辣椒轻斑驳病毒的检测及其与烟草花叶病毒症状差异相关因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了防止北京近郊甜椒上新出现病害-辣椒轻斑驳病毒(PMMoV)病害的蔓延和危害,本研究开发了一种地高辛标记的cDNA探针利用核酸斑点杂交技术对PMMoV进行检测研究。通过对探针特异性和灵敏度的测试,证明了该探针能够特异检测PMMoV,稀释限点对应的植物组织材料为0.8μg,与RT-PCR及DAS-ELISA两种方法比较,比DAS-ELISA方法灵敏(39.06μg),没有RT-PCR灵敏(0.008μg)。但是综合考虑地高辛标记的cDNA探针是大量田间样品常规检测较好的方法。采取北京郊区和河北保定地区的类似PMMoV症状的93种田间样品和18种商品种子样品进行了检测,将检测结果用更加灵敏的RT-PCR方法进行了验证,两种方法结果基本一致,表明了地高辛标记的cDNA探针在实际应用中检测结果可靠。通过对田间样品的检测,初步揭示了2006年北京附近地区PMMoV病害发生情况,对病害的防治有重要的指导意义。地高辛标记探针的开发为今后PMMoV田间样品的常规检测提供了方便,快捷,灵敏,安全的检测方法,为PMMoV病害的防治奠定了基础。
     利用分步构建策略构建了含有PMMoV-CN全长基因组序列的侵染性cDNA克隆pMQC。构建过程中在PMMoV-CN基因组序列的5’端引入了T7启动子和提高转录效率的两个G,3’端引入单一酶切位点SmaI,采用pMD18-T simple载体作为基础载体,将PMMoV-CN全基因组序列分为三段逐步构建到pMD18-T simple载体上,得到含有病毒全长基因组序列的重组载体之后,利用SmaI酶切位点将载体线性化,以线性化载体为模板进行体外转录。将体外转录产物接种矮牵牛,苋色藜和昆诺藜,通过症状观察以及分子生物学方法(包括RT-PCR,Western blot和地高辛标记的cDNA探针)验证了pMQC的侵染性。成功构建PMMoV-CN的侵染性cDNA克隆,为今后PMMoV基因组功能及致病机制的研究奠定了基础。
     将侵染性克隆pMQC的CP置换为TMV-U1和ToMV-S1的CP得到了两个杂合侵染性克隆pM-T-CP和pM-To-CP,将两个杂合侵染性克隆体外转录产物接种矮牵牛和苋色藜观察症状,以TMV-U1(ToMV-S1)和PMMoV-CN为参照,结果采用分子生物学方法(RT-PCR,核酸斑点杂交和Western blot)进行验证。最终结果为:在矮牵牛上,pM-To-CP没有侵染性;PMMoV-CN CP置换为TMV CP之后使PMMoV-CN由局部侵染变为系统侵染,说明TMV CP可能在pM-T-CP系统侵染矮牵牛中起主要作用,CP可能作为主要因子协助该病毒在矮牵牛中进行长距离运动,TMV-U1和PMMoV-CN CP之间的差异是导致两种病毒在矮牵牛上症状差异的决定因子。在苋色藜上,pM-To-CP依然没有侵染性;PMMoV-CN CP置换为TMV CP并没有改变PMMoV-CN在苋色藜上的斑驳症状,说明PMMoV-CN CP可能在PMMoV-CN侵染苋色藜产生斑驳症状过程中没有起到重要作用,或者PMMoV-CN CP在苋色藜上产生斑驳症状的作用被TMV-U1 CP弥补了,而且说明了TMV-U1在苋色藜上产生局部枯斑症状所需要的TMV中的无毒基因可能不是它的CP。TMV-U1 CP与PMMoV-CN CP之间的差异不是两种病毒在苋色藜上症状差异的决定因子。
     为了进一步确定PMMoV-CN CP序列中的哪一部分序列与TMV-U1序列的差异导致它们在矮牵牛上症状为局部侵染和系统侵染的差异,本研究构建了两个杂合侵染性克隆,pM-T-CP1、pM-T-CP2,它们分别对应着PMMoV-CN CP的1-117、1-237位核苷酸序列置换为TMV-U1 CP对应序列。体外转录之后接种矮牵牛植株,观察症状及通过分子生物学方法验证,证明了两种杂合病毒对矮牵牛为局部侵染。说明PMMoV-CN CP的1-117和1-237位的核苷酸与TMV-U1对应序列的差异并没有导致两种病毒在矮牵牛上的症状差异。为了进一步确定TMV-U1CP序列中哪一部分序列在症状改变中起主要作用,今后的研究将对PMMoV CP其它部分的序列进行置换以及采用定点突变等方法来揭示两种病毒症状差异的原因。
Pepper mild mottle virus is a new emerging Tobamovirus disease on capsicum plant in the vicinity of Beijing in recent years. In order to control the damage and prevent the disease spreading。A digoxigenin-labelled cDNA probe PM, complementary to the regions between coat protein (CP) gene and 3’untranslated sequence of PMMoV genome, has been developed to detect the virus by dot-blot hybridization method. The specificity and sensitivity has been tested. The detection limit of the method was equivalent to 0.8μg fresh tissues infected by PMMoV, compared with DAS-ELISA and RT-PCR which was 39.06μg and 0.008μg detection limit respectively. The sensitivity of the dot-blot hybridization was higher than that of DAS-ELISA and lower than that of RT-PCR. 111 pepper samples including 93 field samples collected from pepper fields of Beijing and Baoding during 2006 and 18 commercial seed samples had been evaluated by dot-blot hybridization using this probe. The result has been identified by RT-PCR. The high sensitivity and reliability of the molecular hybridization assay described here, would provide an important alternative method for the detection of PMMoV in large-scale.
