per treatment and twenty-five chickens per pens. Dietary treatments included a control corn-soybean meal (Control), a diet with 100mg/kg Fucoidan (Low level), a diet with 500mg/kg Fucoidan (Middle level), a diet with 1000mg/kg Fucoidan (High level). Birds were raised from hatch to 42 d. At the age 42d, the growth performance, the immune organ indexes, the proliferation of blood lymphocyte, the proportions of T cell subsets in blood were measured. The macrophages were harvested and the phagocytic activity, NO, iNOS and respiratory burst production of macrophages were detected. Feeding Fucoidan had no significant effects on growth performance of broilers relative to the control. Compared to the control, feeding Fucoidan significantly increased spleen index and thymus index (P<0.05), enhanced the proliferation of T lymphocyte induced by ConA (P<0.05).The percentage of CD4+ T cell was higher in 42d old chickens maintained on Fucoidan feed than in chichens receiving the control corn-soybean meal. Fucoidan had significantly increased macrophages to relesee NO, significantly promoted iNOS activity and stimulated the respiratory burst activity. The Fucoidan isolated from Laminaria japonica possess potent immunomodulatory activity on T lymphocyte and macrophages on broilers.
     3、Effects of Fucoidan and its Fraction isolated from Laminaria japonica on immunity of broiler macrophages in vitro
     The immunomodulatory activities of Fucoidan (FLJ) and its Fraction were investigated in vitro in relation to broiler peritoneal macrophages. The broiler macrophages were cultured with Fucoidan (200μg/ml) and Fraction fromⅠtoⅤ(100μg/ml) for 24h, the cell vialibility were detected by using the mothod of MTT and the phagocytic activity were detected. The induced nitric oxide synthase (iNOS), NO, IL-1 and TNF-αin culture supernatants were measured. The respiratory burst capacity in macrophages was measured by luminal dependent chemiluminescence.Cell vialibility results showed that the proliferation of macrophages was not influenced by FLJ and its Fractions. The treatment of FLJ and its Fraction increased the phagocytic activity, enhanced the production of IL-1, NO, iNOS and the respiratory burst capacity (P<0.05). The Fucoidan and its Fraction had no significantly effect on TNF-α(P>0.05). The different Fraction had different effect on broiler macrophage immunity function. FractionⅢand FractionⅣhad the most effective promoting action. Their promotion effects were higher than FractionⅤ.The FractionⅤhad no effect on broilers macrophages immunity function. The Fucoidan isolated from Laminaria japonica had promoting effect on broiler macrophage immunity at 200μg/ml.The FractionⅢand FractionⅣpurified from Fucoidan were the effective Fraction among five Fraction.
     4、Effect of Fucoidan and its Fraction isolated from Laminaria japonica on immunity of broiler macrophages under oxidation stress condition
     The immunomodulatory activities of a Fucoidan (FLJ) and its Fraction were investigated in vitro under oxidation stress in broiler macrophages. After the broiler macrophages were cultured with FLJ and its Fraction for 24h, the tBOOH was added to the culture as oxygen reagent. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and induced nitric oxide synthase (iNOS) were detected. The content of lactate dehydrogenase (LDH), malonic dialdehyde (MDA), NO, IL-1 and TNF-αwere measured. The respiratory burst capacity of broiler macrophages was measured by luminal dependent chemiluminescence. The elevated MDA and LDH, decreased cell vialibility, increased SOD and GSH-Px levels indicated that adding tBOOH in culture caused the oxidation stress in broiler macrophages. The decreased of phagocytic activity, NO, iNOS, IL-1 and respiratory burst capacity indicated that the immune function of broiler macrophages were influenced by tBOOH. When the FLJ and its Fraction were present in culture, the oxidation stress were eliminated. The cell vialibility, SOD and GSH-Px were significantly increased (P<0.05), LDH and MDA were significantly decreased (P<0.05). The immune function of macrophages was enhanced. The different Fraction had different antioxidant activities. FractionⅢand FractionⅣhad the most effective antioxidant activities. These data suggest that the FLJ and its Fraction had antioxidant activities, and the antioxidant activities of FLJ and its Fraction were related to their immunomodulatory activities.
     5、Macrophage Immunomodulatory mechanism of Fucoidan and Fraction isolated from Laminaria japonica: Role of calcium
     The effect of Fucoidan (FLJ) and its Fraction on Ca~(2+) content of broiler macrophages were investigated in vitro to conform if FLJ and its Fraction can activize Ca~(2+) signal transmit system in immune cell. Using the highly sensitive Ca~(2+) fluorescent dye, Fura-2/AM, the kinetic changes of Ca~(2+) in single intact living cells were measured, before and after FLJ and its Fraction directly treatment. Using A23187 and EGTA to change Ca~(2+) content of macrophages, the immunity of cell were detected in vitro. The intracellular Ca~(2+) content increased after FLJ treatment (P<0.05). The different Fraction had different action to the Ca~(2+) content. The FractionⅢand FractionⅣinduced intracellular Ca~(2+) content increase (P<0.05), while the FractionⅠ, FractionⅡand FractionⅤinduced intracellular Ca~(2+) content decreased (P<0.05). Using A23187 to increase the Ca~(2+) content of lived cell, the immune function of broiler macrophages were enhanced, while using EGTA to decrease the Ca~(2+) content, the immune function of lived cell were reduced. After adding EGTA and Fraction into the culture at the same time, the phagocytic activity, the respiratory burst capacity, the production of IL-1, NO, iNOS of broiler macrophages were decreased significantly (P<0.05). The immunomodulatory activities of a Fucoidan and its Fraction had a relationship with increasing the intracellular Ca~(2+) content.
引文
1. 白润江,马端端,王嘉军,于红娟. 香菇多糖对小鼠血浆、胸腺、脾脏 cAMP 、cGMP 含量的影响.西安医科大学学报,1997 ;18 (1) :58-59
    2. 蔡跃飘,薛长湖,海带岩藻聚糖硫酸酯的结构研究,博士学位论文,中国海洋大学,2004
    3. 曹丽,罗崇念,卞庆亚,陈建民,党参多糖对鸡 IL - 2 活性和淋巴细胞增殖反应的促进作用,中兽医医药杂志,2004,1:3-4.
    4. 陈洪亮,常碧影. 植物多糖的制备及对肉仔鸡免疫功能影响的研究,博士学位论文,中国农业科学院,2002,
    5. 陈洪亮,禚宝山,李德发,常碧影,张家祥. 黄芪多糖对肉鸡脾淋巴细胞转化及信息分子的影响.中国兽医杂志,2003,39(10):11-14
    6. 陈伟珠,侯敢,张海涛.猪苓多糖对小鼠腹腔巨噬细胞一氧化氮生成、iNOS 活性和细胞内还原型谷胱甘肽含量的影响.广东医学院学报.2003,21(4):319-321
    7. 储岳峰,颜新敏,李祥瑞,胡元亮.半定量 RT-PCR 测定中药成分对小鼠脾 T 细胞 IL-2 mRNA 水平的影响.中国农业科学.2005,38(9):1911-1916
    8. 丛建波,王长振,李妍,吴可.褐藻硫酸多糖硫酸基含量测定-硫酸钡比浊法研究.解放军药学学报. 2003,19(3):181-183
    9. 董志岩,童斌,冯玉兰,李盛林,林谋兴,方金福.海带对哺乳母猪泌乳性能影响的试验研究.养猪. 1998,2:11-12
    10. 范曼芳,陈琼华.褐藻淀粉和褐藻淀粉硫酸酯的制取、分析及生物活性比较. 中国药科大学学报,1988,19(1):30-34.
    11. 高梦祥,叶森.海带多糖的提取工艺研究.长江大学学报(自科版).2005,2(5),73-76
    12. 高旭辉,王武军.淋巴细胞钙通道及细胞内钙离子的研究进展. 医学综述.2004.10(11):641-643.
    13. 郭志刚,陈瑗,陆振刚等,脂氢过氧化物和氧化修饰的低密度脂蛋白对巨噬细胞免疫功能的影响,中华微生物学和免疫学杂志,1991,11(4):226-229
    14. 韩纪举,邓文,亓新国,杨志孝,张莉.灵芝多糖对 NK 细胞活性影响的研究. 泰山医学院学报. 2002,23(2):155-156.
    15. 侯敢, 黄迪南, 祝其锋.猪苓多糖对小鼠腹腔巨噬细胞一氧化氮生成的影响及其机理. 中国老年学杂志, 2000. 20: 233-235.
