新型Bcr-Abl/Src激酶抑制剂FB2抗伊马替尼耐药慢性髓系白血病作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性髓系白血病(CML)是一种起源于造血干细胞的恶性克隆性疾病,其特征性遗传学标志是由染色体易位形成费城(Ph)染色体。由易位染色体产生的Bcr-Abl融合基因编码产生分子量为210kD的Bcr-Abl融合蛋白,最初在造血干细胞中表达,促进骨髓及淋巴样细胞的分化,具有异常增高的蛋白酪氨酸激酶活性,被认为是CML发病的始发因素。
     传统的CML的治疗采用羟基脲、马利兰、甲异靛及干扰素等药物疗效欠佳且副作用大。随着对Bcr-Abl蛋白活性的深入研究,使其成为CML治疗的重要的分子靶点。伊马替尼(Imatinib)作为小分子Bcr-Abl酪氨酸激酶抑制剂以其显著的疗效及毒副作用低的特点,成为目前CML治疗的一线用药。但随着临床用药的增加Imatinib耐药问题逐渐突显。另外,Imatinib不能根除残留的白血病干细胞及原始祖细胞,成为疾病复发的危险因素。因此寻找新靶点或多靶点药物成为CML研究的热点。
     临床上常见的获得性Imatinib耐药机制主要分为两类:Bcr-Abl依赖型及Bcr-Abl非依赖型。Bcr-Abl依赖型耐药中主要原因为Bcr-Abl基因发生位点突变以及扩增引起的表达增加。另外,从Immatnib耐药的患者中分离的细胞系中发现Src激酶家族(SFK)成员中Lyn及Hck过表达,提示SFK涉及Bcr-Abl非依赖型Imatinib耐药。由于Abl与SFK成员中具有明显的序列同源性及活性中心结构相似性。因此,在对多种不同化学结构的Src激酶抑制剂的研究中包括Bosutinib、Dasatinib及INNO-0406等,发现这些化合物能够较Imatinib更有效地抑制Bcr-Abl激酶活性,并且对多种位点突变的Bcr-Abl有效。
     FB2是一种新型的噻唑类衍生物,前期研究已经证实其可有效地抑制Imatinib敏感及无Bcr-Abl点突变的耐药K562细胞系。本研究将观察FB2对Imatinib耐药的具有Abl激酶点突变的Ba/F3 P210 (WT、Y253F及T315I)白血病细胞的作用及机制,并建立四种不同的动物模型Ph+的K562及体外建立的Imatinib耐药株K562/G7.0 NOD/SCID小鼠模型,Ba/F3 P210 (WT及Y253)白血病小鼠模型,以观察FB2对不同耐药机制动物模型中位生存期的影响。
     基于FB2是在Dasatinib的结构基础上优化改造,推测其与Abl结合不会像Imatinib对蛋白结构要求严格,因此本实验首先纯化野生型(WT)及具有突变位点(Y253F及T315I)的Abl激酶区,利用Histone2B作为Abl激酶的底物,结果显示FB2在纳摩尔水平能够有效地抑制Abl (WT及Y253F)激酶活性,而对T315I突变的Abl无效。同时进一步检测了FB2对Src及Lyn的体外激酶活性抑制作用,结果显示其对激酶活性的ICso值分别为1.37nmol/L和2.83nmol/L
     此后,采用Ba/F3 P210细胞系包括野生型及两株具有突变位点Y253F及T315I的细胞观察FB2对细胞增殖的影响。MTT结果显示,FB2明显抑制Ba/F3 P210 WT及Y253F细胞(IC50分别为1.30nmol/L,2.56nmol/L)的生长,对Ba/F3P210 T315I无效。另外,为进一步探讨FB2抗Imatinib耐药的作用机制,对细胞内Bcr-Abl、c-Src和Lyn蛋白的磷酸化水平进行检测,结果与体外活性测定一致,FB2能够明显抑制Ba/F3 P210 WT及Y253F细胞Bcr-Abl、c-Src和Lyn蛋白的自身磷酸化水平,但对Ba/F3 P210 T315I细胞仅能抑制c-Src和Lyn蛋白活性。同时在对细胞周期的影响的研究中发现,FB2在纳摩尔水平可使Ba/F3 P210 (WT、Y253F)细胞发生G0/G1期阻滞,将药物浓度增加至微摩尔水平能增加Ba/F3 P210 T315I细胞G0/G1期细胞比例。
     最后,通过尾静脉注射不同类型CML细胞株建立白血病动物模型评价FB2治疗CML的作用。无药物处理的对照组小鼠很快发展为白血病小鼠,生存期在27~75天,FB2可以明显延长包括K562敏感株、Lyn激酶过表达的K562/G7.0耐药株、Ba/F3 P210野生株及Imatinib耐药Y253F点突变株,四种不同白血病小鼠模型的生存期,且具有良好的剂量效应关系。在动物实验观察周期均在三个月以上,FB2治疗组动物对药物耐受性均较好,无体重下降现象出现,一定程度上反映了该药毒副作用小的特点。
     综上,FB2作为一种酪氨酸激酶抑制剂,具有明确的Bcr-Abl及Src激酶抑制作用,可能成为治疗CML并克服除T315I突变的Imatinib耐药的新的治疗药物。
     伊马替尼(Imatinib)是首个用于肿瘤临床治疗的小分子靶向药物,因其能特异性作用于Bcr-Abl酪氨酸激酶,而在临床上广泛应用于费城染色体阳性的慢性髓系白血病(CML)及急性淋巴细胞性白血病(ALL),并取得了卓越的治疗效果。目前临床应用Imatinib标准剂量为400mg/d,对于CML慢性期患者有效,但对进展期CML患者疗效较差,在治疗后数周或数月内复发或进展至急变期。另外,约有60%的慢性期患者在用药六年后可维持原来的剂量,而近40%患者对Imatinib敏感性降低,需要增加剂量或选择其他治疗方式。因此,Imatinib耐药现象的发生逐渐受到人们的关注。
     各国学者通过不同的研究方法对于Imatinib耐药机制进行了深入的研究,目前发现的耐药机制包括治疗依从性不好、胃肠道吸收减少、结合的蛋白发生改变、肝药酶加速药物代谢、药物外排增加、Bcr-Abl融合基因扩增或蛋白表达增加以及融合基因发生位点突变等。对于耐药机制的研究方法除通过分析临床发生Imatinib耐药的患者样本所发生的改变以外,体外建立Imatinib细胞耐药株也是研究的重要途径。经过前期的研究本实验室已经建立了K562细胞Imatinib耐药株,并对其耐药机制做了初步的探讨。本研究在此基础上增加耐药株对Imatinib的耐药浓度至7μmol/L建立K562/G7.0细胞,然后观察一系列Imatinib不同耐药程度的K562/G细胞系包括K562/G01、K562/G3.0、K562/G5.0、K562/G7.0的生生物学特性及耐药机制的变化,并通过蛋白质组学技术分析不同耐药株及K562亲本株之间的差异蛋白,以期望发现新的克服Imatnib耐药的分子靶点。
     首先通过MTT法观察K562及不同耐药细胞株对Imatinib的耐药程度,其IC50值分别为0.36、4.84、14.06、36.65、51.26μmol/L,细胞生长曲线结果显示各细胞株倍增时间无明显变化,另外,通过流式细胞术检测各细胞株之间周期分布的差异,结果表明随耐药浓度的增加处于G2/M期的细胞呈现递增趋势,以上结果表明,体外建立的K562不同耐药程度的Imatinib耐药株生物学特性有一定的改变。
     此后,本实验对不同K562/G系列细胞的耐药机制进行研究。通过对不同细胞株Abl的ATP结合区基因序列进行扩增后测序未发现耐药细胞中有位点突变现象。而后通过免疫印迹杂交的方法检测各细胞株Imatinib耐药相关蛋白的表达情况,结果显示耐药程度不同各细胞表现一定的耐药机制的改变,其中K562/G01细胞Bcr-Abl、p-gp及Lyn均较K562细胞表达水平增高,随着耐药浓度的增加K562/G3.0细胞p-gp表达降低,Bcr-Abl及Lyn表达持续增加,耐药程度进一步增加,K562/G5.0及K562/G7.0细胞中Bcr-Abl表达水平反而降低,表现为Lyn依赖型耐药机制。这种耐药机制的转变部分解释了国内外很多学者所建立的不同耐药细胞株耐药机制的差异。
     最后通过蛋白质组学的技术进一步观察了不同耐药株及K562细胞之间蛋白表达的差异。经过二维凝胶电泳分离得到各耐药株及K562亲本株蛋白表达图谱,其中发现具有明显差异的14个蛋白点,通过基质辅助激光解析电离飞行时间质谱技术进一步分析,结合双向电泳图谱上相应点的表观等电点、分子量综合分析成功鉴定9个差异蛋白,其中与肿瘤关系密切的包括波形蛋白、膜突蛋白、埃兹蛋白及膜联蛋白-1,这些蛋白的表达水平与细胞耐药程度也有一定的关系。