     In order to study the virus deeply, the infectious cDNA clone of PMMoV-CN, pMQC has been constructed. The completed genome sequence of the virus was constructed into a suitable vector by three steps. T7 promoter has been introduced into the 5’end point and two G also introduced in order to increase the efficiency of its in vitro transcription. The restricted enzyme site SmaI has been introduced into the 3’end point of the genome sequence in order to linearize the vector in the latter experiment. The pMD18-T simple vector was applied in constructing infectious cDNA clone, which has no any enzyme site, so we can introduce restriction enzyme site in primer by PCR according to the enzyme sites in the genome sequence of PMMoV-CN. The infectious cDNA clone was linearized and in vitro transcribed. The in vitro transcription product was inoculated onto three host plants, Chenopodium Amaranticolor, Chenopodium quinoa and Petunia hybrida. The infectivity of the infectious cDNA clone had been tested by biology method including RT-PCR, western blot and digoxigenin-labelled probe. The infectious cDNA clone of PMMoV-CN will provide an effective method to study the pathogenicity mechanism and gene function of the virus.
     In order to make sure the pathogenicity related elements Tobamovirus, two recombinant infectious cDNA clones have been constructed, pM-T-CP and pM-To-CP. The CP nucleotide sequence of pMQC was exchanged by that of TMV and ToMV respectively. The pathogenicity of pM-T-CP and pM-To-CP were tested on Petunia hybrida and Chenopodium amaranticolor. The result showed that pM-To-CP had no pathogenicity and pM-T-CP presented systematically symptom on Petunia hybrida, while PMMoV infected Petunia hybrida locally, so we suggested that TMV CP may help the virus move in long-distance in Petunia hybrida plant. The two recombinant infectious cDNA clones were also inoculated onto Chenopodium amaranticolor. pM-To-CP still had no pathogenicity and pM-T-CP infected Chenopodium amaranticolor showing local mottle symptom, which was as same as PMMoV-CN. So we suggested that the CP of PMMoV-CN may not play an important role in the symptom conformation of PMMoV-CN infecting Chenopodium amaranticolor and TMV CP may not be the avr gene in TMV infecting Chenopodium amaranticolor to show local necrotic lesion.
     In order to determine which sequence difference between TMV-U1 CP and PMMoV-CN CP plays an important role in causing their different symptom on Petunia hybrida, two recombinant infectious cDNA clones, including pM-T-CP1, pM-T-CP2 had been constructed. The two recombinant vectors including TMV CP sequence corresponding to 1-117,1-237 site in the PMMoV genome sequence. The pathogenicity of the two recombinant vectors had been tested by biology method. The result showed that both of them showed locally symptom on Petunia hybrida, which meaned that the difference of 1-117 and 1-237 sequence of CP were not related to the symptom difference between PMMoV-CN and TMV-U1 on Petunia hybrida. So the other sequence of CP will be exchanged to study the related elements causing different symptom between PMMoV and TMV on Petunia hybrida in the future.
引文
1. 曹云鹤.甜菜黑色焦枯病毒全长侵染性 cDNA 克隆的构建以及外壳蛋白基因与致病性关系的初步研究:[博士学位论文].北京:中国农业大学,2002.
    2. 曹云鹤,原雪峰,王晓星等.甜菜黑色焦枯病毒外壳蛋白与病毒致病性的关系.生物化学与生物物理进展.2006,2:127~134.
    3. 陈京,胡伟贞,于嘉林,等.应用翻转录聚合酶链式反应方法快速检测番茄环斑病毒.病毒学报,1996,12(2):190~192.
    4. 丁犁平,赵华整,表彩尧,等.南京郊区青椒病毒病原类群的调查与鉴定.江苏农业科学,1986,12:22~23.
    5. 杜国英,王锡锋,周广和.地高辛标记的 cDNA 探针检测烟草花叶病毒、黄瓜花叶病毒及马铃薯 Y 病毒.植物病理学报,2004,34:75~79.
    6. 何显志,高乔婉.广州郊区辣椒花叶病病原病毒鉴定.华南农学院学报,1982,3(3):73~84.
    7. 黄家风,向本春,刘升学,等.北疆地区辣椒上烟草花叶病毒(TMV)各分离物的差异性研究[J].石河子大学学报,1998,2(2):111~116.
    8. 黄粤,马荣群,岳文辉.应用 RT~PCR 方法检测辣椒轻微斑驳病毒.山东农业科学,2004,5:56~57.
    9. 孔宝华,陈如海.RT~PCR 检测李坏死环斑病毒的研究.植物检疫.2000,5:257~260.
    10. 雷蕾,林清,吕中华.重庆市辣椒病毒病毒原种类鉴定及株系确认.西南园艺,2001, 2:28~29.
    11. 李云华,梁训生.天津郊区青椒病毒病种群与 CMV 株系分化研究初报.华北农学报,1989,4:109~114.
    12. 饶雪琴,蓝翠钰.广州市郊及其邻近地区辣椒 CMV 和 TMV 的鉴定 [J].江西农业大学学报,2003,25(4):558~561.
    13. 孙晓勇,高俊杰.我国甜椒的主要品种分布地区. 蔬菜,1999,9:39.
    14. 田茹燕,冯兰香,蔡少华,等.北京地区甜(辣)椒病毒病原种类和辣椒上 CMV 株系鉴定[J].植物保护,1989,4:9~11.
    15. 夏惠娟,李志勇,郭京泽和李兴红.保定地区一种新辣椒病毒病的鉴定.河北农大学报.2006,29(6):65~67.
    16. 阎素珍.辣椒上 CMV 株系鉴别寄主的筛选与应用.中国病毒学,1992,7(3):317~327.
    17. 杨永林,隋淑媛.吉林省主要地区甜(辣)椒病毒原鉴定简报[J].吉林农业科学,1981,3:67~75.
    18. 杨永林,阎淑珍,田茹燕,等.中国六省、市辣(甜)椒病毒种群及其分布的研究.中国病毒学,1995,10(4):332~339.
    19. 杨永林,阎素珍. 十年来吉林省中部地区辣椒病原病毒种群监测.吉林农业科学,1993,(1):27~29.
    20. 于翠,胡东维,董家红,等.烟草花叶病毒和番茄花叶病毒在 N 基因烟草上的症状差异是由运动蛋白基因决定的.中国科学 C 辑 生命科学 2004,34(3):210~215.