    16. 胡庆和,谢锦玉,张莅峡.红毛五加多糖对巨噬细胞细胞化学和超微结构的影响. 中国组织化学与细胞化学杂志.1994,4: 45-48.
    17. 胡四海,郭实士,氧自由基对体外小鼠脾细胞产生 IL-2 的影响及其机制初探,湖南医科大学,1995,20(4):308-310
    18. 胡庭俊,程富胜,陈灵然,梁纪踌,董鹏程. 黄芪多糖对小鼠免疫细胞信号转导相关分子的影响.畜牧兽医学报.2005,36(6):616-619
    19. 胡庭俊,梁纪兰,程富胜,陈吉祥,张爱文.黄芪多糖对鸡脾脏淋巴细胞内游离钙离子浓度的影响.中兽医医药杂志.2001,5:4-6.
    20. 纪明侯编,海藻化学,北京,科学出版社,1997
    21. 贾敏,周玲玲,郭胜伟,方泰惠.芦荟多糖对小鼠脾淋巴细胞增殖及产生 IL-1 的影响.南京中医药大学学报.2006,22(2),89-90
    22. 雷林生,王庆彪,孙莉莎,杨淑琴.灵芝多糖对小鼠脾细胞白细胞介素 1 、肿瘤坏死因子的产生及其 mRNA 表达的影响. 中药药理与临床. 1998,14 (2):16-18
    23. 李波,许时婴.羊栖菜褐藻糖胶抗凝血活性的研究.天然产物研究与开发.2004,16:431-434
    24. 李波、许时婴.羊栖菜中褐藻糖胶的提取纯化研究,食品工艺,2004,4:40-42
    25. 李春梅,高永林,李敏,史文华,刘志峰.海带多糖对实验性高血脂鹌鹑的降脂及抗动脉粥样硬化作用.中药材,2005,28:676-679
    26. 李德远,王海滨.海带岩藻糖胶及褐藻胶抗辐射效应研究.武汉食品工业学院学报.1999, 2:18-22
    27. 李德远,徐现波,熊亮,殷彦谋,汤坚,张声华. 褐藻岩藻糖胶的辐射防护作用研究.食品科学.2002,23(8):282-285
    28. 李德远,徐战,黄利民,王海滨,张声华.海带岩藻糖胶对大鼠饮食性高血脂症的影响,食品科学.2001,22(2):92-95
    29. 李德远,徐战,张声华.海带岩藻糖胶对小鼠的高胆固醇血症防治作用.食品科学.1999,
    20(1):45-46
    30. 李德远,许如意,周韫珍,盛晓宝,杨安运,程晋雷. 褐藻岩藻糖胶对小鼠脂质过氧化的影响,营养学报,2002,24(4):389-392.
    31. 李凡,田同春,石艳春等.褐藻糖胶体外抗病毒作用研究.白求恩医科大学学报. 1995,21(3): 18-22.
    32. 李福川,唐志红,崔博文,席振乐,王海仁.三种海带多糖的降糖作用.中国海洋药物.2000, 19(5):12-15
    33. 李厚勇,王蕊,高晓奇,张振玲.海带提取物对脂质过氧化和血液流变学的影响.中国公共卫生.2002,18 (3) : 263-264
    34. 李建生,王寿昆,林树根,彭时尧,甘纯玑,施木田.添加海带废渣饲料养殖尼罗罗非鱼种的试验.福建农业大学学报.1996,25 (4) : 478- 481
    35. 李军,周玫,陈瑗,叔丁基氢过氧化物对小鼠腹腔巨噬细胞呼吸爆发的影响,第一军医大学学报,1992,12(4):331-333
    36. 李军,周玫,陈瑗,脂质过氧化物对培养的 U937 单核细胞系的损伤作用,基础医学与临床,1991,11(2):40-42
    37. 李林,张声华,海带多糖研究:分类提取、鉴定及理化特性, 硕士学位论文,华中农业大学,1998.
    38. 李明春,雷林生,梁东升,许自明,杨淑琴,孙莉莎.灵芝多糖对小鼠腹腔巨噬细胞胞浆游离 Ca2+浓度的影响.中国药学杂志.1999,34(12):805-807
    39. 李明春,雷林生,梁东升,许自明,袁锦华,杨淑琴,孙丽莎.灵芝多糖对小鼠腹腔巨噬细胞活性氧自由基的影响.中国药理学与毒理学杂志.2000,14 (1):65- 68
    40. 李明春,雷林生,王庆彪,梁东升,许自明,杨淑琴,孙莉莎.灵芝多糖对小鼠 T 细胞蛋白激酶 A 和蛋激酶 C 活性的影响.中国药房.2001,12(2):78-79
    41. 李明春,雷林生,王庆彪,梁东生,许自明,杨淑琴,孙莉莎.灵芝多糖对小鼠 T 细胞胞浆游离 Ca2+浓度和胞内 pH 的影响.中国药理学通报.2001,17 (2) :167-170
    42. 李守玲,赵晶,张华坤,曲爱琴.从海带根中提取纯化褐藻硫酸多糖,山东大学学报(理学版),2004,39(1):107-109.
    43. 李兆杰,薛长湖,林洪等,低分子海带岩藻聚糖硫酸酯的清除活性氧自由基和体内抗氧化作用。水产学报,2001,1:64-68.
    44. 梁中琴,盛伟华.云芝糖肽对人外周血淋巴细胞增殖和 T 细胞亚群变化的调节作用.中草药. 1999,30: 37-39.
    45. 林洪,江洁,薛长湖,蔡跃飘. 褐藻岩藻聚糖结构和活性研究进展, 中国海洋药物, 2002,6:42-47.
    46. 林珏龙,陈耀文,谢仰民,李玫,朴仲贤,杨海伟.小鼠巨噬细胞内游离钙离子变化介导的吞噬作用.激光生物学报.2006,15(1):65-72.
    47. 林颖,黄琳娟,田庚元. 一种改良的糖醛酸含量测定方法,中草药,1999,30(11):817-819.
    48. 林志彬.灵芝多糖的免疫药理学研究及其意义. 北京医科大学学报, 1992. 24: 271-274.
    49. 刘军,吕昌龙,王庆辉,李季.紫菜多糖对免疫低功小鼠脾细胞功能的影响.中国海洋药物杂志.2006,25(3):43-45
    50. 刘影,呙于明,袁建敏,聂伟. β-1,3/1,6-葡聚糖对肉仔鸡生产性能和免疫功能的影响.中国农业大学学报.2003,8(1) : 91-94
    51. 刘志峰,宫晓黎,魏淑贞.五种海藻多糖体外抗血小板聚集作用的观察.中国海洋药物. 2001,80(2):36-38
    52. 卢新华,何军山,朱湘忠.马齿苋多糖对小鼠免疫功能影响的研究.中药药理与临床. 2006,22(3), 89-90
    53. 芦殿荣,祝彼得,芦殿香,刘啸,冯雪梅,金沈锐.香菇多糖对正常小鼠以及免疫抑制小鼠免疫功能的影响.甘肃中医学院学报.2004,21(4):20-22.
    54. 吕世静,黄槐莲,袁汉绕,何德,龙启才.白茅根多糖对人 T 淋巴细胞免疫调节效应的研究. 中国新药杂志. 2004,13: 834-835.
    55. 马玉胜.海带粉饲喂泌乳奶山羊的试验效果.天津畜牧兽医.1998,15(4):22-23
    56. 聂小华,史宝军,敖宗华,尹光耀,陶文沂,黄芪多糖的提取及其对淋巴细胞增殖的影响,安徽农业大学学报,2004 ,31 (1) :34-36.
    57. 宁康健,陈浩.黄芪多糖注射液对小鼠脾脏和耐力的影响.安徽技术师范学院学报.2002,16(4):1-3
    58. 庞战军,陈瑗,周玫.云芝多糖增强巨噬细胞 M-CSF 的表达与分泌.免疫学杂志.1999,15(4): 245-248
    59. 庞战军,邢福祺,陈欣,氧化剂对 RAW264.7 细胞诱导型一氧化氮合酶基因表达的影响,中国动脉硬化杂志,2001,9(3):205-207.
    60. 齐春会,付艳荣,张永祥,聂伟,赖春宁,徐海,乔善义,沈倍奋.六味地黄多糖 CA4-3 对小鼠 B 细胞功能的作用.中国药理学通报. 2001,17(4):469-473.