     综上所述,Imatinib耐药是一个复杂的多因素作用的结果,不同的研究方法显示了不同的耐药机制。本研究通过比较不同耐药程度的Imatinib耐药细胞株探索和发现了随耐药浓度的改变其耐药机制发生不同程度的转变,另外蛋白质组学的研究发现了在耐药株中表达升高的蛋白,为进一步寻找Imantinib耐药机制提供了实验基础。
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder that is characterized by the Ph chromosome. The reciprocal translocation between the chromosomes 9 and 22 results in the Ph chromosome, and produces a fusion gene known as Bcr-Abl.This fusion gene encodes a chimeric protein which turns on a dysregulated tyrosine kinase activity and drives CML. In CML, a p210 Bcr-Abl isoform is initially expressed in haematopoietic stem cells (HSCs) capable of giving rise to both differentiated myeloid and lymphoid progeny.
     The traditional therapy of CML includes Hydroxycarbamide, Myleran, Meisoindigo, interferon with high side effects. The biology of CML has enabled preclinical and clinical oncology researches with targeted therapies. Imatinib is a small molecule inhibitor of the Bcr-Abl tyrosine kinase that produces clinical remissions in CML patients with minimal toxicity. Imatinib is now frontline therapy for CML. However, despite the stunning efficacy of this agent, resistance or intolerance to imatinib may become increasingly important. Moreover, imatinib does not completely eradicate residual leukemic stem cells and progenitors, which present a persistent risk of desease relapse. Therefore, there is a clear need for CML research to focus on novel targets and targeted drugs.
     Various mechanisms may contribute to imatinib resistance, and it can be categorized into two broad groups:Bcr-Abl-dependent and Bcr-Abl-independent. The main cause in Bcr-Abl-dependent imatinib resistance involves point mutations in the Abl kinase domain of the fusion protein and over-expression of Bcr-Abl kinase through gene amplification. In addition, the Src family of kinase (SFKs) members Hck and Lyn are over-expressed in some imatinib-resistant patient isolated and cell lines, suggesting that SFKs may be involved in Bcr-Abl-independent imatinib resistance. Abl shares significant sequence homology and remarkable structural resemblance in its active state with Src family members. Several Src inhibitors from various chemical classes, including bosutinib, dasatinib and INNO-406 have been developed. These agents are more effective than imatinib in blocking Bcr-Abl tyrosine kinase autophosphorylation, and these effects extend to point mutantions of Bcr-Abl.
     FB2 is a novel N-(thiazol-2-yl)pyrimidin-4-amine derivative, and it had shown that FB2 inhibited imatinib-sensitive and resistance CML cell lines with the wild-type Bcr-Abl fusion gene. In this report, it was sought to identify this novel compound for treating Ph+ chronic myeloid leukemia that is potent in blocking Bcr-Abl kinase activity, including point mutations in the kinase domain, and inhibits src kinase activity. To assess its potential as a therapeutic agent, it was investigated the effect of FB2 on survival span of mice inoculated with K562 cells, K562/G7.0 cells and Ba/F3 cells expressing different isoforms of Bcr-Abl (wild-type, Y253F).
     On the basis of prior structural insights from dual Abl and Src inhibitor Dasatinib, we reasoned that FB2 may impose less stringent conformational requirements on Abl for kinase inhibition, and we therefore purified enzymes to assesse its activity against imatinib-resistant Bcr/Abl mutants. As expected, FB2 was potent at inhibiting nonmutanted Bcr/Abl (Bcr/Abl WT) and mutanted Bcr-Abl (Y253F) kinase activity, while not on mutanted Bcr-Abl with T315I. Furthermore, Src and Lyn protein kinase assays were done and the results exhibited FB2 was a nanomolar inhibitor of two Src kinases (Src and Lyn with IC50 of 1.37 nmol/L,2.83nmol/L, respectively).
