维持体外扩增脐带血干细胞干性:下调异常升高的ROS和p38MAPKα信号
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分细胞内ROS对脐带血CD133+细胞体外扩增特性的影响
     目的:使用抗氧化剂NAC调节体外扩增细胞内活性氧水平,评估ROS对脐带血CD133+细胞体外扩增特性的影响,并初步探讨其作用机制。
     方法:建立脐带血CD133+细胞无血清培养体系,CD133+细胞培养过程中分别采用不同浓度的抗氧化剂NAC清除细胞内ROS,检测不同时间点细胞内ROS水平,并通过CD133+细胞亚群变化、CFU及CAFC评估扩增后细胞功能。同时检测扩增后细胞增殖(CFSE)、细胞凋亡、衰老表型及相关基因p16INK4和p21WAF1的表达,探讨ROS作用机制。
     结果:脐带血CD133+细胞体外扩增过程中胞内ROS升高,并伴随着HSC自我更新能力损伤。抗氧化剂NAC可以有效清除胞内ROS,并且清除程度与药物剂量呈正相关。其中低剂量处理组(0.1mmol/L)的CD133+细胞扩增倍数、产生CFU细胞密度、CAFC形成能力均高于对照组(p<0.05)。NAC高剂量组(1.0mmol/L)CD133+细胞扩增倍数低于对照组(p<0.01),但CFU及CAFC形成能力强于对照组(p<0.01)。NAC可以明显抑制凋亡率、衰老形成、及衰老相关蛋白的转录。高剂量的NAC抑制细胞增殖水平。
     结论:ROS参与调节CD133+细胞体外扩增,适当的降低ROS可促进扩增细胞干性的维持,过度清除ROS则抑制细胞增殖。ROS主要通过调控细胞增殖、凋亡及衰老途径发挥作用。
     第二部分抑制活化的p38 MAPKα促进脐带血造血干细胞体外扩增
     目的:应用p38MAPKα抑制剂及NOD/SCID小鼠人造血干细胞移植模型评估p38MAPKα对脐带血CD133+细胞体外扩增特性的影响,并初步探讨其作用机制。
     方法:建立脐带血CD133+细胞无血清无基质培养体系,CD133+细胞培养过程中采用p38MAPKα抑制剂阻断p38MAPKα活化,检测不同时间点及不同处理组细胞内p38MAPK活性,并通过CD133+细胞亚群变化、CFU、CAFC、细胞迁移率及CXCR4表达水平评估扩增后细胞特性,运用NOD/SCID小鼠人造血干细胞移植模型评估扩增后细胞长期造血重建能力。同时检测扩增后细胞CFSE增殖、细胞凋亡、衰老表型及相关基因p16INK4和p21WAF1的表达,探讨p38MAPKα作用机制。
     结果:细胞体外扩增过程中p38MAPKa被激活,并伴随着HSC自我更新能力损伤。p38MAPKα抑制剂抑制p38MAPKα活化后,促进了脐带血CD133+细胞体外扩增,代表早期干祖细胞的CD133+细胞亚群、CD133+CD38-细胞亚群、CD133+CXCR4+细胞亚群、CFU-GEMM及CAFC相较于对照组均明显增加(p<0.01)。NOD/SCID小鼠人造血干细胞移植模型中,p38MAPKa抑制剂组的移植物植入率及移植物嵌合率均高于对照组(p<0.01)。机制检测显示p38MAPKα抑制剂可以明显抑制凋亡率、衰老形成、及衰老相关蛋白的转录,促进细胞向髓系祖分化,对细胞分裂增殖无明显作用。
     结论:p38MAPKα参与调节CD133+细胞体外扩增,抑制p38MAPKα激活可促进HSC扩增,并维持HSC干性。主要通过抑制细胞凋亡及衰老途径发挥作用。
     第三部分ROS与p38MAPKα在脐带血CD133+细胞体外扩增中的相互关系的研究
     目的:分别单用或联合应用p38MAPKa抑制剂SB203580及抗氧化剂NAC调节体外扩增,比较与评估不同作用靶点对脐带血CD133+细胞体外扩增特性的影响,探讨ROS与p38MAPK在脐带血CD133+细胞体外扩增中的相互关系。
     方法:分别采用不加药物、单用p38MAPKa抑制剂SB203580、单用抗氧化剂NAC、联合应用p38MAPKα抑制剂SB203580及抗氧化剂NAC干预体外扩增,监测胞内ROS水平及p38MAPK活化状态,通过CD133+细胞亚群变化、CFU及CAFC评估并比较各处理组扩增后细胞特性差异。
     结果:两药联用下ROS抑制作用最强,下降到同期对照组的15.3±2.1%,SB203580处理组为52.0±7.8%,NAC组为63.4±9.0%,SB抑制效果优于NAC。p38MAPKα抑制剂及抗氧化剂NAC对p38MAPKa活化均有抑制作用。相对于初始细胞,SB组扩增效率最高,CD133+细胞扩增了21.93±1.36倍,NAC组扩增了14.50±1.19倍,对照组仅扩增了10.13±0.57倍,而药物联用组几乎没有扩增。CFU及CAFC结果均显示SB组优于NAC组。
     结论:p38MAPKα作为靶点调控HSC体外扩增效果优于ROS;胞内ROS调控造血生成;ROS-p38MAPK通路上并非单向传递信息,存在p38MAPK至ROS的反馈循环。
Object:To investigate the effect and mechanism of reactive oxygen species on the ex vivo expasion of umbilical cord blood CD133+cells.
     Methhod:A serum-and stroma-free culture system for umbilical cord blood CD133+cell ex vivo expansion was established. The levels of ROS, which reduced by antioxidant NAC in different concentration, were detected in several time points during the culture. HSC ability was investigated through the density of CD133+cell subgroup、CFU assay and 28day CAFC assay. The mechanism studies were performed, such as Carboxyfluorescein diacetate succinimidyl ester labeling、apoptosis assay、Senescence-associated (3 galactosidase (SA-(3-gal) staining and the expression of human p16INK4/p21WAF1