    61. 曲爱琴,王琪琳,张英慧,李守玲,王海仁,吕辉. 海带素(FGS)对高胆固醇血症小鼠血清胆固醇的调节作用. 中国海洋药物,2002,89(5):31-33
    62. 阮红,吕志良.女贞子多糖免疫调节作用研究.中国中药杂志.1999 ,24 (11) : 691-693.
    63. 施志仪,郭亚贞,王慥.海带褐藻糖胶的药理活性.上海水产大学学报.2000,9(3):268-271
    64. 宋剑秋,徐誉泰,张华坤,张可炜,徐中平,王海仁. 海带硫酸多糖对小鼠腹腔巨噬细胞的免疫调节作用,中国免疫学杂志,2000,16:70-72
    65. 宋义平,刘彩玉,周刚,刘雄伯,牛膝多糖对小鼠细胞免疫功能的影响,中药新药与临床药理, 1998,9(3): 158-159
    66. 孙伟,李静,韩志武.螺旋藻多糖对小鼠腹腔巨噬细胞游离 Ca2+浓度的影响.中国药房.2000, 11 (5) :205-206.
    67. 唐庆九,张劲松,潘迎捷,Martin Zimmerman-Kordmann,Werner Reutter,樊华.灵芝活性多糖 GLIS 对正常和荷瘤小鼠骨髓巨噬细胞的激活作用. 现代免疫学.2005,25(1):49-52.
    68. 滕霞,丛健波,田晓华等,海藻硫酸多糖抗氧化与抗肿瘤作用的试验研究,营养学报,1998, 20(1):48-51
    69. 田庚元.中药免疫调节剂的研究开发. 中国新药杂志, 1999. 11: 721-724.
    70. 田晓华,丛建波,施定基,孙存普,顾景范.褐藻硫多糖清除活性氧自由基作用及动力学的 ESR 研究.营养学报.1997.19 (1) :32-37
    71. 王柏昆.枸杞多糖对小鼠杀伤T 和NK细胞的免疫药理作用及对抗Cy的免疫抑制作用. 中国药理学毒理学杂志,1990 ;4 (1) :39-43
    72. 王洪斌,郑钦岳,钱定华等.商陆多糖对小鼠免疫功能的影响.中国药理学报, 1993 ;14 (3) : 243-246
    73. 王瑾雯, 陈媛, 周枚.云芝多糖对巨噬细胞氧化 LDL 的抑制作用与 iNOS 基因表达. 第一军医大学学报, 1999. 19: 25-28.
    74. 王丽荣,董永军,王三虎,郝永清,石敏,赵明娟,王承民,杭柏林,甘草多糖对小鼠血红蛋白和巨噬细胞的影响, 安徽农业科学,2005, 33( 9):1649-1659.
    75. 王琪琳,赵子鹏,海带硫酸多糖对小鼠腹腔巨噬细胞激活及细胞毒作用的影响,聊城大学学报(自然科学版),2004,17(2):56-57
    76. 王庭祥,王庭欣,何云.海带多糖对糖尿病大鼠血糖的影响.中华临床与卫生,2003,2(1), 10-11
    77. 王庭欣,蒋东升,马晓彤,赵文,秦淑贞,边庆荣.海带多糖对小鼠 H22 实体瘤的抑制作用.卫生毒理学杂志.2000,14 (4) :242-242 .
    78. 王庭欣,赵文,蒋东升,秦淑贞,马晓彤.海带多糖对糖尿病小鼠血糖的调节作用.营养学报. 2001,23(2):137-139
    79. 王晓波,刘殿武,丁月新,郭丽莉.马齿苋多糖对小鼠腹腔巨噬细胞免疫功能作用.中国公共卫生.2005,21(4),462-463
    80. 魏东.牛蒡多糖对小鼠免疫调节作用的研究. 安徽农业科学,2006,34(9),1892-1893
    81. 吴茜茜,吴克,蔡敬民,刘斌,严小军,秦松,潘仁瑞,海带岩藻多糖的分离与部分性质研究,食品与发酵工业,2002,27(10):39-42
    82. 吴晓渂,杨明亮,黄晓兰,阎俊,罗琼.海带多糖的抗辐射作用与脾细胞凋亡.武汉大学学报(医学版).2004,25(3):239-251
    83. 吴永沛,邱晓燕,张东,吴鹏. 海带提取岩藻聚糖的研究,食品科学,2003,24(10):78-80
    84. 奚瑾磊,彭仁秀,杨哲琼.当归多糖及其中性组分对巨噬细胞分泌 TNF-α 的影响.武汉大学学报(医学版).2002,23(1):21-23
    85. 夏寿萱,陈家佩,金璀珍等,放射生物学,北京,世界图书出版社,1996
    86. 向道斌,蒋超,李晓玉.牛漆多糖对 T 淋巴细胞和天然杀伤细胞功能的影响.中国药理学与毒理学杂志.1994,8(3):209-212
    87. 肖军军,雷林生,赵翔.灵芝多糖引起的小鼠脾细胞核 DNA、RNA 含量及核质比的变化. 中国药理学和毒理学杂志.1994,8: 196-198.
    88. 辛现良,耿美玉,李桂玲,管诗诗,李泽琳.海洋硫酸多糖 911 体外对 HIV-1 作用的研究. 中国海洋药物. 2000.19:8-11
    89. 薛长湖,陈磊,李兆杰,辛梅,林洪,于广利,岩藻聚糖硫酸酯体外抗氧化特性的研究,青岛海洋大学学报,2000,30(4):583-588
    90. 薛静波,刘希英,张鸿芬.海带多糖对小鼠腹腔巨噬细胞的激活作用.中国海洋药物.1999,18 (3):23-25
    91. 杨会琴,李敬,戴翠萍. 海带中岩藻多糖提取工艺的研究.河北师范大学学报(自然科学版),2005,29(5),409-411
    92. 杨铁虹,贾敏,梅其炳,周四元.当归多糖组分 AP-3 对不同淋巴细胞亚群的作用.中国生化药物杂志,2005,26(6):344-346
    93. 杨铁虹,贾敏,梅其炳.当归多糖对细胞免疫功能的增进作用.细胞与分子免疫学杂志,2005, 21(6): 782-784
    94. 杨铁虹,贾敏,梅其炳.当归多糖对小鼠免疫功能的调节作用.中成药,2005,27(5):563-565
    95. 杨铁虹,贾敏,梅其炳.当归多糖组分 AP-3 诱生小鼠脾细胞 IL-2 和 IFN-γ 的作用.药学学报, 2006,41(1):54-57
    96. 杨晓林,孙菊云,许汉年,刘晓慧,张翼伸,张绍伦.褐藻糖胶的免疫调节作用.中国海洋药物杂志,1995,14(3):9-13
    97. 杨兴斌,梅其炳,当归多糖的组成分析及其激活腹腔巨噬细胞的免疫机制,2004,第四军医大学博士学位论文.
    98. 杨兴斌,梅其炳,周四元,腾增辉,王海芳.当归多糖对小鼠腹腔巨噬细胞释放细胞效应分子的诱导作用.细胞与分子免疫学杂志,2004,20(6):747-749
    99. 姚金凤,吴亮,吴希哲,韩方,高向东.海洋真菌多糖YCP 对巨噬细胞免疫功能的影响. 中国药科大学学报,2004,35(6):573-575.
    100. 阴天榜,刘兴友等.家禽免疫学. 北京,中国农业科技出版社. 1998
    101. 游育红,林志彬.灵芝多糖肽对小鼠腹腔巨噬细胞一氧化氮产生的影响. 中国药理学通报, 2004,20(12):1398-1401.
    102. 余华.海带多糖最佳提取条件的研究.中国食物与营养,2006,7,32-35.
    103. 詹林盛,张新生,吴晓红,王颖丽,王之贤.海带多糖的免疫调节作用.中国生化药物杂志, 2001,22(3):116-118.
    104. 张海军,呙于明. 共轭亚油酸对肉仔鸡免疫反应的调节作用与机理, 博士学位论文,中国农业大学,2005
    105. 张金明,杨晓萍.油菜花粉多糖对小鼠机体免疫功能的影响. 公共卫生与预防医学, 2004. 15:
    45-46.
    106. 张乐萃,王金宝,孙月平,马端忠,史美丽,王中华.复方中药多糖对鸡免疫器官形态学的影响,中国兽医科技,1998, 28 (8) : 26-28
    107. 张莅峡,胡庆和,刘泓,谢锦玉.红毛五加多糖对机体免疫功能的影响.中药材, 1994,17(5),36-38
    108. 张明军,胡庆和,贾本立.枸杞多糖对小鼠腹腔巨噬细胞作用的定量细胞化学研究. 宁夏医学院学报, 1994. 4: 20-24.