     Ba/F3 p210 cells were obtained by transfecting the IL-3-dependent murine hematopoietic Ba/F3 cell lines with pSRa-p210Bcr-Abl plasmid. The mutations (Y253F and T315I) were introduced into full-length p210Bcr-Abl. MTT assay were performed to investigate the inhibition of FB2 on Ba/F3 p210 (WT, Y253F and T315I) cells. And the mean IC50 values for FB2 were 1.30 and 2.56 nmol/L in Ba/F3 p210 WT and Ba/F3 p210 Y253F cells respectively. However, it had no effects on proliferation of Ba/F3 p210 T315I cells. FB2 inhibited the activities of Bcr-Abl and Src kinases as assayed by reduction of the phosphorylated forms of Bcr-Abl、c-Src and Lyn, respectively. Ba/F3 p210 WT and Y253F cells presented the marked dose-dependent reduction in Bcr-Abl, c-Src and Lyn phosphorylation when treated with FB2 from 0.2 to 5 nmol/L, and its potency of inhibition in c-src phosphorylation was stronger than dasatinib on it. FB2 reduced the level of p-c-Src and p-Lyn in Ba/F3-T315I cells while not the level of p-Bcr-Abl. To determine the antiproliferative effects of FB2 involved growth arrest at specific phases of the cell cycle, flow cytometric studies were performed.Our data showed that, in the low nanomolar range, FB2 induced the inhibition of cell growth and cell cycle progression of Ba/F3 p210 (WT, Y253F) cell lines mainly by inducing the G0/G1 phase arrest, and exhibited the dose-dependent relationship. Increasing the concentration of agent to micromolar range, FB2 could induce Ba/F3 p210 T315I cells arrested in G0/G1 phase.
     To assess its potential as a therapeutic agent, we studied FB2 in a mouse model of imatinib-resistant, Bcr/Abl dependent disease. Nod/Scid mice were injected intravenously with K562 and K562/G7.0 cells, and Balb/c mice were harbored Ba/F3 cells expressing different Bcr/Abl isoforms. Untreated mice harboring cells expressing nonmutant or imatinib-resistant mutant Bcr/Abl developed aggressive disease, typically resulting in death in 27-75 days. All the three doses tested groups showed significantly prolonged survival span and the increases in survival times were in dose dependent manner. Mice bearing K562 and Ba/F3 p210 cells tolerated administrations of FB2 well, and obvious evidence of toxicity did not occurred in three months.
     In summary, our current studies demonstrated an effective inhibition of FB2 on Bcr-Abl and Src kinases. These data provide the framework for clinical trials with FB2 in Ph+CML and imtinib-resisitant CML。
     Imatinib is the first small molecular drug for targeted therapies, and it is a selective inhibitor of the tyrosine kinase activity of Bcr-Abl fusion oncoprotein. Imatinib is indicated for the treatment of patients with Ph+CML in chronic phase、blast crisis and accelerated phase, and Ph+ALL. Most patients with chronic phase (CP) CML treated with imatinib have well-controlled disease. Imatinib at an oral dose of 400mg daily has now become standard initial treatment for all CML patients who present in CP. It is highly effective, too, in the short term for patients who present in advanced phases, but the duration of response is usually much shorter and the probability of relapse to blastic phase is high. Even for CP, however, the drug is not perfect. Only approximately 60% of patients are still taking imatinib at standard dosage after 6 years, which means that approximately 40% have needed higher doses of imatinib or alternative therapy. Therefore the mechanisms of resistance emerged as a major question.
     Multiple studies have addressed the problem of imatinib resistance and helped to define the major elements contributing to this occurrence. In simple terms, the mechanisms of imatinib resistance include treatment compliance excessive binding of imatinib to the plasma protein al-acid glycoprotein-1(AGP-1), increase of metabolization by the cytochrome p450 isoenzymes, changes on intracellular uptake of imatinib, Bcr-Abl overexpression and point mutations in the kinase domain of Bcr-Abl. There are many methods to research imatinib resistance. Some imatinib resistant cells were derived from CML patients, while it is useful to establish the resistant cells by adding imatinib to the culture. On the basis of the resistant cell line K562/G5.0 which was established by our laboratory before, K562/7.0 cells were induced and could be maintained in liquid culture with 7μmol/L imatinib. Then the biological characteristics of K562/G cell lines including K562/G01, K562/G3.0, K562/G5.0, K562/G7.0, and the changes of resistant mechanisms, were investigated in order to find some new targets to overcome the imatinib resistance.
     First, cell proliferation assay was performed using MTT, and IC50 for K562, K562/G01, K562/G3.0, K562/G5.0, K562/G7.0 was,0.36,4.84,14.06,36.65 and 51.26μmol/L, respectively. And there was no obviously change of doubling generation time between these cell lines. Furthermore, flow cytometric studies were performed to investigate the distribution of cell cycle, our data showed that cells in G2/M phase were increased gradually accompanied by the increase of resistant concentrations. All these results showed that the biological characteristics were changed between K562/G cell lines and K562 cells.
     To address whether there were any mutations in the ATP binding site of the Abl kinase domain, thought to be the target of imatinib, the ATP binding domains of K562 sensivive and resistant cells were sequenced and compared these to the the pubished sequences. No mutation was found in the fragment in any of the cell lines. The expression levels of Bcr-Abl, Lyn and p-gp were studied by immunoblotting. Compared with the sensitive parental line, the level of Lyn overexpressed increasing with the degree of resistance. However, the expression of p-gp was increased at lower level in K562/G01 cells and decreased at higher resistance fold in K562/G3.0, K562/G5.0 and K562/G7.0. The Bcr-Abl expression in K562/G3.0 cells was higher than that in K562, while it was reduced in K562/G5.0 and K562/G7.0 which was lower than in K562. The different changes of resistant proteins probably explained that the different results were gotten by different researchers about the resistant mechanisms.