    21. 周新民,王鸣.关中地区甜(辣)椒病毒原种群的鉴定[J].陕西农业科学 1989,3:32~ 34.
    22. 周钟信,李明,李晓莹.天津地区辣椒病毒种群鉴定与分析.天津农学院学报,1999, 6(2):1~5.
    23. 朱建裕.实时荧光 RT-PCR 和杂交诱捕 RT~PCR~ELISA 检测李坏死环斑病毒的研究.湖南农大硕士论文.
    24. 朱水芳.PCR 和 Dig~cRNA 探针检测番茄环斑病毒.中国进出境动植物检疫,1995,4:29~31.
    25. Aguilar I., Sanchez F., Martin Martin A., Martinez-Herrera D., Ponz F. Nucleotide sequence of Chinese rape mosaic virus (oilseed rape mosaic virus), a crucifer tobamovirus infectious on Arabidopsis thaliana. Plant Mol Biol 1996, 30: 191~197.
    26. Ahlquist P., Janda M. cDNA cloning and in vitro transcription of the complete brome mosaic virus genome. Mol Cell Biol 1984, 4 (12): 2876~–2882.
    27. Alonso E., Garcia-Luque I., Dela C. A., et al. Nucleotide sequence of the genomic RNA of pepper mild mottle virus a resistance-breaking tobamovirus in pepper. J Gen Virol 1991 , 72 : 2875~2884.
    28. Anderson C. W., Corbertt M. K. Virus diseases of pepper in central Florida survey results [J]. Plant Disease Reporter 1957, 41 (3): 143~147.
    29. Arce-Johnson, P., Reimann-Philipp, U., Padgett, H.S., Rivera-Bustamente, R. and Beachy, R. N. Requirement of the movement protein for long distance spread of tobacco mosaic virus in grafted plants. Mol Plant-Microbe Interact 1997, 10: 691~699.
    30. Asurmendi, Berg R.H., Koo J. C., and Beachy R.N. Coat protein regulates formation of replication complexes during tobacco mosaic virus infection. PNAS 2004, 101:1415~1420.
    31. Atabekov J.G. and Taliansky M.E. Expression of a plant virus-coded transport function by different viral genomes. Adv Virus Res 1990, 38: 201~248.
    32. Atkins D., Hull R., Wells B., Roberts K., Moore P., Beachy R.N.The tobacco mosaic virus 30K movement Protein in transgenic tobacco Plants is localized to Plasmodesmata. J Gen Virol 1991, 72: 209~211.
    33. Banerjee N., wang J.Y., Zaitlin M. A single nucleotide change in the coat protein gene of tobacco mosaic virus is involved in the induction of severe chlorosis.Virology 1995, 207 (l):234~239.
    34. Bao, Y., Carter, S. A. and Nelson, R. S. The 126- and 183-kilodalton proteins of tobacco mosaic virus, and not their common nucleotide sequence, control mosaic symptom formation in tobacco. J Virol 1996, 70:6378~6383.
    35. Bendahmane M., Szecsi J., Chen I., Berg R.H. and Beachy R.N. Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement. Proc NatlAcad Sci USA 2006, 99:3645~3650.
    36. Berzal-Herranz A., De la Cruz A., Tenllado F., Diaz-Ruiz J.R., Lopez L., Sanz A. I., Vaquero C., Serra M. T., Garcia-Luque I. The Capsicum L3 gene-mediated resistance against the tobamoviruses is elicited by the coat protein. Virology 1995, 20:498~505.
    37. Blackman, L.M., Boevink, P., Santa Cruz, S., Palukaitis, P. and Oparka, K.J. The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant cell 1998, 10: 525~537.
    38. Boukema I. W. Resistance to TMV in Capsicum chacoense Hun2 is governed by an allele of the L-locus. Capsicum Newsl 1982, 3:47~48.
    39. Boukema I.W. Allelism of genes controlling resistance to TMV in Capsicum L. Euphytica 1980, 29:433~439.
    40. Boukema, Boukema. I.W. Resistance to TMV in Capsicum chacoense Huz is governed by an allele of the L-locus. Capsicum News, 1984.3:47~48.
    41. Boyer, J. C. and Haenni, A.L. Infectious transcripts and cDNA clones of RNA virus. Virol, 1994, 98: 415~426.
    42. Broadbent L., Fletcher J. T. The epidemiology of tomato mosaic.Ⅻ.Sources of TMV in commercial tomato crops under glass. Ann .Appl. Biol 1966, 57:113~120.
    43. Carr J.P., Marsh L.E., Lomonossoff G.P., Sekiya M.E., Zaitlin M. Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa Protein. Mol Plant-Microbe Interact 1992, 5: 397~404.
    44. Carrington J. C., Kasschau K. D., Mahajan S. K., et al. Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 1996, 8(10): 1669~1681.
    45. Chapman S.N.Construction of infectious clones for RNA viruses: TMV. Methods Mol Biol 2008, 451:477~490.
    46. Chen J., Watanabe Y., Sako N., Ohshima K., OkadaY. Complete nucleotide sequence and synthesis of infectious in vitro transcripts from a full-length cDNA clone of a rakkyo strain of tobacco mosaic virus. Arch Virol 1996, 141: 885~900.
    47. Chen, M.H. and Citovsk, V. Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 2003, 35 (3):386~392.
    48. Chng C. G., Wong S. M., Mahtani P. H., et al. The complete sequence of a singapore isolate of odontoglossum ringspot virus and comparison with other tobamovirus. Gene 1996 , 171: 55~161.
    49. Citovsky V. Tobacco mosaic virus: a Pioneer of cell- to-cell movement. Philos Trans R Soc Lond B Biol Sci 1999, 354: 637~643.
    50. Citovsky, V., Ghoshroy, S., Tsui, F. and Klesing, D. Non-toxic comcentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acid dependent mechanism. Plant J 1998.16:13~20.
    51. Commandeur, U., Koenig, R., Manteuffel, R.et al. Location size and complexity of epitopes onthe coat protein of beet necrotic yellow vein virus studies by means of synthetic overlapping peptides. Virol 1994, 198:282~287.