    109. 张庆,雷林生,杨淑琴,孙莉莎.大枣中性多糖对小鼠腹腔巨噬细胞胞浆游离 Ca2 +浓度的影响,中药药理与临床,2001,17 (3):14-17.
    110. 张庆,雷林生,杨淑琴,孙莉莎.大枣中性多糖对小鼠腹腔巨噬细胞分泌肿瘤坏死因子及其mRNA 表达的影响,第一军医大学学报, 2001,21(8):592-59
    111. 张全斌,于鹏展,周革非,李智恩,徐祖洪.海带褐藻多糖硫酸酯的抗氧化活性研究.中草药,2003,34(9):824-826.
    112. 张惟杰主编,糖复合物生化研究技术.杭州:浙江大学出版社,1999
    113. 张新,项树林,崔晓燕,钱玉昆.枸杞多糖对小鼠淋巴细胞信号系统的效应.中国免疫学杂志,1997,13(5): 289-292
    114. 张英慧,曲爱琴,宋剑秋,王琪琳,徐中平,,王海仁. 海带多糖 FGS 对小鼠巨噬细胞细胞毒活性的影响.免疫学杂志,2002,18(5):403-405
    115. 张英慧,王海仁,尹格平,孙晓明.海带岩藻-半乳聚糖硫酸酯对体外培养的人外周血淋巴细胞的影响.中国海洋药物, 2002, 89 (5):10-12
    116. 张玉英,李金华,金杉,俞光弟,顾振纶,钱曾年.云芝糖肽可能通过白介素提高小鼠抗急性缺氧的能力.中草药,1997 ,28 (7) :418-419.
    117. 赵雪,薛长湖,王静凤,李兆杰,齐宏淘,海带岩藻聚糖硫酸酯低聚糖对小鼠肝损伤的保护作用,营养学报,2003,25(3):286-289
    118. 朱立贤,宋志刚,林海,袁磊.壳聚糖对肉仔鸡生长与免疫功能的影响研究.中国饲料, 2003,4:15-17.
    119. 朱新产,王宝维,张庭荣.海藻多糖对肉鸡生产性能的影,动物营养学报,2002,14( 4):54- 58.
    120. Adachi Y, M Okazaki, N Ohno, and T Yadomae. Enhancement of cytokine production bymacrophages stimulated with (1, 3)-beta-D-glucan, grifolan (GRN), isolated from Grifola frondosa.Biol. Pharm. Bull. 1994. 17:1554-1560.
    121. Adams D D, C F Nathan. Molecular mechanisms in tumor-cell killing by activated macrophages. Immunol.Today,1993,14:166-170
    122. Ado A D, V I Dontsov, M M Gol’dshtein. Regulation of the cell cycle of B-lymphocytes in mice by substances elevating the levels of intracellular cAMP and cGMP. Biull. Eksp. Biol. Med. 1985.99:455-458.
    123. Altman S A, T H Zastawny, L Randers, Z Lin, J A Lumpkin, J Remacle, M Dizdaroglu, G Rao. Tert-butyl hydroperoxide mediated DNA base damage in cultured mammalian cells. Mutation Research 1994.306, 35–44.
    124. Anastassiou E D, F Paliogianni, J P Balow, H Yamada, and D T Boumpas. Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2R alpha gene expression at multiple levels. J Immunol. 1992. 148(9):2845-2852.
    125. Arieli A, D Sklan,G Kissil. A note on the nutritive value of Ulva lactuca for ruminants. Anim. Prod. 1993.57:329–331.
    126. Aspinall G O, M A Monteiro. Lipopolysaccharides of Helicobacter pylori strains P466 and MO19: structures of the O antigen and core oligosaccharide regions. Biochemistry 1996;35:2498–2504.
    127. Astrila T P, O Vainio, and O Lassila.Central role of CD4+ T cells in avian immune response. Poultry Science.,1994,73:1019-1026
    128. Averill L E, R L Stein, G M Kammer. Control of human T lymphocyte interleukin-2 production by a cAMP dependent pathway. Cell Immunol. 1988,115(1): 88-99
    129. Babior B M. NADPH oxidase: an update. Blood.1999,93(5): 1464-1476
    130. Babior B M. Phagocytes and oxidative stress. Am. J. Med. 2000,109: 33-35.
    131. Babu U S, D W Gaines, H Lillehoj, R B Raybourne. Differential reactive oxygen and nitrogen production and clearance of Salmonella serovars by chichen and mouse macrophages. Developmental and Comparative Immunology. 2006,30:942-953.
    132. Baker M, S He. Elaboration of cellular DNA breaks by hydroperoxides. Free Radical Biology and Medicine.1991.11, 563–572.
    133. Ballow M, R Nelson. Immunopharmacology: immunomodulation and immunotherapy. JAMA 1997;278:2008 – 2017.
    134. Beatrice D B. Nutritional aspects of the developing use of marine macroalgae for the human food industry. Int. J. Food Sci. Nutr. 1993. 44 (Suppl. 1):23–35.
    135. Beress A, O Wassermann, S Tahhan, T Bruhn, L Beress, E N Kraiselburd. A new procedure for the isolation of anti-HIV compounds (polysaccharide and polyphenols) from the marine algae Fucus vesiculosus. Journal of Natural Products .1993. 56,478–488.
    136. Bermudez D E.Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages: the role of nitric oxide. Clin. Exp.Immunol. 1993,91:227-281
    137. Birch R E, A K Rosenthal and S HPolmar. Pharmacological modification of immuno- regulatory T lymphocytes. II. Modulation of T lymphocyte cell surface characteristics Clin. Exp. Immunol. 1982.48:231-238.
    138. Black P L, K M McKinnon, S L Wooden, M A Ussery. Antiviral activity of biological response modifiers in a murine model of AIDS. Requirement for augmentation of natural killer cell activity and synergy with oral AZT. Int J Immunopharmacol 1996;18:633–650.
    139. Blondin C, F Chaubet, A Nardella, C Sinquin, J Jozefonvicz. Relationships between chemical characteristics and anticomplementary activity of fucans. Biomaterials 1996,17: 597–603.
    140. Bojakowski K, P Abramczyk, M Bojakowska, A Zwolinska, J Przybylski, Z Gaciong. Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat. Journal of Physiology and Pharmacology. 2001.52:137–143.
    141. Boveris A, B Chance. The mitochondrial generation of hydrogen peroxide. Biochem. J. 1973, 134:707-711.
    142. Brown D M , L Hutchison, K Donaldson, S J MacKenzie, C A J Dick, V Stone. The effect of oxidative stress on macrophages and lung epithelial cells: The role of phosphodiesterases 1 and 4, Toxicology Letters, 2007,168 :1–6
    143. Buchmeier N A, C.J Lipps, M Y So, F Heffron. Recombination-deficient mutants of Salmonella Typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol. Microbiol. 1993. 7: 933–936.
    144. Burger R A, Torres A R, Warren R P, Caldwell V D, Hughes B G.Echinacea induced cytokine production by human macrophages.Int J Immunopharmacol 1997;19:371– 379.
    145. Castro R, I Zarra, J Lamas. Water-soluble seaweed extracts modulate the respiratory burst activity of turbot phagocytes.Aquaculture .2004,229: 67–78.
    146. Chadfield M, J Olsen. Determination of the oxidative burst chemiluminescent response of avian and murine-derived macrophages versus corresponding cell lines in relation to stimulation with Salmonella serotypes. Veterinary Immunology and Immunopathology. 2001,80(3-4):289-308.
    147. Chen H L, D FLi, B Y Chang, L M Gong, J G Dai, and G F Yi. Effects of Chinese herbalpolysaccharides on the immunity and growth performance of young broilers. Poultry Science. 2003,82:364-370.
    148. Chevolot L, A Foucault, F Chaubet, N Kervarec, C Sinquin, A M Fisher, et al. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr Res 1999;319:154–165.
    149. Church F C, J B Meade, R E Treanor, H C Whinna.Antitrombin activity of fucoidan: the interaction of fucoidan with heparin cofactor II, antitrombin III and trombin. J. Biol. Chem. 1989. 264, 3518–3623.
    150. Ciapetti G, D Granchi, E Verri, L Savarino, E Cenni, F Savioli, A Pizzoferrato. Fluorescent microplate assay for respiratory burst of PMNs challenged in vitro with orthopedic metals. J. Biomed. Mater. Res. 1998,41:455-458.