     Proteomics can provide a global, systemic, and comprehensive approach to the identification and description of the biochemical processes, pathways, and networks involved in both normal and abnormal physiological states at the protein level. As a typical proteomic analysis, two-dimensional electrophoresis (2-DE) coupled with mass spectrometry (MS) has been used widely in research. Differences in protein expression levels were detected in cell states between K562 and K562/G cell lines by 2-DE, and 14 protein spots showing significant changes were gotten. There were 9 proteins identified via mass spectrometry correctly. Among those protein, Vimentin, Moesin, Ezrin and ANXA1 were correlated with cancer closely.
     Currently, resistance to imatinib is believed to be a consequence of the interaction of multiple factors. Different research methods may exhibit different resistant mechanisms. Varies of imatinib resistant K562/G cell lines were used to explore the changes of mechanisms, and it was found the higher expression proteins in K562/G cells by 2-DE and MS. All these results were provided experimental basis for further exploration of imatinib resistance.
引文
[1]. Pane F, Intrieri M, Quintarelli C, et al. BCR-ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations[J]. Oncogene,2002,21(56): 8652-67.
    [2]. Raitano AB, Whang YESawyers CL. Signal transduction by wild-type and leukemogenic Abl proteins[J]. Biochim Biophys Acta,1997,1333(3):F201-16.
    [3]. Faderl S, Talpaz M, Estrov Z, et al. Chronic myelogenous leukemia:biology and therapy[J]. Ann Intern Med,1999,131(3):207-19.
    [4]. Kantarjian HM, Deisseroth A, Kurzrock R, et al. Chronic myelogenous leukemia: a concise update[J]. Blood,1993,82(3):691-703.
    [5]. Kantarjian HM, Smith TL, O'Brien S, et al. Prolonged survival in chronic myelogenous leukemia after cytogenetic response to interferon-alpha therapy. The Leukemia Service[J]. Ann Intern Med,1995,122(4):254-61.
    [6]. Kantarjian HM, Cortes J, O'Brien S, et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase [J]. Blood,2002,99(10):3547-53.
    [7]. Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia[J]. N Engl J Med,2006,355(23):2408-17.
    [8]. Hochhaus A, Druker B, Sawyers C, et al. Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-alpha treatment[J]. Blood,2008,111(3):1039-43.
    [9]. Gambacorti-Passerini C, Barni R, le Coutre P, et al. Role of alphal acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571[J]. J Natl Cancer Inst,2000,92(20):1641-50.
    [10]. Dai H, Marbach P, Lemaire M, et al. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux[J]. J Pharmacol Exp Ther,2003,304(3): 1085-92.
    [11]. Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models[J]. Blood,2003,101(6): 2368-73.
    [12]. Michor F, Hughes TP, Iwasa Y, et al. Dynamics of chronic myeloid leukaemia[J]. Nature,2005,435(7046):1267-70.
    [13]. Roeder I, Horn M, Glauche I, et al. Dynamic modeling of imatinib-treated chronic myeloid leukemia:functional insights and clinical implications[J]. Nat Med, 2006,12(10):1181-4.
    [14]. Donato NJ, Wu JY, Stapley J, et al. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia[J]. Cancer Res,2004, 64(2):672-7.
    [15]. Lahaye T, Riehm B, Berger U, et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center:a 4.5-year follow-up[J]. Cancer,2005,103(8):1659-69.
    [16]. Jabbour E, Kantarjian H, Jones D, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate[J]. Leukemia,2006,20(10):1767-73.
    [17]. Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance [J]. Blood,2000,96(3):1070-9.
    [18]. Hughes TBranford S. Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia[J]. Blood Rev,2006,20(1):29-41.
    [19]. O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants[J]. Cancer Res,2005,65(11):4500-5.
    [20]. Tokarski JS, Newitt JA, Chang CY, et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants[J]. Cancer Res,2006,66(11):5790-7.
    [21]. Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4- ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays[J]. J Med Chem,2004,47(27):6658-61.
    [22]. Melnick JS, Janes J, Kim S, et al. An efficient rapid system for profiling the cellular activities of molecular libraries[J]. Proc Natl Acad Sci U S A,2006,103(9): 3153-8.
    [23]. Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor[J]. Science,2004,305(5682):399-401.
    [24]. Xu X, Williams JW, Gong H, et al. Two activities of the immunosuppressive metabolite of leflunomide, A77 1726. Inhibition of pyrimidine nucleotide synthesis and protein tyrosine phosphorylation[J]. Biochem Pharmacol,1996,52(4):527-34.
    [25]. Golemovic M, Verstovsek S, Giles F, et al. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia[J]. Clin Cancer Res,2005,11(13):4941-7.
    [26]. Corbin AS, Buchdunger E, Pascal F, et al. Analysis of the structural basis of specificity of inhibition of the Abl kinase by STI571[J]. J Biol Chem,2002,277(35): 32214-9.
    [27]. Cohen P. Protein kinases--the major drug targets of the twenty-first century?[J]. Nat Rev Drug Discov,2002,1(4):309-15.
    [28]. Rowley JD. Letter:A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining [J]. Nature,1973,243(5405):290-3.
    [29]. Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia[J]. Nature,1985,315(6020):550-4.
    [30]. Cilloni DSaglio G. CML:a model for targeted therapy [J]. Best Pract Res Clin Haematol,2009,22(3):285-94.
    [31]. Druker BJ. Translation of the Philadelphia chromosome into therapy for CML[J]. Blood,2008,112(13):4808-17.
    [32]. Salesse SVerfaillie CM. BCR-ABL:from molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia[J]. Oncogene,2002,21(56): 8547-59.
    [33]. Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells[J]. Nat Med,1996,2(5): 561-6.
    [34]. Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyro sine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative[J]. Cancer Res,1996,56(1):100-4.
    [35]. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome [J]. N Engl J Med, 2001,344(14):1038-42.
    [36]. Sawyers CL, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis:results of a phase Ⅱ study[J]. Blood,2002,99(10):3530-9.
    [37]. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification[J]. Science,2001, 293(5531):876-80.
    [38]. Quintas-Cardama A, Kantarjian HMCortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia[J]. Cancer Control, 2009,16(2):122-31.
    [39]. O'Hare T, Eide CADeininger MW. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia[J]. Blood,2007, 110(7):2242-9.