    52. Cooper B. Cell-to-cell transport of movement defective cucumber mosaic and tobacco mosaic viruses in transgenic plants expressing heterologous movement protein genes. Virology 1996, 216: 208~213.
    53. Csilla A. Fenczik, Hal S. Padgett, Curtis A. Holt, Steven J. Casper, and Roger N. Beachy. Mutational analysis of the movement protein of odontoglossum ringsot virus to identify host-range determinant. Molecular plant-microbe interactions 1995, 8: 666~673.
    54. Culver, J. N., Dawson, W. O. Point mutation in the coat protein gene of Tobacco mosaic virus induce hypersensitivity in Nicotiana Sylvestris, Mol. Plant-Microbe Interact 1989, 2:209~213.
    55. Culver, J. N., G. Stubbs, and W. O. Dawson. Structure-function relationship between tobacco mosaic virus coat protein and hypersensitivity in Nicotiana sylvestris. J. Mol. Biol 1994, 242:130~138.
    56. Culver, J.N. Tobacco mosaic virus assembly and disassembly: Determinants in pathogenicity and resistance. Annu. Rev. Phytopathol. 2002, 40: 287~308.
    57. Dagless E. M., Shintaku M. H., Nelson R. S., Foster G.D. A. CaMV 35S promoter driven cDNA clone of tobacco mosaic virus can infect host plant tissue despite being uninfectious when manually inoculated onto leaves. Arch Virol 1997, 142: 183~191.
    58. Dawson W. O., Beck D. L., Knorr D.A , Grantham G. L. cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts. Proc Natl Acad Sci USA. 1986, 83: 1832~1836.
    59. Dawson W. O. Tobamovirus-plant interactions. Vriology 1992, 186: 359~367.
    60. Ding X, Shintaku M. H., Carter S. A., Nelson R. S. Invasion of minor veins of tobacco leaves inoculated with tobacco mosaic virus mutants defective in phloem-dependent movement. Proc Natl Acad Sci USA 1996, 93:11155~11160.
    61. Dawson W. O., Bubriek P., Grantham G. L. Modification of the Tobacco mosaic virus coat Protein gene affecting repPlication,movement,and symptomatology. PhytoPathology 1988, 78: 783~789.
    62. Dawson, W.O., Beck D.L., Knorr, D.A. et al. cDNA cloning of the complete genome of Tobacco mosaic virus and Production of infectious transeripts. Proc. Natl. Acad.Sci.USA 1986, 83:1832~1836.
    63. De la Cruz A, Lopez L, Tenllado F, Diaz-Ruiz JR, Sanz AI, Vaquero C, Serra MT, Garcia L The coat protein is required for the elicitation of the Capsicum L2 gene-mediated resistance against the tobamoviruses. Mol Plan-Microbe Interact 1997, 10:107~113.
    64. Demski J W. Tobacco mosaic virus is seedborne in Pimiento peppers. Plant Disease. 1981, 65: 723~724.
    65. Dennis J.L., WIllian O.D. Functions of the 126- and 183- kDa Proteins of Tobaccomosic virus. Virology 2000, 271: 90~98.
    66. Dominge E. and Holland J.J. Mutation rates and rapid evolution of RNA viruses Evolutionary Biology of viruses (s.s.morse,Ed). Raven press 1992.
    67. Dorokhov Y. L., Ivanov P. A., Novikov V. K., Agranovsky A. A., Morozov S.Y., Efimov V. A., Casper R., Atabekov J.G. Complete nucleotide sequence and genome organization of a tobamovirus infecting cruciferae plants. FEBS Lett 1994, 350: 5~8.
    68. Du Z.Y., Jin B., Liu W.H., Chen L. and Chen J.S. Highly sensitivity fluorescent-labeled probes and glass slide hybridization for the detection of plant RNA virus and a Viroid. Acta Biochimicae Biophysica Sinica 2007, 39: 326-334.
    69. Dzianott A.M. and Bujarski J. J. Derivation of an infectious viral RNA by autocatalytic cleavage of in vitro transcribed cDNAs. Proc. Natl. Acad. Sci. USA, 1989, 86: 4823~4827.
    70. Eggen R., Verver J. and Wellink J.et al. Improvement of the infeetivity of in vitro transcripts from cloned Cowpea mosaic virus cDNA: impact of terminal nueleotide sequenees. Virol 1989, 173: 447~455.
    71. Engvall E. and Perlman P. Enzyme-linked immunosorbent assay (ELISA) Quantitative assay of immunoglobulin G. Immunochemistry 1971, 8: 871~874.
    72. Fakhfakh H., Vilaine F., and Makni M., et al., Cell-free cloning and biolistic inoculation of an infectious cDNA of potato virus Y. J.Gen.Virol 1996, 77:519~523.
    73. Faris-mukhayyish S. and Makkouk K.M. Detection of four seed-borne plant viruses by the enzyme-linked immunosorbent assay (ELISA). Phytopathologische Zeitschrift 1983, 106:108~114.
    74. Fenczik C. A., Padgett H.S., Holt C.A., Casper S.J. and Beachy R.N. Mutational analysis of the movement protein of odontoglossum rungspot virus to identify a host-range determinant. Mol Plant-Microbe Interact 1995, 8:666~673.
    75. Fraenkel-Conrat H. The role of the nucleic acid in the reconstitution of active tobacco. mosaic virus. J Amer. Chem. Soc 1956, 78:882.
    76. Gafny R., Lapidot M,Brna A., Holt C. A., Deom C. M., Beachy R. N. Effects of terminal deletion mutations on function of the movement Protein of tobacco mosaic virus. Virology 1992, 187:499~507.
    77. Gal-on A., Meiri E., Huet H., et al.Particle bombardment drastically increases the infectivity of cloned DNA of Zucchini yellow mosaic potyvirus. J.Gen.Virol. 1995 76, 3223~3227.
    78. Geolet P., Lomonossoff G. P., Butler P. J. G., et al. Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA 1982, 79: 5818~5822.