    151. Collies S, A M Fischer, J Tapon-Berlaudiere, et al., Anticogulant properties of a fucoidan fraction. Thromb Res. 1991,64:143-154
    152. Cooper M D, Peterson R D A, South M A and Good R A. The functions of the thymus system and the bursa system in the chicken. J.Exp.Med.,1966,123:75-81
    153. Dahlgren C, A Karlsson.Respiratory burst in human neutrophils. J. Immunol. Meth. 1999. 232: 3-14.
    154. Daniel R, O Berteau, L Chevolot, A Varenne, P Gareil, N Goasdoue. Regioselective desulfation of sulfated l-fucopyranoside by a new sulfoesterase from the marine mollusk Pecten maximus: application to the structural study of algal fucoidan (Ascophyllum nodosum). Eur J Biochem 2001;268:5617–5626.
    155. Dawczynski C, R Schubert, G Jahreis. Amino acids, fatty acids, and dietary fibre in edible seaweed products,Food Chemistry ,2007,103:891–899
    156. Denham S, and I J Rowland. Inhibition of the reactive proliferation of lymphocytes by activated macrophages: the role of nitric oxide., Clin. Exp.Immunol. 1992,87:157-162
    157. Ding A H, F Porteu, E Sanchez, C F Nathan. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science, 1990,248(4953): 370-372
    158. Dritz S S, J Shi. T L Kielian, R D Goodband, J L Nelssen, M D Tokach , M M Chengappa, J E Smith, and F Blecha. Influence of dietary beta-glucan on growth performance,nonspecific immunity, and resistance to Streptococcus suis infection in weanling pigs. Journal of Animal Science.1995,73:3341-3350.
    159. Drysdale B E, R A Yapundich, M L Shin, H S Shin. Lipopolysaccharide-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity, J. Immunol. 1987,138: 951–956.
    160. Elyakova L A, T N Zvyagintseva .A study of the laminarins of some far-eastern brown seaweeds. Carbohydr. Res. 1974,34: 241–248.
    161. Emilsson A, R Sundler.Differential activation of phosphatidylinositol deacylation and a pathwayvia diphosphoinositide in macrophages responding to zymogen and ionophore A23187. J. Biol. Chem., 1984,259: 3111–3116.
    162. Fang X, R C Chang, W H Yuen, S Y Zee. Immune modulatory effects of Prunella vulgaris L. Int J Mol Med .2005,15:491– 496.
    163. FAO(Food and Agriculture organization of the united nations),Fisheries and aquaculture department, 2006.
    164. Fecho K, K A Maslonek, L A Dykstra,et al.,Mechanisms whereby macrophage-derived nitric oxide is involved in morphine-induced suppression of splenic lymphocyte proliferation. J.Phamacol Exp.Ther. 1995,272:477-483
    165. Feldman S C, S Reynaldi, C A Stortz, et al., Antiviral properties of fucoidan fraction from Leathesia difformis . Phytomedicine. 1999,6(5): 335-340.
    166. Fleurence J. Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends in Food Science and Technology, 1999,10:25–28.
    167. Franz G. Polysaccharides in Pharmacy:Current Applications and Future Concepts. Plant Medica, 1989, 55: 493-497.
    168. Freedman B D. Mechanisms of calcium signaling and function in lymphocytes.Crit Rev Immunol 2006;26(2):97–111.
    169. Fujimura T, Y Shibuya, S Moriwaki, K Tsukahara, T Kitahara, T Sano, et al. Fucoidan is the active component of Fucus vesiculosus that promotes contraction of fibroblast-populated collagen gels. Biol Pharm Bull 2000;23:1180–1184.
    170. Gan L, Sh H Zhang, X L Yang, H B Xu,Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum,International Immunopharmacology, 2004,4:563–569
    171. Gandhi Chandrashekhar R, A K Stephen Harvey, Margot Cevallos, S Merle Olson. A23187 causes release of inositol phosphates from cultured rat Kupffer cells. European Journal of Pharmacology . 2001.415:13–18
    172. Gardner P, A Alcover, M Kuno. Triggering of T –lymphocytes via either T3-Ti or T11 surface structures opens a voltage-intsensitive plasma membrane calcium-permeable channel: requirement for interleukin-2 gene function. J.Biol.Chem. 1989,264(3):1068-1076.
    173. Golemboski K, J Whelan, S Shaw, J Kinsella, and R Dietert. Avian inflammatory macrophage function: shifts in arachidonic acid metabolism respiratory burst and cellsurface phenotype during the response to Sephadex. J.Leuk.Biol.1990,48:495-501
    174. Gorecka-Tisera A M, K W Snowdowne, A B Borle. Implications of a rise in cytosolic free calcium in the activation of RAW-264 macrophages for tumor cell killing, Cell. Immunol. 1986, 100:411–421.
    175. Grauffel V, B Kloareg, S Mabeau, P Daurand, J Jozefonvicz. New natural polysaccharide with potent antithrombotic activity: fucan from brown algae. Biomaterials 1989,10: 363–368.
    176. Groisman E A, C Parralopez, M Salcedo, C J Lipps, F Heffron. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl. Acad. Sci. U.S.A. 1992. 89:11939–11943.
    177. Guo Y, T Matdumoto, Y Kikuchi, et al., Effects of a pectic polysaccharide from a medicinal herb,the roots of Bupleurum falcatum L. on interleukin 6 production of murine B cells and B cell lines. Immunopharmacology, 2000,49 (3): 307-316
    178. Hamilton T A and D O Adams. Molecular mechanisms of signal transduction in macrophages. Immunol.Today,1987,8:151-158.
    179. Han S B, Y H Kim,C W Lee, S M Park, H Y Lee, K S Ahn, et al., Characteristic immunostimulation by angelan isolated from Angelica gigas Nakai, Immunopharmacology ,1998,40:39–48.
    180. Han S B, Y D Yoon, H J Ahn, H S Lee, C W Lee, W K Yoon, et al.Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int Immunopharmacol 2003;3:1301–1312.
    181. Hansen H R, B L Hector, J Feldmann. A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep,Animal Feed Science and Technology,2003,105:21–28
    182. Harmon B G, andGlisson J R. Disassociation of bactericidal and fungistatic activities from the oxidative burst of avian macrophages.Am.J.Vet.Res.1990,51:71-75
    183. Haroun-Bouhedja F, M Ellouali, C Sinquin, C Boisson-Vidal. Relationship between sulfate groups and biological activities of fucans. Thrombosis Research 2000, 100: 453-459.
    184. Hersey P, S Schibeci, D Cheresh.Augmentation of lymphocyte responses by monoclonal antibodies, and intracellular calcium. Cell Immunol. 1989,119:263-278.
    185. Hoshino T, T Hayashi, K Hayashi,et al., An antivirally active sulfated polysaccharide from Sargassum horneri (Turner).C.Agardh. Biological & Pharmaceutical Bulletin. 1998,21: 730-734.
    186. Hsu H Y, S L Chiu, M H Wen, K Y Chen, K F Hua. Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways, J. Biol. Chem. 2001,276: 28719-28730.
    187. Hu T J, R L Zheng. Promotion of Sophora subprosrate polysaccharide on nitric oxide and interleukin-2 production in murine T lymphocytes: implicated Ca2+ and protein kinase C.International Immunopharmacology.2004,4:109-118
    188. Hussein I, M Qureshi. Nitric oxide synthase activity and mRNA expression in chicken macrophages. Poult Sci 1997; 76:1524-1530.
    189. Igor A S, C L Faulkner, K Laura, Nelson-Overton, J A Wiley, M T Quinn. Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum ,International Immunopharmacology. 2005, 5:1783-1799
    190. Ito K, K Hori. Seaweed: chemical composition and potential uses. Food Review International, 1989,5:101–144.
    191. Itoh H, H Noda, H Amano, C Zhuaug, T Mizuno, H Ito.Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 1993;13: 2045–2052.
    192. Jeon Y J, S B Han, K S Ahn, H M Kim. Activation of NF-κB/Rel in angelan-stimulated macrophages. Immunopharmacology 1999;43:1– 9.
    193. Jeon Y J, S B Han, K S Ahn, H M Kim. Differential activation of murine macrophages by angelan and LPS. Immunopharmacology 2000;49:275–284.
    194. Johnson K L,and P A Ward. Role of oxygen metabolites in immune complex injury of lung. J. Immunol. 1981,126:2365-2369.