    [40]. Ernst T, Erben P, Muller MC, et al. Dynamics of BCR-ABL mutated clones prior to hematologic or cytogenetic resistance to imatinib[J]. Haematologica,2008,93(2): 186-92.
    [41]. Deininger M, Buchdunger EDruker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia[J]. Blood,2005,105(7):2640-53.
    [42]. Skaggs BJ, Gorre ME, Ryvkin A, et al. Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants[J]. Proc Natl Acad Sci U S A,2006,103(51):19466-71.
    [43]. Sawyers CL. Research on resistance to cancer drug Gleevec[J]. Science,2001, 294(5548):1834.
    [44]. Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571[J]. Blood,2003,101(2):690-8.
    [45]. Wei J, Xu G, Wu M, et al. Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation[J]. Anticancer Res,2008,28(1A): 327-34.
    [46]. Hu Y, Liu Y, Pelletier S, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL 1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia[J]. Nat Genet,2004,36(5):453-61.
    [47]. Danhauser-Riedl S, Warmuth M, Druker BJ, et al. Activation of Src kinases p53/561yn and p59hck by p210Bcr-abl in myeloid cells[J]. Cancer Res,1996,56(15): 3589-96.
    [48]. Dai Y, Rahmani M, Pei XY, et al. Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr-Abl-dependent and-independent mechanisms[J]. Blood,2004,104(2):509-18.
    [49]. Nicolini FE, Hayette S, Corm S, et al. Clinical outcome of 27 imatinib mesylate-resistant chronic myelogenous leukemia patients harboring a T315I BCR-ABL mutation[J]. Haematologica,2007,92(9):1238-41.
    [50]. Jabbour E, Kantarjian H, Jones D, et al. Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy[J]. Blood,2008,112(1):53-5.
    [51]. Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase[J]. Science,2000,289(5486):1938-42.
    [52]. Nagar B, Bornmann WG, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571)[J]. Cancer Res,2002,62(15):4236-43.
    [53]. Lee TS, Potts SJ, Kantarjian H, et al. Molecular basis explanation for imatinib resistance of BCR-ABL due to T3151 and P-loop mutations from molecular dynamics simulations [J]. Cancer,2008.
    [54]. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias[J]. N Engl J Med,2006,354(24): 2531-41.
    [55]. Grana XReddy EP. Cell cycle control in mammalian cells:role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs)[J]. Oncogene,1995,11(2):211-9.
    [56]. Das GC, Holiday D, Gallardo R, et al. Taxol-induced cell cycle arrest and apoptosis:dose-response relationship in lung cancer cells of different wild-type p53 status and under isogenic condition[J]. Cancer Lett,2001,165(2):147-53.
    [57]. Bhatia R, Holtz M, Niu N, et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment[J]. Blood,2003,101(12):4701-7.
    [58]. Kerkhoff ERapp UR. Cell cycle targets of Ras/Raf signalling[J]. Oncogene, 1998,17(11 Reviews):1457-62.
    [59]. Nosaka T, Kawashima T, Misawa K, et al. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells[J]. Embo J,1999, 18(17):4754-65.
    [60]. Riley D, Carragher NO, Frame MC, et al. The mechanism of cell cycle regulation by v-Src[J]. Oncogene,2001,20(42):5941-50.
    [61]. Irby RBYeatman TJ. Role of Src expression and activation in human cancer[J]. Oncogene,2000,19(49):5636-42.
    [62]. Bruecher-Encke B, Griffin JD, Neel BG, et al. Role of the tyrosine phosphatase SHP-1 in K562 cell differentiation[J]. Leukemia,2001,15(9):1424-32.
    [63]. Tilbrook PA, Palmer GA, Bittorf T, et al. Maturation of erythroid cells and erythroleukemia development are affected by the kinase activity of Lyn[J]. Cancer Res,2001,61(6):2453-8.
    [64]. Li S. Src kinases as targets for B cell acute lymphoblastic leukaemia therapy [J]. Expert Opin Ther Targets,2005,9(2):329-41.
    [65]. Chen Z, Lee FY, Bhalla KN, et al. Potent inhibition of platelet-derived growth factor-induced responses in vascular smooth muscle cells by BMS-354825 (dasatinib)[J]. Mol Pharmacol,2006,69(5):1527-33.
    [66]. Nam S, Kim D, Cheng JQ, et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells[J]. Cancer Res,2005,65(20): 9185-9.
    [67]. Serrels A, Macpherson IR, Evans TR, et al. Identification of potential biomarkers for measuring inhibition of Src kinase activity in colon cancer cells following treatment with dasatinib[J]. Mol Cancer Ther,2006,5(12):3014-22.
    [68]. Trevino JG, Summy JM, Lesslie DP, et al. Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model[J]. Am J Pathol,2006, 168(3):962-72.
    [69]. Johnson FM, Saigal B, Talpaz M, et al. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells[J]. Clin Cancer Res,2005,11(19 Pt1):6924-32.
    [1]. Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase[J]. Science,2000,289(5486):1938-42.
    [2]. Gleevec (STI-571) for chronic myeloid leukemia[J]. Med Lett Drugs Ther,2001, 43(1106):49-50.
    [3]. O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia[J]. N Engl J Med,2003,348(11):994-1004.
    [4]. Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia[J]. N Engl J Med,2006,355(23):2408-17.
    [5]. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome [J]. N Engl J Med,2001, 344(14):1038-42.
    [6]. Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification[J]. Science,2001, 293(5531):876-80.
    [7]. Ito T, Tanaka HKimura A. Establishment and characterization of a novel imatinib-sensitive chronic myeloid leukemia cell line MYL, and an imatinib-resistant subline MYL-R showing overexpression of Lyn[J]. Eur J Haematol,2007,78(5): 417-31.
    [8]. Picard S, Titier K, Etienne G, et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia[J]. Blood,2007,109(8):3496-9.
    [9]. Gambacorti-Passerini C, Barni R, le Coutre P, et al. Role of alphal acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571[J]. J Natl Cancer Inst,2000,92(20):1641-50.
    [10]. Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy[J]. Leukemia,2002,16(11):2190-6.
    [11]. Johansson B, Fioretos TMitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia[J]. Acta Haematol,2002,107(2):76-94.
    [12]. Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance[J]. Blood,2000,96(3):1070-9.