    79. Gera A., Deom C.M., Donson J., Shaw J.J., Lewandowski D.J.and Dawson W.O. Tobacco mosaic tobamovirus does not require concomitant synthesis of movement protein during vascular transport. Mol Plant-Microbe Interact 1995, 5: 784~787.
    80. Gierer A. and Schramm G. Infectivity of ribonucleic acid from tobacco mosaic virus. Nature 1956, 177:702~702.
    81. Gilardi P., Garcia-Luque I., Serra M.T. Pepper mild mottle virus coat protein alone can elicitthe Capsicum spp. L3 gene-mediated resistance. Mol. Plant Microbe. Interact. 1998, 11: 1253~1257.
    82. Gilardi P., Garcia-Luque I., Serra M.T. The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum. J. Gen. Virol 2004, 85: 2077~2085.
    83. Gioconda N., Ben S. S. María A. A., Luis R., José G. and Pedro M. A new procedure to differentiate Citus tristeza virus isolates by hybridization with digoxigenin-labeled cDNA probes. J Virol Methods 2000, 85: 83~92.
    84. Gorbalenya A. E., Blinov V. M., Donehenko A. P., Koonin E. V. An NTP-binding motif is the most conserved sequence in a strand RNA viral replication. J Mol Evol 1989, 28:256~268.
    85. Hagiwara K., Ichiki T.U., Ogawa, Y. Omura, T. and Tsuda.S. A single amino acid substitution in 126-kDa protein of Pepper mild mottle virus associates with symptom attenuation in pepper; the complete mucleotide sequence of an attenuatated strain, C-1421. Arch of virol 2002, 147:830~840.
    86. Hamada H., Takeuchi S., Kiba A., Hikichi Y., Tsuda S., and Okuno T. Amino acid changes in Pepper mild mottle virus coat protein that affects the L3 gene-mediated resistance in pepper. J. Gen. Plant Pathol 2002, 68: 155~162.
    87. Harrison B. D., and Wilson T. M. Milestones in the research on tobacco mosaic virus. PhilosTrans R Soc Lond B Biol Sci 1999, 354 (1383): 521~529.
    88. Hawkes R. A Dot-immunobinding assay for monoclonal and other antibodies. Analytical Biochemistry 1982, 119:142~147.
    89. Hayes R.G. and BucK K.W. Infectious Cucumber mosaic virus RNA transcribed in vitro from clones obtained from cDNA amplified using the polumerase chain reaction. J.Gen.Virol 1990, 71: 2503~2508.
    90. Heaton, L. A., Carrington, J.C. and Morris, T.J. Turnip crinkle virus infectious from RNA synthesized in vitro.Virol 1989, 170: 214~218.
    91. Heinlein M. Plasmodesmata: dynamic regulation and role in macromolecular cell-to-cell signaling. Curr Opin Plant Biol 2002, 5 (6): 643~652.
    92. Helena Raquel, Tiago Lourenco, Catarina Moita. Expression of prune dwarf Ilarvirus coat protein sequences in Nicotiana benthamiana plants inferferes with PDV systemic proliferation. Plant Biotechnol Rep. 2008, 2:75-85.
    93. Hema, M., Kirthi, N., Sreenivasulu, P. and Savithri, H.S. Development of recombinant coat protein antibody based IC-RT-PCR for detection and discrimination of sugarcane streak mosaic virus isolates from Southern India. Arch Virol 2003, 148 (6): 1184~1193.
    94. Hilf M. E. and Dawson W.O. The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement. Virology 1993, 193 (1): 106~114.
    95. Hiroyuki Hamada,Reiko Tomita,Yasuya Iwadate,Kappei Kobayashi,Ikuko Munemura ,Shigeharu Takeuchi,Yasufumi Hikichi,Kazumi Suzuki. Cooperative effect of two amino acid mutations in the coat protein of Pepper mild mottle virus overcomes L3-mediated resistance inCapsicum plants. Virus Genes 2007, 34:205~214.
    96. Holt C.A., and Beachy R.N. In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology 1991, 181: 109~117.
    97. Hseu S., Huang C., Chang C., Yang W., Chang Y. and Hsiao C. The occurrence of five viruses in six cucurbits in Taiwan. Plant Protection Bulletin 1987, 29: 233~244.
    98. Hossain M., Asghar S., Akbar H. P. and Mehdi S. Occurrence, distribution and relative incidence of seven viruses infecting greenhouse-grown cucurbits in Iran. Plant Dis 2007, 91: 159~163.
    99. Hull R. The movement of viruses in plants. Annu Rev Phytopathol 1989, 27:213~240.
    100. Ichiki T. U., Nagaoka E. N., Hagiwara K., Uchikawa K., Tsuda S., and Omura T. Integration of mutations responsible for the attenuatedphenotype of Pepper mild mottle virus strains results in a symptomless cross-protecting strain. Arch Virol 2005, 150: 2009~2020.
    101. Ikeda R., Watanabe E., Watanabe Y., et al. Nucleotide sequence of tobamovirus of which can spread systemically in N gene tobacco.J Gen Virol 1993, 74: 1939~1944.
    102. Ikegashira Y., Ohki T., Ichiki U. T., et al. An immunological system for the detection of Pepper mild mottle virus in soil from green pepper fields.Plant Disease 2004, 88 (6):650~656.
    103. Ishikawa M., Meshi T., Motoyoshi F., Takamatsu N., okada Y. Invitro mutagensis of the Putative replicase genes of tobacco mosaic virus. NucleicAcids Res 1986, 14: 8291~8305.
    104. Ishikawa M., Meshi T., ohno T., Okada Y. Specific cessation of minus- strand RNA Accumulation at an early stage of tobacco mosaic virus infection. J Virol 1991, 65:861~868.
    105. James D. Specific detection of Cherry mottle leaf virus using digoxigenin-Labeled cDNA Probes and RT-PCR. Plant Dis 1999, 83: 235~239.
    106. Ju Yein Yoon., Hong II Ahn., Minjea Kim., Shinya Tsuda., Ki Hyun Ryu. Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus research 2006, 118: 23~30.