    195. Johnson K W, B H Davis, K A Smith. cAMP antagonizes interleukin 2 promted T-cell cycle progression at a discrete point in early G1.Proc.Natl Acsd Sci USA. 1988,85(16):6072-6076
    196. Kaeffer B, C Benard, M Lahaye,et al.Biological properties of ulvan , a new source of green seaweed sulfalted polysaccharides ,on cultured normal and cancerous colonic epithelial cells .Planta Med ,1999 ,65 (6) :527-531.
    197. Kaibuchi K, Y Takai, Y Nishizuka. Protein kinase C and calcium ion in mitogenic response of macrophage-depleted human peripheral lymphocytes. J.Biol.Chem. 1985,260(3),1366-1369.
    198. Karaca K, J M Sharma, R Nordgren. Nitric oxide production by chicken macrophages activated by acemannan, a complex carbohydrate extracted from Aloe vera. International Journal of Immunopharmacology. 1995;17(3):183–188.
    199. Keller R, M Geiges, and R .Keist. L-arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages.Cancer Res.1990,50: 1421-1425
    200. Kim K I, K S Shin, W J Jun, B S Hong, D H Shin, H Y Cho, et al. Effects of polysaccharides from rhizomes of Curcuma zedoaria on macrophage functions. Biosci Biotechnol Biochem. 2001;65:2369–2377.
    201. Klasing K C, and R K Peng. Influence of cell source,stimulating agents and incubating conditions on release of interleukin-1 from chichen macrophages. Develop.Comp.Immunol. 1987,11:385-393.
    202. Klasing K C. Avian macrophages: regulators of local and systemic immune responses. Poultry Science. 1998, 77,983-989
    203. Kloareg B, R S Quatrano. Structure of the cell walls of marine algae and ecophysiological function of the matrix polysaccharides. Oceanogr. Mar. Biol. Annu. Rev. 1988,26:259–315.
    204. Klock G, A Pfeffermann, C Ryser, P Grohn, B Kuttler, H J Hahn, et al. Biocompatibility of mannuronic acid-rich alginates. Biomaterials,1997;18:707–713.
    205. Knowles R G, M Palacios, R M J Palmer, and S Moncada. Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase. Proc.Natl.Acad.Sci.USA 1989,127:596-603.
    206. Komada H, H Nakabayashi, M Hara, K Izutsu. Early calcium signaling and calclium requirements for the IL-2 receptorexpression and IL-2 production in stimulated lymphocutes, CellularImmunology, 1996, 173:215-220.
    207. Kondo Y, A Kato, H Hojo, S Nozoe, M Takeuchi, K Ochi. Cytokine-related immunopotentiating activities of paramylon, a β-(1–3)-D-glucan from Euglena gracilis. J Pharmacobiodyn 1992;15:617– 621.
    208. Koyanagi S, N Tanigawa, H Nakagawa, et al.,Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Bichem Pharmacal. 2003. 65(2):173-179
    209. Ladanyi A, J Timar, K Lapis. Effect of lentinan on macrophage cytotoxicity against metastatic tumor cells. Cancer Immunol Immunother 1993;36:123–126.
    210. Lee J M, H Kwon, H Jeong , et al . Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum . Phytother Res ,2001 ,15(3) :245-249.
    211. Lei L S, Z H B Lin. Effect of Ganoderma Polysaccharides on T cell subpopulations and production of interleukin 2 in mixed lymphonyte response. Acta Pharmaceutica Sinica , 1992,27 (5) :331-335
    212. Lemasters J J. Mechanisms of hepatic toxicity: V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am. J. Physiol., 1999,276, G1–G6.
    213. Letari O, S Nicosia, C Chiavaroli, P Vacher, W Schlegel.Activation by bacterial lipopolysaccharide causes changes in the cytosolic free calcium concentration in single peritoneal macrophages, J. Immunol. 1991,147:980–983.
    214. Leuttig B, C Steinmuller, G E Gifford, H Wagner, M L Lohmann-Matthes. Macrophage activation by the polysaccharide arabinogalactan isolated from plant cell cultures of Echinacea purpurea. J Natl Cancer Inst 1989;81(9):669 –675
    215. Li S P, K J Zhao, Z N Ji, Z H Song, T T Dong, C K Lo, et al. A polysaccharide isolated from Cordyceps sinensis, a traditionalChinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sciences, 2003,73(19), 2503–2513.
    216. Lichtman A H, G B Segel, M A Lichtman. The role of calcium in lymphocyte proliferation(An interpretive review). Blood. 1983,61(3):413-422
    217. Liew F Y, S Millott,C Pakinson, R M J Palmer,and S Moncada. Macrophage killing of Leishmania parasite in vivo mediated by nitric oxide from L-arginine. J.Immunol. 1990, 144: 4794-4797
    218. Lim T S, K Na, E M Choi, J Y Chung, J K Hwang. Immunomodulating activities of polysaccharides isolated from Panax ginseng. J Med Food 2004;7:1–6.
    219. Lin A, C Chang, C McCormick. Molecular cloning and expression of an avian macrophage nitric oxide synthase cDNA and the analysis of the genomic 5-flanking region.J Biol Chem 1996;271(20):11911–11919.
    220. Link D S, M A Chan, and E W Gelfand. Increase cylic abenosine monophosphate levels block progress but not initiation of human T cell proliferation. J. Immunol. 1990. 145:449.
    221. Little R, M R White, K L Hartshorn. Interferon-alpha enhances neutrophil respiratory burst responses to stimulation with influenza A virus and FMLP. J. Infect. Dis. 1994.170:802-807.
    222. Liu M, J Li, F Kong, J Lin, Y Gao. Induction of immunomodulating cytokines by a new polysaccharide-peptide complex from culture mycelia of Lentinus edodes. Immunopharmacology. 1998;40(3):187–198.
    223. Liu F, V E C Ooi, S T Chang. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences, 1997, 60: 763–771.
    224. Lunden T, Lilius Esa-Matti, G Bylund. Respiratory burst activity of rainbow trout (Oncorhynchus mykiss) phagocytes is modulated by antimicrobial drugs,Aquaculture,2002, 207: 203–212
    225. Marais M F, J P Joseleau. A fucoidan fraction from Ascophyllum nodosum. Carbohydrate Research .2001. 336:155–159.
    226. Mastroeni P, A Vazquez-Torres, F C Fang, Y Xu, S Khan, C E Hormaeche, G Dougan. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. Part II: effects on microbial proliferation and host survival in vivo. J. Exp. Med. 2000,192: 237–248.
    227. McBride T J, B D Preston and L A Loeb. Mutogenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry.1991,30:207-213.
    228. McClure M O, J P Moore, D F Blanc, et al., Investigation into the mechanism by which sulfated polysaccharides inhibit HIV infection HIV infection in vitro. AIDS Res Human Retroviruses. 1991,7:3-16
    229. McDermid K J, B Stuercke. Nutritional composition of edible Hawaiian seaweeds. Journal of Applied Phycology, 2003,15: 513–524.
    230. Mills C D. Molecular basis of suppressor macrophages arginine metabolism via the nitric oxide synthase pathway. J.Immunol. 1991,146:2719-2723
    231. Moncada S, Rees D D, Schulz R, and R M J Palmer. Development and mechanism of a specific supersensitivity to nitrovasodialators after inhibition of vascular nitric oxide synthesis in vivo. Pro.Natl.Acad.Sci.USA 1991,88:2166-2170
    232. Moretao M P, D F Buchi, P A J Gorin, M Iacomini, M B M Oliveira. Effect of an acidic heteropolysaccharide (ARAGAL) from the gum of Anadenanthera colubrine (Angico branco) on peritoneal macrophage functions. Immunol Lett 2003, 89:175–185.
    233. Mork A C, X Sun. Regulation of (1-3)-beta-glucan-stimulated Ca2+influx by protein kinase C in NR8383 alveolar macrophages. J Cell Biochem, 2000,78(l):131-140
    234. Moscat J, F Moreno, C Herrero, C Lopez, P Garcia-Barreno. Endothelial cell growth factor and ionophore A23187 stimulation of production of inositol phosphates in porcine aorta endothelial cells. Proc. Natl. Acad. Sci. U. S. A., 1988,85: 659–663.
    235. Mujahid A. Y Yoshiki, Y Akiba.et al. Superoxide Radical Production in Chicken Skeletal Muscle Induced by Acute Heat stress. Poultry Science, 2005, 84:307-314.