    [13]. Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571[J]. Blood,2003,101(2):690-8.
    [14]. Miyoshi T, Nagai T, Ohmine K, et al. Relative importance of apoptosis and cell cycle blockage in the synergistic effect of combined R115777 and imatinib treatment in BCR/ABL-positive cell lines[J]. Biochem Pharmacol,2005,69(11):1585-94.
    [15]. Blay JY, Le Cesne A, Alberti L, et al. Targeted cancer therapies[J]. Bull Cancer, 2005,92(2):E13-8.
    [16]. Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis [J]. Blood,2003,102(1):276-83.
    [17]. Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia[J]. Cancer Cell, 2002,2(2):117-25.
    [18]. Jorgensen HG, Elliott MA, Allan EK, et al. Alphal-acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571[J]. Blood,2002,99(2):713-5.
    [19]. Lange T, Park B, Willis SG, et al. BCR-ABL kinase domain mutations in chronic myeloid leukemia:not quite enough to cause resistance to imatinib therapy?[J]. Cell Cycle,2005,4(12):1761-6.
    [20]. Radich JP, Dai H, Mao M, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia[J]. Proc Natl Acad Sci U S A, 2006,103(8):2794-9.
    [21]. Miething C, Grundler R, Mugler C, et al. Retroviral insertional mutagenesis identifies RUNX genes involved in chronic myeloid leukemia disease persistence under imatinib treatment[J]. Proc Natl Acad Sci U S A,2007,104(11):4594-9.
    [22]. Weisberg EGriffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines[J]. Blood,2000, 95(11):3498-505.
    [23]. Danhauser-Riedl S, Warmuth M, Druker BJ, et al. Activation of Src kinases p53/561yn and p59hck by p210bcr/abl in myeloid cells[J]. Cancer Res,1996,56(15): 3589-96.
    [24]. Roginskaya V, Zuo S, Caudell E, et al. Therapeutic targeting of Src-kinase Lyn in myeloid leukemic cell growth[J]. Leukemia,1999,13(6):855-61.
    [25]. Wu J, Meng F, Lu H, et al. Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells[J]. Blood,2008,111(7):3821-9.
    [26]. Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models[J]. Blood,2003,101(6): 2368-73.
    [27]. Ferrao PT, Frost MJ, Siah SP, et al. Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro[J]. Blood,2003,102(13):4499-503.
    [28]. Deininger M, Buchdunger EDruker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia[J]. Blood,2005,105(7):2640-53.
    [29]. Simpson RJDorow DS. Cancer proteomics:from signaling networks to tumor markers[J]. Trends Biotechnol,2001,19(10 Suppl):S40-8.
    [30]. Preisinger C, von Kriegsheim A, Matallanas D, et al. Proteomics and phosphoproteomics for the mapping of cellular signalling networks[J]. Proteomics, 2008,8(21):4402-15.
    [31]. Ivaska J, Pallari HM, Nevo J, et al. Novel functions of vimentin in cell adhesion, migration, and signaling[J]. Exp Cell Res,2007,313(10):2050-62.
    [32]. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, et al. Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells [J]. Clin Cancer Res,2005, 11(22):8006-14.
    [33]. Domagala W, Lasota J, Dukowicz A, et al. Vimentin expression appears to be associated with poor prognosis in node-negative ductal NOS breast carcinomas [J]. Am J Pathol,1990,137(6):1299-304.
    [34]. Domagala W, Markiewski M, Harezga B, et al. Prognostic significance of tumor cell proliferation rate as determined by the MIB-1 antibody in breast carcinoma:its relationship with vimentin and p53 protein[J]. Clin Cancer Res,1996,2(1):147-54.
    [35]. Bernal SDStahel RA. Cytoskeleton-associated proteins:their role as cellular integrators in the neoplastic process[J]. Crit Rev Oncol Hematol,1985,3(3):191-204.
    [36]. Verrills NM, Liem NL, Liaw TY, et al. Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia--an in vivo study[J]. Proteomics,2006,6(5):1681-94.
    [37]. Scheuring UJ, Corbeil J, Mosier DE, et al. Early modification of host cell gene expression induced by HIV-1[J]. Aids,1998,12(6):563-70.
    [38]. Dunster LM, Schneider-Schaulies J, Dehoff MH, et al. Moesin, and not the murine functional homologue (Crry/p65) of human membrane cofactor protein (CD46), is involved in the entry of measles virus (strain Edmonston) into susceptible murine cell lines[J]. J Gen Virol,1995,76 (Pt 8):2085-9.
    [39]. Moilanen J, Lassus H, Leminen A, et al. Ezrin immunoreactivity in relation to survival in serous ovarian carcinoma patients[J]. Gynecol Oncol,2003,90(2):273-81.
    [40]. Tynninen O, Carpen O, Jaaskelainen J, et al. Ezrin expression in tissue microarray of primary and recurrent gliomas[J]. Neuropathol Appl Neurobiol,2004, 30(5):472-7.
    [41]. Hunter KW. Ezrin, a key component in tumor metastasis[J]. Trends Mol Med, 2004,10(5):201-4.
    [42]. Monni R, Haddaoui L, Naba A, et al. Ezrin is a target for oncogenic Kit mutants in murine erythroleukemia[J]. Blood,2008,111(6):3163-72.
    [43]. Gerke V, Creutz CEMoss SE. Annexins:linking Ca2+signalling to membrane dynamics[J]. Nat Rev Mol Cell Biol,2005,6(6):449-61.
    [44]. Rescher UGerke V. Annexins-unique membrane binding proteins with diverse functions[J]. J Cell Sci,2004,117(Pt 13):2631-9.
    [45]. Lecona E, Barrasa JI, Olmo N, et al. Upregulation of annexin Al expression by butyrate in human colon adenocarcinoma cells:role of p53, NF-Y, and p38 mitogen-activated protein kinase[J]. Mol Cell Biol,2008,28(15):4665-74.
    [46]. Gerke VMoss SE. Annexins:from structure to function[J]. Physiol Rev,2002, 82(2):331-71.
    [47]. Bitto E, Li M, Tikhonov AM, et al. Mechanism of annexin I-mediated membrane aggregation[J]. Biochemistry,2000,39(44):13469-77.