     Results:Accompanying with the impairment of HSC selfrenewal, the generation of intracellular ROS was increased during ex vivo expansion. The antioxidant NAC could eliminate ROS effectively according to the concentration. Otherwise, CD133+cells were increased in all groups, low-dose NAC led a higher increase than control group (p<0.05), but cell expansion was less in high-dose group (p<0.01). Furthermore, the numbers of CFU and CAFCs were hold in high levels in both of the NAC treated groups. Mechanism studies showed that NAC acted by suppressing proliferation, apoptosis and senescence.
     Conclusion:The ex vivo expasion of umbilical cord blood CD133+cells was regulated by the generation of intracellular ROS, which was acting through regulation of proliferation, apoptosis and senescence. HSC sternness could maintain in appropriate reduction of ROS, but over reduction could harm the proliferation of HSC.
     Object:To investigate the effect and mechanism of p38 MAPK on the ex vivo expasion of UCB CD 133+cells.
     Methhod:A serum-and stroma-free culture system for umbilical cord blood CD133+cell ex vivo expansion was established. During the culture, the activation of p38 MAPK was abrogated by SB203580, and the expression of P-P38 was detected in several time point. HSC ability was investigated through the density of CD133+cell subgroup、CFU assay、28day CAFC assay、migration rate and the expression of CXCR4. Repopulation ability was detected in NOD/SCID mice transplantation model. The mechanism studies were performed, such as Carboxyfluorescein diacetate succinimidyl ester labeling、apoptosis assay、Senescence-associated (3 galactosidase (SA-(3-gal) staining and the expression of humanp16INK4/p21WAFI.
     Results:Accompanying with the impairment of HSC selfrenewal, the activation of p38 MAPK was detected during the ex vivo expansion. SB203580 could abrogate the activation. Compared to control group, SB203580 enhanced expansion of early progenitors (CD133+ CD133+CD38-,CD133+CXCR4+, CFU-GEMM and CAFCs) after 7 d of culture (p<0.01). Furthermore, a robust human hematopoietic chimerism and rapid pace of engraftment were observed in non-obese diabetic severe combined immunodeficient mice, which were transplanted with SB203580-treated cells. Mechanism studies showed that SB203580 acted by suppressing apoptosis and senescence, but not by increasing proliferation and inhibiting differentiation.