    236. Murray H W, C W Juangbhanich, C F Nathan, and Z A Cohn. Macrophage oxygen- dependent antimicrobial activity.Ⅱ .The role of oxygen intermediates. J.Exp.Med.1979,150:950-964.
    237. Nardella A, F Chaubet, C B Vidal, C Blondin, P Durand, J Jozefonvicz. Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydr Res. 1996,289:201-208.
    238. Neumann N F, J L Stafford, D Barreda, A J Ainsworth, M Belosevic. Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev. Comp. Immunol. 2001,25: 807– 825
    239. Nishino T, C Nishioka, H Ura, T Nagumo. Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr Res 1994, 255:213-224.
    240. Nishino T, Y Aizu, T Nagumo, et al.,The influence of sulfate content and molecular weight of a fucan sufate from brown seaweed Ecklonia kurome on its antithrombin activity. Throm Res.1991,64:723-730.
    241. Nishino T, G Yokoyoma, K Dobashi, et al,Isolation, Purification,and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohydr. Res. 1989,186:119-129.
    242. Norziah M H, C Y Ching. Nutritional composition of edible seaweed Gracilria changgi. Food Chem. 2000,68: 69–76.
    243. Nose M, K Terawaki, K Oguri, Y Ogihara, K Yoshimatsu, and K Shimomura. Activation of macrophages by crude polysaccharide fractions obtained from shoots of Glycyrrhiza glabra and hairy roots of Glycyrrhiza uralensis in vitro. Biol. Pharm. Bull. 1998, 21: 1110-1112.
    244. Okada M, Y Minamishima. The efficacy of biological response modifiers against murine cytomegalovirus infection in normal and immunodeficient mice. Microbiol Immunol 1987;31: 45–57.
    245. Okai Y, K H Okai, S Ishizaka, K Ohtani, I M Yuasa and U Yamashita. Possible Immunodulating Activities in an Extract of Edible Brown Alga,Hijikia fusiforme(Hijiki). J.Sci.Food.Agri. 1998,76:56-62.
    246. Okai Y, K H Okai, S Ishizaka, U Yamashita. Enhancing effect of polysaccharides from an edible brown alga,Hijikia fusiforme(Hijiki) on the release of tumor necrosis factors αfrom macrophages of endotoxin-nonresponder C3H/HeJ mice. Nutrition and Cancer,1997,27,74-79
    247. Ortega-Calvo J J, C Mazuelos, B Hermos?n, C Saiz-Jimenez. Chemical composition of Spirulina and eucaryotic algae food products marketed in Spain. Journal of Applied Phycology, 1993,5: 425-435.
    248. Park Y C, C D Jun, H S Kang, H D Kim, H T Chung. Role of intercelluer calcium as a priming signal for the induction of nitric oxide systhesis in murine peritoneal macrophages. Immunology.1996,87(2),296-302.
    249. Parke D V. Nutritional antioxidants and disease prevention: Mechanisms of Action. In: Tapan K.et al.(eds). Antioxidants in human health and disease. New York, CAB International. 1999, 1-14.
    250. Pasmans F, P D Herd, A V Nerom, et al. Induction of the respiratory burst in turtle peritoneal macrophages by Salmonella muenchen. Dev Comp Immunol, 2001,25 (2):159-168.
    251. Patankar M S, S Oehninger, T Barnett, et al., A revised structure for fucoidan may explain some of its biological activities.J. Biol.Chem. 1993, 268(29):21770-21776.
    252. Patchen W L, M M D’Alesandro, I Brook. Glucan mechanisms involved in its radioprotective effect. J. Leukocyte Biol. 1987,42: 95-105.
    253. Percival E. The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br.Phycol. J. 1979,14: 103-117.
    254. Pereira M S, B Mulloy,P A Mourao. Structure and anticoagulant activity of sulfated fucans.Comparison between the regular,repetitive,and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J.Biol.Chem. 1999, 274(12): 7656-7667.
    255. Peterhans E. Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J. Nutr. 1997. 127: 962S
    256. Pick E, D Mizel.Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods. 1981,46: 211.
    257. Ponce N M, C A Pujol, E B Damonte, M L Flores, C A Stortz. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res. 2003, 338:153–65.
    258. Poutsiaka D D,M Mengozzi, E Vannier, B Sinha, and C A Dinarello. Cross-linking of the beta- glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin-1 production. Blood 1993,82:3695-3700.
    259. Qureshi M A, L D Bacon, R R Dietert. Genetic variation in the recruitment and activation of chicken peritoneal macrophages. Proc. Soc.Exp.Bio.Med. 1986,141:560-568
    260. Qureshi M A, and Miller. Signal requirements for the acquisition of tumoricidal competence by chicken peritoneal macrophages. Poultry Science.1991,70:530-538
    261. Qureshi M A, Role of macrophages in avian health and disease. Poultry Science. 1998, 77:978-982
    262. Qureshi M A, J A Marsh, R R Dietert, Y J Sung, C Nicholas-Bolnet, and J N Petitte. Profiles of chicken macrophage effector functions.Poultry Sci.1994, 73:1027-1034.
    263. Ramamoorthy L, M C Kemp, I R Tizard. Acemannan, a β-(1,4)-acetylated mannan, induces nitric oxide production in macrophage cell line RAW 264.7. Mol Pharmacol ,1996, 50: 878-884.
    264. Roesler J, A Emmendorffer, C Steinmuller, B Luettig, H Wagner, M L Lohmann-Matthes. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of the phagocyte system. Int J Immunopharmacol 1991,13:931-941.
    265. Rongrungruang Y, S M Levitz. Interactions of Penicillium marneffei with human leukocytes in vitro. Infect. Immun. 1999,67:4732-4736
    266. Ruiz-Bravo A, M J Valera, E Moreno, V Guerra, A R Cormenzana. Biological response modifier activity of an exopolysaccharide from Paenibacillus jamilae CP-7. Clin Diagn Lab Immunol .2001, 8:706-710.
    267. Saito K, M Nishijima, N Ohno. Structure and antitumor activity of the less-branched derivatives of an alkali-soluble glucan isolated from Omphalia lapidescens. Chem. Pharm. Bull. 1992,40: 261-263.
    268. Sakurai T,T Kaise, T Yadomae, and C Matsubara. Different role of serum components and cytokines on alveolar macrophage activation by soluble fungal (1,3)-beta-D-glucan. Eur. J.Pharmacol. 1997,334:255-263
    269. Sang-Bae Han, C W Lee, M R Kang, Y D Yoon, J S Kang,K H Lee, W K Yoon, K Lee, S K Park, H M Kim. Pectic polysaccharide isolated from Angelica gigas Nakai inhibits melanoma cell metastasis and growth by directly preventing cell adhesion and activating host immune functions. Cancer Letters, 2006,243:264–273.
    270. Schepetkin I A, C L Faulkner, L K N Overton, J A Wiley, M T Quinn. Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. International Immunopharmacol. 2005, 5:1783–1799.
    271. Schoenher W D, D S Pollmann, and J A Coalson. Titrantion of MacroGard-S on growth performance of nursery pigs. Journal of Animal Science. 1994,72(Suppl.2):57.(Abstr)
    272. Sen C K, S Roy, L Packer. Involvement of intracellular Ca2+ in oxidant-induced NF-KB activation.FEBS letter. 1996, 385:58-62.
    273. Shakhman O, M Herkert, C Rose, A Humeny, C M Becker.Induction by β-bungarotoxin of apoptosis in cultured hippocampal neurons is mediated by Ca2+-dependent formation of reactive oxygen species. J. Neurochem. 2003,87:598-608.
    274. Shao B M, W Xu, H Dai, P Tu, Z Li, X M Gao. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun .2004, 320:1103–1111.
    275. Sheu B C,S M Hsu, R H Lin, P L Torng, and S C Huang. Reversed CD4/CD8 ratios of tumor-infiltrating lymphocytes are correlated with the progression of human cervical carcinoma. Cancer, 1999, 86(8):1537-1543.