    [48]. Alldridge LC, Harris HJ, Plevin R, et al. The annexin protein lipocortin 1 regulates the MAPK/ERK pathway[J]. J Biol Chem,1999,274(53):37620-8.
    [49]. Wang Y, Serfass L, Roy MO, et al. Annexin-I expression modulates drug resistance in tumor cells[J]. Biochem Biophys Res Commun,2004,314(2):565-70.
    [50]. Sinha P, Hutter G, Kottgen E, et al. Increased expression of annexin I and thioredoxin detected by two-dimensional gel electrophoresis of drug resistant human stomach cancer cells[J]. J Biochem Biophys Methods,1998,37(3):105-16.
    [51]. Zhu HQ, Liu XL, Li R, et al. [Preliminary study of proteins related to blast crisis in chronic myeloid leukemia][J]. Zhonghua Zhong Liu Za Zhi,2009,31(9):655-9.
    [52]. Crossman LCO'Brien SG. Imatinib therapy in chronic myeloid leukemia[J]. Hematol Oncol Clin North Am,2004,18(3):605-17,ⅷ.
    [53]. Quintas-Cardama A, Kantarjian HMCortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia[J]. Cancer Control, 2009,16(2):122-31.
    [54]. Shadan S, Holic R, Carvou N, et al. Dynamics of lipid transfer by phosphatidylinositol transfer proteins in cells[J]. Traffic,2008,9(10):1743-56.
    [55]. Im YJHurley JH. Integrated structural model and membrane targeting mechanism of the human ESCRT-Ⅱ complex[J]. Dev Cell,2008,14(6):902-13.
    [56]. Scatena R, Bottoni P, Pontoglio A, et al. Glycolytic enzyme inhibitors in cancer treatment[J]. Expert Opin Investig Drugs,2008,17(10):1533-45.
    [57]. Dyer KD, Lavigne MCRosenberg HF. Hsp70RY:further characterization of a novel member of the hsp70 protein family[J]. Biochem Biophys Res Commun,1994, 203(1):577-81.
    [58]. Gotoh K, Nonoguchi K, Higashitsuji H, et al. Apg-2 has a chaperone-like activity similar to Hsp110 and is overexpressed in hepatocellular carcinomas [J]. FEBS Lett,2004,560(1-3):19-24.
    [1]. Geary CG. The story of chronic myeloid leukaemia[J]. Br J Haematol,2000, 110(1):2-11.
    [2]. Rowley JD. Letter:A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining[J]. Nature,1973,243(5405):290-3.
    [3]. Deininger MW, Goldman JMMelo JV. The molecular biology of chronic myeloid leukemia[J]. Blood,2000,96(10):3343-56.
    [4]. Kantarjian HM, Talpaz M, Giles F, et al. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance [J]. Ann Intern Med,2006,145(12): 913-23.
    [5]. Padmanabhan S, Ravella S, Curiel T, et al. Current status of therapy for chronic myeloid leukemia:a review of drug development J]. Future Oncol,2008,4(3): 359-77.
    [6]. Melo JVBarnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer[J]. Nat Rev Cancer,2007,7(6):441-53.
    [7]. Pavlovsky C, Kantarjian HCortes JE. First-line therapy for chronic myeloid leukemia:Past, present, and future[J]. Am J Hematol,2009,84(5):287-93.
    [8]. Hehlmann R, Heimpel H, Hasford J, et al. Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. The German CML Study Group[J]. Blood,1994,84(12):4064-77.
    [9]. Faderl S, Talpaz M, Estrov Z, et al. Chronic myelogenous leukemia:biology and therapy[J]. Ann Intern Med,1999,131(3):207-19.
    [10]. Kantarjian HM, Deisseroth A, Kurzrock R, et al. Chronic myelogenous leukemia: a concise update[J]. Blood,1993,82(3):691-703.
    [11]. Cift RA, Buckner CD, Thomas ED, et al. Marrow transplantation for patients in accelerated phase of chronic myeloid leukemia[J]. Blood,1994,84(12):4368-73.
    [12]. Interferon alfa versus chemotherapy for chronic myeloid leukemia:a meta-analysis of seven randomized trials:Chronic Myeloid Leukemia Trialists' Collaborative Group[J]. J Natl Cancer Inst,1997,89(21):1616-20.
    [13]. Guilhot F, Chastang C, Michallet M, et al. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group[J]. N Engl J Med,1997,337(4):223-9.
    [14]. Kantarjian HM, O'Brien S, Smith TL, et al. Treatment of Philadelphia chromosome-positive early chronic phase chronic myelogenous leukemia with daily doses of interferon alpha and low-dose cytarabine[J]. J Clin Oncol,1999,17(1): 284-92.
    [15]. Bonifazi F, de Vivo A, Rosti G, et al. Chronic myeloid leukemia and interferon-alpha:a study of complete cytogenetic responders[J]. Blood,2001,98(10): 3074-81.
    [16]. Kantarjian HM, O'Brien S, Cortes JE, et al. Complete cytogenetic and molecular responses to interferon-alpha-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis[J]. Cancer,2003,97(4):1033-41.
    [17]. Raitano AB, Whang YESawyers CL. Signal transduction by wild-type and leukemogenic Abl proteins[J]. Biochim Biophys Acta,1997,1333(3):F201-16.
    [18]. Cilloni DSaglio G. CML:a model for targeted therapy [J]. Best Pract Res Clin Haematol,2009,22(3):285-94.
    [19]. Amarante-Mendes GP, Naekyung Kim C, Liu L, et al. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3[J]. Blood,1998, 91(5):1700-5.
    [20]. Salesse SVerfaillie CM. BCR/ABL:from molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia[J]. Oncogene,2002,21(56): 8547-59.
    [21]. O'Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia[J]. N Engl J Med,2003,348(11):994-1004.
    [22]. Druker BJ, Guilhot F, O'Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia[J]. N Engl J Med,2006,355(23): 2408-17.
    [23]. Hochhaus A, O'Brien SG, Guilhot F, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia[J]. Leukemia,2009,23(6):1054-61.
    [24]. Talpaz M, Silver RT, Druker BJ, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study [J]. Blood,2002,99(6):1928-37.
    [25]. Sawyers CL, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis:results of a phase Ⅱ study[J]. Blood,2002,99(10):3530-9.