     Conclusion:Inhibition of p38 MAPK promotes the ex vivo expansion and maintains the stemness of human HSCs during ex vivo expansion, which mainly via inhibiting of senescence and apoptosis.
     Object:To investigate the correlation and compare the effects of ROS and p38MAPK in the ex vivo expansion of UCB CD133+cells.
     Method:Besides the control group, UCB CD133+cells were cultured with NACn SB203580 or combination. The levels of ROS and expression of P-P38 were detected. The effects of expansion were evaluated by the density of CD133+cell subgroup、CFU assay and CAFC assay.
     Results:ROS was eliminated in all the three treated groups, a net 85%reduction of ROS was observed in combination group, while the ROS was reduced by 48%in SB203580 group and 37% in NAC group. Ferthermore, both SB203580 and NAC could abrogate the activation of p38 MAPK. Besides, the CD133+cells were expansion in SB group by 21.93±1.36 fold increase, in control group the number was 10.13±0.57; and NAC led a 14.50±1.19-fold increase. But the CD133+cells barely expansion in the combination group. In addition, the numbers of CFU and CAFCs were hold in higher levels in SB group compare to others.
     Conclusion:compare to elimination of ROS, Inhibition of p38MAPK producted a better effects on the ex vivo expansion of UCB CD133+cells; reactive oxygen species levels regulate hematopoiesis; ROS activate p38 MAPK, which further promotes ROS generation, forming a positive feedback loop to sustain ROS-p38 kinase signaling.
引文
[1]Kelly SS, Sola CB, de Lima M, Shpall E. Ex vivo expansion of cord blood. Bone Marrow Transplant 2009;44(10):673-81.
    [2】 Noll T, Jelinek N, Schmid S, Biselli M, Wandrey C. Cultivation of hematopoietic stem and progenitor cells:biochemical engineering aspects. Adv Biochem Eng Biotechnol 2002;74:111-28.
    [3】 Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279(6):L 1005-28.
    [4]Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 2000;28(10):1456-62.
    [5]Sharkis YJAS.17 A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110:3056-63.
    [6]Ivanovic Z, Dello SP, Trimoreau F, Faucher JL, Praloran V. Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 2000;40(12):1482-8.
    [7]Dworakowski R, Anilkumar N, Zhang M, Shah AM. Redox signalling involving NADPH oxidase-derived reactive oxygen species. Biochem Soc Trans 2006;34(Pt 5):960-4.
    [8】Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998;78(2):547-81.
    [9]Li Q, Cai H, Liu Q, Tan WS. Differential gene expression of human CD34+ hematopoietic stem and progenitor cells before and after culture. Biotechnol Lett 2006;28(6):389-94.
    [10]Faucher K, Rabinovitch-Chable H, Barriere G, Cook-Moreau J, Rigaud M. Overexpression of cytosolic glutathione peroxidase (GPX1) delays endothelial cell growth and increases resistance to toxic challenges. Biochimie 2003;85(6):611-7.
    [11]Hermitte F, Brunet DLGP, Belloc F, Praloran V, Ivanovic Z. Very low 02 concentration (0.1%) favors GO return of dividing CD34+cells. Stem Cells 2006;24(1):65-73.
    [12]Ivanovic Z, Hermitte F, Brunet DLGP, et al.. Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells 2004;22(5):716-24
    [13]Miyamoto K, Araki KY, Naka K, et al.. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007;1(1):101-12.
    [14]Wang Y, Liu L, Pazhanisamy SK, Li H, Meng A, Zhou D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic Biol Med 2010;48(2):348-56.
    [15】 Sargis RM, Subbaiah PV. Protection of membrane cholesterol by sphingomyelin against free radical-mediated oxidation. Free Radic Biol Med 2006;40(12): 2092-102.
    [16]Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007;110(8):3056-63.
    [17]Ito K, Hirao A, Arai F, et al.. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004;431(7011):997-1002.
    [18】 Ito K, Hirao A, Arai F, et al.. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006; 12(4):446-51.
    [19]Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal 2008;10(11):1923-40.
    【20】 Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009;461(7263):537-41.