    276. Shibata H, I K Takagi, M Nagaoka, S Hashimoto, R Aiyama, M Iha, et al. Properties of fucoidan from Cladosiphon okamuranus tokida in gastric mucosal protection. Biofactors 2000,11:235-245
    277. Skamene E, and P Gros. Role of macrophages in resistance against infectious diseases.Clinics Immunol.Allergy.1983,3:539-560
    278. Son C G, J W Shin, J H Cho, C K Cho,C H Yun, W Chung, S H Han.Macrophage activation and nitric oxide production by soluble components of Hericium erinaceum,International Immuno- pharmacology. 2006,6:1363–1369
    279. Stefano G B, P Cadet, C Poreton, Y Goumon, V Pervot, J P Dessaint, J C Beauvillain, A S Roumier,I Walters, M Salzet.Estradiol-stimulated nitric oxide release in human granulocytes is dependent on intracellular calcium transients: evidence of a cell surface estrogen receptor. Blood .2000,95 (12): 3951-3958.
    280. Steinmuller C, J Roesler, E Grottrup, G Franke, H Wagner, M L Lohmann-Matthes. Polysaccharides isolated from plant cell cultures of Echinacea purpurea enhance the resistance of immunosuppressed mice against systemic infections with Candida albicans and Listeria monocytogenes. Int J Immunopharmacol .1993,15: 605–614.
    281. Stimpel M, A Proksch, H Wagner, M L Lohmann-Matthes. Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea. Infect Immun .1984, 46:845–849.
    282. Sun X B, Y Matsumoto, H Yamada.et al. Purification of immune compexes enhancing polysaccharides from the leaves of Panax ginseng and its biological activities. Phytomedicin. 1994,1(3),225-228
    283. Sun Y X, S S Wang , T B Li, X Li, L L Jiao, L P Zhang. Purification, structure and immuno- biological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng ,Bioresource Technology,2007(in press)
    284. Sun-A Ima, K Kim, C K Lee. Immunomodulatory activity of polysaccharides isolated from Salicornia herbacea,International Immunopharmacology 2006,6:1451-1458
    285. Sun-A Ima, S T Oha, S Songa, M R Kimb, D S Kimb, S S Woob, T H Job, Y In Parkc, C K Lee. Identification of optimal molecular size of modified Aloe polysaccharides with maximum immunomodulatory activity,International Immunopharmacology ,2005, 5:271-279
    286. Sung Y J,J H Hotchkiss,R E Austic,and R R Dietert. L-arginine-dependent production of a reactive nitrogen intermediate by macrophages of a uricotelic species. J.Leuk.Biol.,1991,50:49-56
    287. Taffe B G,N Takahashi, T W Kensler, R P Mason. Generation of free radicals from organic hydroperoxide tumor promotors in isolated mouse keratinocytes, J. Biol. Chem. 1987,262: 12143–12149.
    288. Takahashi A , P Camacho ,et al. Measurement of Intracellular Calcium . Physiol. Rev. 1999,79 : 1089-1125.
    289. Takahashi K, K Onodera, Y Akiba. Effect of dietary xylitol on growth and inflammatory responses in immune stimulated chichens. British Poultry Science. 1999,40(4):552-554
    290. Takahashi K,T Mashiko, and Y Akiba. Effect of dietary concentration of xylitol on growth in male broiler chicks during immunological stress. Poultry Science. 2000.79:743-747.
    291. Takenaka S, S Sugiyama, S Ebara, E Miyamoto, K Abe, Y Tamura,et al. Feeding dried purple laver (Nori) to vitamin B12-deficient rats significantly improves vitamin B12-status. British Journal of Nutrition, 2001, 85:699-703.
    292. Tako M, S Kiyuna, S Uechi, F Hongo. Isolation and characterization of alginic acid from commercially cultured Nemacystus decipiens (Itomozuku). Biosci Biotechnol Biochem 2001;65:654-657.
    293. Usui T, K Asari, T Mizuno.Isolation of highly purified“fucoidan”from Eisenia bicyclis and its anticoagulant and antitumor activities. Agric.Biol.Chem.1980, 44(8): 1965-1966.
    294. Vazquez-Torres A, J J Carson, P Mastroeni, H Ischiropoulos, F C Fang. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. Part I: effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 2000,192: 227-236.
    295. Ventura M R, J I R Castanon.The nutritive value of seaweed (Ulva lactuca) for goats. Small Rumin. Res. 1998,29:325-327.
    296. Ventura M R, J R Castanon, J M McNab.Nutritional value of seaweed (Ulva rigida) for poultry. Anim. Feed Sci. Technol. 1994,48: 87-92.
    297. Vetvicka V, J C Yvin. Effects of marine β-1,3 glucan on immune reactions. International Immunopharmacology . 2004,4 :721-730
    298. Voie O A, P Wiik, F Fonnum. Ortho-substituted polychlorinated biphenyls activate respiratory burst measured as luminol-amplified chemoluminescence in human granulocytes. Toxicol. Appl. Pharmacol. 1998,150: 369-374.
    299. Warner N L. The immunological role of different lymphoid organs in the chichen. Aust. J. Exp. Biol.Med.Sci. 1965,43:439-450
    300. Wasser S P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol .2002,60:258-274.
    301. Watanabe N, J Suzuki, Y Kobayashi. Role of calcium in tumor necrosis factor-alpha production by activated macrophages, J. Biochem. 1996,120:1190-1195.
    302. Watanabe F, H Katsura, S Takenaka, T Fujita, K Abe, Y Tamura. et al. Pseudovitamin B12 is the predominant cobamide of an algae health food, Spirulina tablets. Journal of Agriculture and Food Chemistry. 1999, 47:4736-4741.
    303. Watson K, N J Gooderham, D S Davies. et al., Interaction of the transactivating protein HIV-1 with sulfated polysaccharides. Biochem Parmacol. 1999,57:775-783
    304. Wedner H J, R Dankner, C W Parker. Cyclic GMP and lectin-induced lymphocyte activation J.Immunol. 1975,115(6):1682-1687.
    305. Weining K, U Schulttz, U Munster, B Kasper, P Staeheli. Biological properties of recombinant chicken interferon-g. Eur J Immunol 1996;26:2440–2447.
    306. Witvrouw M, E D Clercq . Sulfated polysaccharides extracted from sea algae as potential antiviral drugs.Gen Pharmacol,1997,29(4):497-511
    307. Wong K H, P C K .Cheung. Nutritional evaluation of some subtropical red and green seaweeds. Part 1.Proximate composition, amino acids profiles and some physico-chemical properties. Food Chem. 2000,71: 475-482.
    308. Xue C, Y Fang, H Lin, et al.Chemical characters and antioxidative properties of sulfatedpolysaccharides from Laminaria japonica . J Appl Phycol ,2001,13 (1) :67-70.
    309. Yamada H. Pectic polysaccharides from Chinese herbs: Structure and biological activity. Carbohydrate Polymers, 1994,25,269–276.
    310. Yoshizawa Y, A Ametani, J Tsunehiro, K Nomura, M Itoh, F Fukui, et al. Macrophage stimulation activity of the polysaccharide fraction from a marine alga (Porphyra yezoensis): structure–function relationships and improved solubility. Bioscience Biotechnology and Biochemistry. 1995,59:1933-1937.
    311. Yoshizawa Y, A Enomoto, H Todoh, A Amentani, S Kaminogawa. Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyra yezoensis). Bioscience Biotechnology and Biochemistry .1993, 57:1862–1866.
    312. Yoshizawa Y, J Tsunehiro, K Nomura, M Itoh, F Fukui, A Ametani, et al. In vivo macrophage-stimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa). Bioscience Biotechnology and Biochemistry.1996, 60:1667–1671.
    313. Young S H, J Ye, D G Frazer. Molecular mechanism of tumor necrosis factor-alpha production in 1 right-arrow 3-beta- glucan(zymosan) activated macrophages. J.Bio.Chem.2001,276(23): 20781 -20787
    314. Zeller S G, G R Gray. Analysis of Macrocystis pyrifera and Pseudomonas aeruginosa alginic acids by the reductive-cleavage method. Carbohydr Res 1992, 226:313-326.
    315. Zhang L, I R Tizard. Activation of a mouse macrophage cell line by acemannan: the major carbohydrate fraction from Aloe vera gel. Immunopharmacology ,1996,35:119-128
    316. Zhao C, M Li, Y F Luo, W K Wu. Isolation and structural characterization of an immuno- stimulating polysaccharide from fuzi, Aconitum carmichaeli. Carbohydrate Research ,2006,341:485-491
    317. Zhuang C, H Itoh, T Mizuno, H Ito. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii). Biosci Biotechnol Biochem 1995, 59:563–567.
    318. Zuckerman S H, G F Evans,Y M Snyder, and W D Roeder. Endotoxin-macrophage interaction posttranscriptional regulation of tumor necrosis factor expression. J.Immunol.1989,143:1223-1227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700