    107. Kadaré G., Haenni A. L. Virus-eneoded RNA helicases. J.Virol 1997, 71:2583~2590.
    108. Katsutoshi Matsumoto, Hiromasa Sawada, Kouhei Matsumoto. The coat protein gene of tobamovirus P0 pathotype is a determinant for activation of temperature-insensitive L1a-gene-mediated resistance in Capsicum plants. Arch Virol 2008, 153:645~650.
    109. Kamenova, I. and Adkins, S. 2004. Comparison of detection methods for a novel Tobamoviurs isolated from Florida Hibicscus. Plant Dis. 88: 34-40.
    110. Katsutoshi Matsumoto, Hiromasa Sawada, Kouhei Matsumoto1, Hiroyuki Hamada, Eri Yoshimoto, Takao Ito, Shigeharu Takeuchi, Shinya Tsuda, Kazumi Suzuki, Kappei Kobayashi, Akinori Kiba, Tetsuro Okuno and Yasufumi Hikichi. The coat protein gene of tobamovirus P0 pathotype is a determinant for activation of temperature-insensitive L 1a -gene-mediated resistance in Capsicum plants. Archives of virology 2008, 153: 645~650.
    111. Kazuhiro Toyoda., Yasufumi Hikichi., Shigeharu Takeuchi., et al.Epidemiological aspects of the Japanese Tobamovirus strain,Pepper mild mottle virus infecting the L2 resistancegenotype of green pepper. Sci.Fac.Agr.Okayama Univ 2004, 93:19~27.
    112. Kazumi Suzuki., Tomohisa Kuroda., Yoshio Miura., etal. Screening and field trials of virus resistant sources in Capsicum spp. Plant Disease 2003, 87:779~783.
    113. Kirita M., Akutsu K., Watanabe Y., et al. Nucleotide sequence of the Japanese isolate of pepper mild mottle tobamovirus (TMV-P) RNA. Ann.Phytopathol.Soc.Jpn 1997, 63:373~376.
    114. Knorr David A.; Dawson, William O. A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc Natl Acad Sci. USA 1988, 85 (1): 170~174.
    115. Koenig R. ELISA in the study of homologous and heterologous reactions of plant viruses. J. Gen. Virol 1978, 40: 309~318.
    116. Koonin E V. The Phylogeny of RNA-dependent RNA Polymerases of Positive-strand RNA viruses JGen virol 1991, 72: 2197~2206.
    117. Lartey R.T., Voss T. C., Melcher U. Completion of a cDNA sequence from a tobamovirus pathogenic to crucifers. Gene 1995, 166: 331~332.
    118. Lartey R.T., Ghoshroy S. and Citovsky V. Identification of an Arabidopsis thaliana mutation (vsm1) that restricts systemic movement of tobamoviruses. Mol Plant Microbe Interact 1998, 11 (7):706~709.
    119. Lazarowitz S. G., Beachy R. N. Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 1999, 11:535~548.
    120. Lee S. W., Lee Y. K., Park J. W., Choi H. S., Kim Y. T., Cheon J. U., Lee K.W. Nucleotide sequence of coat protein gene of kyuri green mottle mosaic virus isolated from zucchini. Plant Pathol J 2000, 16: 118~124.
    121. Leonardo Velasco, Dirk Janssen, Leticia Ruiz-Garcia, Eduardo Segundo, Isabel M Cuadrado. The complete nucleotide sequence and development of a diferential detection assay for a pepper mild mottle virus (PMMoV) isolate that overcomes L3 resistance in pepper. Journal of Virological Methods 2002, 106: 135~140.
    122. Lewandowski D.J., and Dawson W.O. Functions of the 126- and 183-KD proteins of tobacco mosaic virus. Virology 2000, 271: 90~98.
    123. Liu Y., Sun B., Wang X., Zheng C., and Zhou. G. Three digoxigenin-labeled cDNA probes for specific detection of the natural population of Barley yellow dwarf viruses in China by dot-blot hybridization. J Virol Methods 2007, 145: 22~29.
    124. Li Y., Wu M.Y., Song H. H., Hu X., and Qiu B. S. Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long~distance movement of virus. Arch Virol 2005, 150: 1993~2008.
    125. Sudarshana M. R., Wang.H. L., Lucas, W. J and Gilbertson R. L. Dynamics of Bean Dwarf Mosaic Geminivirus Cell-to-Cell and Long-Distance Movement in Phaseolus vulgaris Revealed, Using the Green Fluorescent Protein. MPMI 1998, 11(4): 277~291.
    126. Mahajan S.K., Chisholm S.T., Whitham S.and Carrington J.C. Identification andcharacterization of a locus (RTM1) in Arabidopsis thaliana that restriscts long-distance movement of tobacco etch virus. Plant J 1998, 14:177~186.
    127. Meshi T., Ishikawa M., Motoyoshi F., Semba K., OkadaY. In vitro transcription of infectious RNAs from full-length cDNAs of tobacco mosaic virus. Proc Natl Acad Sci USA 1986, 81: 1966~1970.
    128. Meyer M., and Dessens J.T. 35S Promoter-driven cDNAs of Barley mild mosaic virus RNA l and RNA2 are infectious on barley Plants. J.Gen.virol 1997, 78:3147~3151.
    129. MI S., Stollar V. Expression of Sindbis virus nspI and methyltransferase activity inEscherichia coli. Virology 1991, 184:423~427.
    130. Mise et al. Mise, K., Allison, R. F., Janda, M., and Ahlquist, P. Bromovirus movement protein genes play a crucial role in host specificity. J. Virol. 1993, 67: 2815~2823.
    131. Moskovitz Y., Goszczynski D.E., Bir L., Fingstein A., Czosnek H., Mawassi M. Sequencing and assembly of a full-length infectious clone of Grapevine virus B and its infectivity on herbaceous plants. Archives of Virology 2008, 153: 323~28.
    132. Mullis K. B. and Faloona F. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 1987, 155: 335~351.
    133. Nejidat A., Cellier F., Holt C.A., Gafny R., Eggenberger A., and Beachy R.N. Transfer of the movement protein gene between two tobamoviruses: Influence on local lesion development. Virology 1991, 180:318~326.