    [21]Vincent A, Crozatier M. Neither too much nor too little:reactive oxygen species levels regulate Drosophila hematopoiesis. J Mol Cell Biol 2010;2(2):74-5.
    [1]Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81(2):807-69.
    [2]Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 2009;86(2):237-50.
    [3]Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004;23(16):2838-49.
    [4]Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005;15(1):11-8.
    [5]Hale KK, Trollinger D, Rihanek M, Manthey CL. Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol 1999;162(7):4246-52.
    [6]Somervaille TC, Linch DC, Khwaja A. Different levels of p38 MAP kinase activity mediate distinct biological effects in primary human erythroid progenitors. Br J Haematol 2003;120(5):876-86.
    [7]Nagata Y, Moriguchi T, Nishida E, Todokoro K. Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3. Blood 1997;90(3):929-34.
    [8]Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement for p38alpha in erythropoietin expression:a role for stress kinases in erythropoiesis. Cell 2000; 102(2):221-31
    [9]Hui L, Bakiri L, Mairhorfer A, et al.. p38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat Genet 2007;39(6):741-9.
    [10]Zhou L, Opalinska J, Verma A. p38 MAP kinase regulates stem cell apoptosis in human hematopoietic failure. Cell Cycle 2007;6(5):534-7.
    [11]Katsoulidis E, Li Y, Yoon P, et al.. Role of the p38 mitogen-activated protein kinase pathway in cytokine-mediated hematopoietic suppression in myelodysplastic syndromes. Cancer Res 2005;65(19):9029-37.
    [12]Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006;12(4):446-51.
    [13]Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110
    [14]Verma A, Deb DK, Sassano A, et al. Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis. J Biol Chem 2002;277(10):7726-35.
    [15]Nagata Y, Moriguchi T, Nishida E, Todokoro K. Activation of p38 MAP kinase pathway by erythropoietin and interleukin-3. Blood 1997;90(3):929-34.
    [16]Gluckman E, Rocha V, Arcese W, et al. Factors associated with outcomes of unrelated cord blood transplant:guidelines for donor choice. Exp Hematol 2004;32(4):397-407.
    [17]Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation:growing knowledge from the hematopoietic niche. Bone Marrow Transplant 2007;39(1):11-23.
    [18]Kelly SS, Sola CB, de Lima M, Shpall E. Ex vivo expansion of cord blood. Bone Marrow Transplant 2009;44(10):673-81.
    [19]Yamaguchi M, Hirayama F, Kanai M, et al.. Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitors and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Exp Hematol 2001;29(2):174-82.
    [20]Koller MR, Emerson SG, Palsson BO. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 1993;82(2):378-84.
    [21]Collins PC, Miller WM, Papoutsakis ET. Stirred culture of peripheral and cord blood hematopoietic cells offers advantages over traditional static systems for clinically relevant applications. Biotechnol Bioeng 1998;59(5):534-43.
    [22]Devine SM, Lazarus HM, Emerson SG. Clinical application of hematopoietic progenitor cell expansion:current status and future prospects. Bone Marrow Transplant 2003;31(4)
    [23]Mobest D, Goan SR, Junghahn I, et al.. Differential kinetics of primitive hematopoietic cells assayed in vitro and in vivo during serum-free suspension culture of CD34+blood progenitor cells. Stem Cells 1999; 17(3):152-61.
    [24]Goff JP, Shields DS, Greenberger JS. Influence of cytokines on the growth kinetics and immunophenotype of daughter cells resulting from the first division of single CD34(+)Thy-1(+)lin-cells. Blood 1998;92(11):4098-107.
    [25]Saadatzadeh MR, Bijangi-Vishehsaraei K, Kapur R, Haneline LS. Distinct roles of stress-activated protein kinases in Fanconi anemia-type C-deficient hematopoiesis. Blood 2009;113(12):2655-60.
    [26]Miyamoto K, Araki KY, Naka K, et al.. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1(1):101-12.
    [27]Tothova Z, Kollipara R, Huntly BJ, et al.. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007;128(2):325-39.
    [28]Cirillo PF, Pargellis C, Regan J. The non-diaryl heterocycle classes of p38 MAP kinase inhibitors. Curr Top Med Chem 2002;2(9):1021-35.