    [26]. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome [J]. N Engl J Med, 2001,344(14):1038-42.
    [27]. Gambacorti-Passerini C, Barni R, le Coutre P, et al. Role of alphal acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571[J]. J Natl Cancer Inst,2000,92(20):1641-50.
    [28]. Dai H, Marbach P, Lemaire M, et al. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux[J]. J Pharmacol Exp Ther,2003,304(3): 1085-92.
    [29]. Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models[J]. Blood,2003,101(6): 2368-73.
    [30]. Michor F, Hughes TP, Iwasa Y, et al. Dynamics of chronic myeloid leukaemia[J]. Nature,2005,435(7046):1267-70.
    [31]. Roeder I, Horn M, Glauche I, et al. Dynamic modeling of imatinib-treated chronic myeloid leukemia:functional insights and clinical implications [J]. Nat Med, 2006,12(10):1181-4.
    [32]. Donato NJ, Wu JY, Stapley J, et al. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia[J]. Cancer Res,2004, 64(2):672-7.
    [33]. Lahaye T, Riehm B, Berger U, et al. Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center:a 4.5-year follow-up[J]. Cancer,2005,103(8):1659-69.
    [34]. Jabbour E, Kantarjian H, Jones D, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate[J]. Leukemia,2006,20(10):1767-73.
    [35]. Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance[J]. Blood,2000,96(3):1070-9.
    [36]. Hughes TBranford S. Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia[J]. Blood Rev,2006,20(1):29-41.
    [37]. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias[J]. N Engl J Med,2006,354(24): 2531-41.
    [38]. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL[J]. N Engl J Med,2006,354(24):2542-51.
    [39]. Puttini M, Coluccia AM, Boschelli F, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+neoplastic cells[J]. Cancer Res,2006,66(23):11314-22.
    [40]. O'Hare T, Walters DK, Stoffregen EP, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants[J]. Cancer Res,2005,65(11):4500-5.
    [41]. Tokarski JS, Newitt JA, Chang CY, et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants[J]. Cancer Res,2006,66(11):5790-7.
    [42]. Kantarjian HM, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance [J]. Blood,2007,110(10):3540-6.
    [43]. le Coutre P, Ottmann OG, Giles F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or-intolerant accelerated-phase chronic myelogenous leukemia[J]. Blood,2008,111(4):1834-9.
    [44]. Bradeen HA, Eide CA, O'Hare T, et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen:high efficacy of drug combinations [J]. Blood,2006, 108(7):2332-8.
    [45]. Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor[J]. Science,2004,305(5682):399-401.
    [46]. Cortes J, Jabbour E, Kantarjian H, et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors [J]. Blood,2007,110(12):4005-11.
    [47]. Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase[J]. Science,2000,289(5486):1938-42.
    [48]. Nagar B, Bornmann WG, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571)[J]. Cancer Res,2002,62(15):4236-43.
    [49]. O'Hare T, Pollock R, Stoffregen EP, et al. Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: implications for CML[J]. Blood,2004,104(8):2532-9.
    [50]. Azam M, Nardi V, Shakespeare WC, et al. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance[J]. Proc Natl Acad Sci USA,2006,103(24):9244-9.
    [51]. O'Hare T, Shakespeare WC, Zhu X, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance[J]. Cancer Cell,2009,16(5):401-12.
    [52]. Kimura S, Ashihara EMaekawa T. New tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia[J]. Curr Pharm Biotechnol,2006,7(5):371-9.
    [53]. Naito H, Kimura S, Nakaya Y, et al. In vivo antiproliferative effect of NS-187, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor, on leukemic cells harbouring Abl kinase domain mutations[J]. Leuk Res,2006,30(11):1443-6.
    [54]. Dorsey JF, Jove R, Kraker AJ, et al. The pyrido[2,3-d]pyrimidine derivative PD180970 inhibits p210Bcr-Abl tyrosine kinase and induces apoptosis of K562 leukemic cells[J]. Cancer Res,2000,60(12):3127-31.
    [55]. Gumireddy K, Baker SJ, Cosenza SC, et al. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance [J]. Proc Natl Acad Sci U S A,2005,102(6): 1992-7.
    [56]. Wu J, Meng F, Ying Y, et al. ON012380, a putative BCR-ABL kinase inhibitor with a unique mechanism of action in imatinib-resistant cells[J]. Leukemia,24(4): 869-72.
    [57]. Giles FJ, Cortes J, Jones D, et al. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation[J]. Blood,2007,109(2):500-2.
    [58]. Macarulla T, Ramos FJTabernero J. Aurora kinase family:a new target for anticancer drug[J]. Recent Pat Anticancer Drug Discov,2008,3(2):114-22.
    [59]. Carter TA, Wodicka LM, Shah NP, et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases[J]. Proc Natl Acad Sci U S A,2005,102(31): 11011-6.
    [60]. Young MA, Shah NP, Chao LH, et al. Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680[J]. Cancer Res,2006,66(2):1007-14.
    [61]. Donato NJ, Fang D, Sun H, et al. Targets and effectors of the cellular response to aurora kinase inhibitor MK-0457 (VX-680) in imatinib sensitive and resistant chronic myelogenous leukemia[J]. Biochem Pharmacol,79(5):688-97.
    [62]. Carpinelli P, Ceruti R, Giorgini ML, et al. PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer[J]. Mol Cancer Ther,2007,6(12 Pt 1):3158-68.
    [63]. Gontarewicz ABrummendorf TH. Danusertib (formerly PHA-739358)--a novel combined pan-Aurora kinases and third generation Bcr-Abl tyrosine kinase inhibitor[J]. Recent Results Cancer Res,184:199-214.
    [64]. Modugno M, Casale E, Soncini C, et al. Crystal structure of the T315I Abl mutant in complex with the aurora kinases inhibitor PHA-739358[J]. Cancer Res, 2007,67(17):7987-90.
    [65]. Pellicano F, Copland M, Jorgensen HG, et al. BMS-214662 induces mitochondrial apoptosis in chronic myeloid leukemia (CML) stem/progenitor cells, including CD34+38-cells, through activation of protein kinase Cbeta[J]. Blood,2009, 114(19):4186-96.
    [66]. Copland M, Pellicano F, Richmond L, et al. BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors [J]. Blood,2008,111(5):2843-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700