    134. Nobuhiko Takamatsu,Yuichiro Watanabe,Tetsuo Meshi and Yoshimi Okada. Mutational analysis of the pseudoknot region in the 3’ noncoding region of tobacco mosaic virus RNA. Journal of virology. 1990, 64:3686~3693.
    135. Ohno T., Aoyagi M.,YamanashiY., Saito H., Ikawa S., Meshi T., OkadaY Nucleotide sequence of the tobacco mosaic virus (tomato strain) genome and comparison with the common strain genome. J Biochem 1984, 96: 1915~1923.
    136. OhnoT., Takamatsu N., Meshi T., okada Y., Nishiguchi M., KihoY. Single amino acid substitution in 30K Protein of TMV defective in virus transport function.Virology 1983, 131: 255~258.
    137. Palukaitis P., and Zaitli M. Replicase-mediated resistance to plant viruses. Advances in Virus Research 1997, 48, 349~377.
    138. Pantaleo V., Grieco F., Franco A.Di, and Martelli G.P. The role of the C-terminal region of olive latent virus 1 coat protein in host systemic infection. Archives of virology 2006, 151:1973~1983.
    139. Pares D. R. A tobamovirus infecting capsicum in Australia.Ann. Appl. Biol 1985, 106:469~474.
    140. Pasquini G., Simeone A.M., Conte L. and Barba M. Detection of plum pox virus in apricot seeds. Acta Virol 1998, 42 (4): 260~263.
    141. Patricio Arche~Johnson,Ulrich Reimann~Philipp,Hal S. Padgett,Rafael Rivera~Bustamante,and Roger N. Beachy. MPMI. 1997, 10:691~699.
    142. Pelham H. B. Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 1978, 272: 469~471.
    143. Petty I.T., Jackson A.O. Mutational analysis of barley stripe mosaic virus RNA beta. Virology 1990, 179: 712~718.
    144. Pooma W., Gillette W.K., Jeffrey J.L.and Petty I.T.D. Host and viral factors determine the dispensability of coat protein for bipartite geminivirus systemic movement. Virology 1996, 218:264~268.
    145. Quadt R., Kao C.C., Browning K.S., Hershberger R.P., Alquist P. Characterization of a host protein associated with brome mosaic virus RNA-dependent RNA polymerase. Proc Natl Acad Sci USA 1993, 90:1498~1502.
    146. Rao A.L.N., and Cooper B. Capsid protein gene and the type of host plant defferentially modulate cell~to~cell movement of cowpea chlorotic mottle virus. Virus genes 2006, 32: 219~227.
    147. Robert M W., Michael G. Measurement of Epstein-Barr virus DNA loads in whole blood and plasma by TaqMan PCR and in peripheral blood lymphocytes by competitive PCR. J Clin Microbiol 2003, 41: 5245~5249.
    148. Ru′?z del Pino M., Moreno A., Garc′?a de Lacoba M., Castillo-Lluva S., Gilardi P., Serra M. T., andGarc′?a~Luque I. Biological and molecular characterization of P101 isolate, a tobamoviral pepper strain from Bulgaria. Arch Virol 2003, 148: 2115~2135.
    149. Ryabov E.V., Robinson D.J., Taliansky M.E, A plant virus-encoded protein facilitates long--distance movement of heterologous viral RNA. Proc Natl Acad Sci 1999, 96 (4): 1212~1217.
    150. Ryu K.H., Park W.M. The complete nucleotide sequence and genome organization of odontoglossum ringspot tobamovirus RNA. Arch Virol 1995, 140: 1577~1587.
    151. Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., and Arnheim N. Enzymatic amplification of beta~globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985, 230: 1350~1354.
    152. SaitoT., MeshiT., Takamatsu N., OkadaY. Coat protein gene sequence of tobacco mosaic virus encodes a host responsed determinant. Proc Natl Acad Sci 1957, 54: 6074~6077.
    153. Saito T., Yamanaka, K. Watanabe Y., Takamatsu N., Meshi T., Okada. Y. Mutational analysis of the coat protein gene of tobacco mosaic virus in relation to hypersensitive response in tobacco plants with the N' gene. Virol 1989, 173, 11~20.
    154. Sanchez-Navarro J.A., Aparicio F., Rowhani A. and Palla′s V. Comparative analysis of ELISA, nonradioactive molecular hybridization and PCR for the detection of Prunus necrotic ringspot virus in herbaceous and Prunushosts. Plant Pathol 1998, 47: 780~786.
    155. Sanchez-navarro J.A., Cano E.A. and Pallas V. Non-radioactive molecular hybridization detection of Carnation mottle virus in infected carnations and its comparison to serological andbiological techniques. Plant Pathol 1996, 45: 375~381.
    156. Santa Cruz, S. Perspective: phloem transport of viruses and macromolecules~what goes in must come out. Trends Microbiol 1999, 7: 237~241.
    157. Scheets K., Redinbaugh M.G. Infectious cDNA transcripts of maize necrotic streak virus: infectivity and translational characteristics. Virology 2006, 350:171~183.
    158. Scholthof H.B., Morris T.J., Jacson A.O. The capsid protein gene of tomato bush stunt virus is dispensible for systemic movement and can be replaced for localized expression of foreign genes. Mol Plant Microbe Interact 1993, 6: 309~322
    159. Shintaku M.H., Carter S.A., Bao Y. and Nelson R.S. Mapping nucleotides in the 126-kDa protein that control differential symptoms induced by two strains of tobacco mosaic virus Virology 1996, 221: 218~225.
    160. Silver S.., Quan S, Deom C.M. Completion of the nucleotide sequence of sunn-hemp mosaic virus: a tobamovirus pathogenic to legumes. Virus Genes 1996, 13: 83~85.
    161. Solis I., Garcia-Arenal F. The complete nucleotide sequence of the genomic RNA of the tobamovirus tobacco mild green mosaic virus. Virology 1990, 177: 553~558.
    162. Sumiyoshi C., Hoke C. H., Trent D. W. infectious Japanese encephalitis virus RNA can be synthesized from in itro~ligated cDNA template. J. Virol 1992, 66:5424~5431.
    163. Tamada T., Schmitt C., Saito M., High resolution analysis of the readthrough domain of Beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by polymyxa betae, J.Gen.Virol 1996, 77:1359~1376.
    164. Tan S.H., Nishiguchi M., Murata M., Motoyoshi F. The genome structure of kyuri green mottle mosaic tobamovirus and its comparison with that of cucumber green mottle mosaic tobamovirus. Arch Virol 2000, 145: 1067~1079.
    165. Taraporewala Z. F., and Culver J. N. Identification of an elicitor active site within the three-dimensional structure of the tobacco mosaic tobamovirus coat protein. Plant Cell 1996, 8:169~178.
    166. Taraporewala Z. F., and Culver J. N. Structural and functional conservation of the tobamovirus coat protein elicitor active site. Mol. Plant~Microbe Interact 1997, 10:597~604.
    167. Tetsuo Meshi, Yuichiro Watanabe, Tetsuichiro Saito, Asako Sugimoto, Tatsuya Maeda and Yoshimi Okada. Function of the 30 kDa protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. The EMBO Journal 1987, 6:2557~2563.
    168. Tobias I. Tobamoviruses of pepper, eggplant and tabacco: comparative host reaction and serological relationship. Neth J plant Pathol 1982, 88:257~268.
    169. Tsuda S., Kirita M., Watanabe Y., Mol. Plant Microbe.Interact. 1998. 11, 327~331
    170. Ueki S., and Citovsky V. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nat Cell Bilol 2002, 4(7):167~168.
    171. Ugaki M., Tomiyama M., Kakutani T., et al. The complete nucleotide sequence of cucumbergreen mottle mosaic virus (SH strain) genomic RNA. J Gen Virol 1991, 72: 1 487~1495.
    172. Ugaki M., Tomiyama M., Kakutani T., Hidaka S., Kiguchi T., Nagata R., Sato T., Motoyoshi F., Nishiguchi M. The complete nucleotide sequence of cucumber green mottle mosaic virus (SH strain) genomic RNA. J Gen Virol 1991, 72: 1487~1495.
    173. Varveri C., Vassilakos N. and Bem F. Characterization and detection of Cucumber green mottle mosaic virus in Greece. Phytoparasitica 2002, 30:493-501.
    174. Voller A., Bartlett A., Bidwell D.E., Clark M.F., Adams A.N., The detection of viruses by enzyme~linked immunosorbent assay (ELISA). J Gen Virol 1976, 33: 165~167.
    175. Waigmann E.,Lucas W.,Citovsky V.,Zambryski P. Direct functional assay for tobacco mosaic virus cell~to~cell movement Protein and identification of a domain involved in increasing Plasmodesmal Permeability. Proc Natl Acad Sci USA 1994, 91:1433~1437.
    176. Wang X., Liu F., Zhou G., Li X.H., Li Z. Detection and Molecular Characterization of Pepper mild mottle virus in China. J Phytopathol 2006, 154: 755~757
    177. Warwick H.R.I. Construction of infectious cDNA clones for RNA viruses: Turnip crinkle virus. Methods Mol Biol 2008, 451:491~502.
    178. WatanabeY., Emoriy., ooshikal., MeshiT., OhnoT., OkadaY. Synthesis of TMV specific RNAs and Protein sat the early stage of infection into baecoprotoplasts:Transient expression of the 30K protein and its RNA.Viroloty 1954, 133:15~24.
    179. Weber H., Haeckel P., Pfitzner A.J.P. A cDNA clone of tomato mosaic virus is infectious in plants. J Virol 1992, 66: 3909~3912.
    180. WeilandJ.J. and Dreher T.W. Infectious TYMV RNA from cloned cDNA : Effeets in vitro and in vivo of point substitutions in the initiation codons of two extensively over lapping ORFs. Nuc. Acids.Res 1989, 17:4675~4687.
    181. Wetter C., Conti M., Atschuh D., et al. Pepper mild mottle Virus, a tobamovirus infecting pepper cultivar in Sicily. Phytopathology 1984, 74:405~410.
    182. Whitham, S., Yamamoto, M. and Carrington, J.C. Selectable viruses and altered susceptibility mutants of Arabidopsis thaliana. Proc Natl Acad Sci USA 1999, 96:772~777.
    183. Wilson, T.M.A. Nucleocapsid disassembly and early gene expression by positive~strand RNA viruses. J Gen Virol 1985, 66:1201~1207.
    184. Wu X.J. and Shaw J.G. Evidence that a viral replicase protein is involved in the disassembly of tobacco mosaic virus particles in vivo. Virology 1997, 239:429~434.
    185. Xiang B.C., Xie H., Cui X.M., Li C., Liu S.P., Xi D.H., Yin Y.Q. Isolating and identification of Pepper mild mottle tobamovirus in Xinjiang. Chin J Virol 1994, 10:240~244.
    186. Xiong Z., et al. The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology 1993, 192: 27~32.
    187. Yamanaka T., Komatani H., Meshi T., Naito S., Ishikawa M., Ohno T. Complete nucleotide sequence of the genomic RNA of tobacco mosaic virus strain Cg.Virus Genes 1998, 16: 173~176.
    188. Yamshichikov V.F., Gerd W., Andrey A., et al. An infectious clone of the West Nile flavirus, Virology 2001, 281:294~304.
    189. Yoshikatsu Genda., Ayami Kanda., Hiroyuki Hamada., Kyoko Sato,. Jun Ohnishi., and Shinya Tsuda. Two Amino Acid Substitutions in the Coat Protein of Pepper mild mottle virus Are Responsible for Overcoming the L4 Gene~Mediated Resistance in Capsicum spp. Phytopathology 2007, 97:787~793.
    190. Yu H.H., Wong S.M. A DNA clone encoding the full~length infectious genome of odontoglossum ringspot tobamovirus and mutagenesis of its coat protein gene. Arch Virol 1998, 143: 163~171
    191. Yuan S. S. and Wei Z. Z. Construction of infectious cDNA clones of PRRSV: Separation of coding regions for nonstructural and structural proteins. Science in China 2008, 51:271~279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700