    [29]Liu C, Chen BJ, Deoliveira D, Sempowski GD, Chao NJ, Storms RW. Progenitor cell dose determines the pace and completeness of engraftment in a xenograft model for cord blood transplantation. Blood 2010;116(25):5518-27.
    [30]Peled A, Petit I, Kollet O, et al.. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999;283(5403):845-8.
    [31]Lapidot T, Kollet O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 2002;16(10):1992-2003.
    [32]Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 2008;205(4):777-83.
    [33]Iwasa H, Han J, Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 2003;8(2):131-44.
    [34]Kwong J, Hong L, Liao R, Deng Q, Han J, Sun P. p38alpha and p38gamma mediate oncogenic ras-induced senescence through differential mechanisms. J Biol Chem 2009;284(17):11237-46
    【1】 Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;552(Pt 2):335-44
    【2】 Tatla S, Woodhead V, Foreman JC, Chain BM. The role of reactive oxygen species in triggering proliferation and IL-2 secretion in T cells. Free Radic Biol Med 1999;26(1-2):14-24.
    【3】 Ito K, Hirao A, Arai F, et al.. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006;12(4):446-51.
    【4] Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81(2):807-69.
    【5】 Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 2009;86(2):237-50.
    【6】 Goff JP, Shields DS, Greenberger JS. Influence of cytokines on the growth kinetics and immunophenotype of daughter cells resulting from the first division of single CD34(+)Thy-1(+)lin-cells. Blood 1998;92(11):4098-107.
    【7】 Mobest D, Goan SR, Junghahn I, et al.. Differential kinetics of primitive hematopoietic cells assayed in vitro and in vivo during serum-free suspension culture of CD34+blood progenitor cells. Stem Cells 1999;17(3):152-61.
    [8]Kelly SS, Sola CB, de Lima M, Shpall E. Ex vivo expansion of cord blood. Bone Marrow Transplant 2009;44(10):673-81.
    [9]Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007;110(8):3056-63.
    [10】 Wang Y, Liu L, Pazhanisamy SK, Li H, Meng A, Zhou D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic Biol Med 2010;48(2):348-56.
    [11】 Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007;1(1):101-12.
    [12]Meng A, Wang Y, Van Zant G, Zhou D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res 2003;63(17):5414-9.
    [13]Iwasa H, Han J, Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 2003;8(2):131-44.
    [14]Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010;115(20):4030-8.
    [15]Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal 2008;10(11):1923-40.
    [16]Vincent A, Crozatier M. Neither too much nor too little:reactive oxygen species levels regulate Drosophila hematopoiesis. J Mol Cell Biol 2010;2(2):74-5.
    [17]Hong EH, Lee SJ, Kim JS, et al.. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem 2010;285(2):1283-95.
    【1】 Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;552(Pt 2):335-44
    【2】 Tatla S, Woodhead V, Foreman JC, Chain BM. The role of reactive oxygen species in triggering proliferation and IL-2 secretion in T cells. Free Radic Biol Med 1999;26(1-2):14-24.
    [3]Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension:clinical implications and therapeutic possibilities. Diabetes Care 2008;31 Supp12:S 170-80.
    [4]Nauseef WM. Biological roles for the NOX family NADPH oxidases. J Biol Chem 2008;283(25):16961-5.
    [5】 Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87(1):245-313
    [6]Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants, and human disease:where are we now? J Lab Clin Med 1992;119(6):598-620.
    [7]Haddad JJ, Olver RE, Land SC. Antioxidant/pro-oxidant equilibrium regulates HIF-lalpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. J Biol Chem 2000;275(28):21130-9.
    [8]Saugstad OD. Bronchopulmonary dysplasia and oxidative stress:are we closer to an understanding of the pathogenesis of BPD? Acta Paediatr 1997;86(12):1277-82.
    [9]Roum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 1993;75(6):2419-24.
    [10】 Bjornstedt M, Xue J, Huang W, Akesson B, Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 1994;269(47):29382-4.
    [11】 Das DK. Thioredoxin regulation of ischemic preconditioning. Antioxid Redox Signal 2004;6(2):405-12.
    [12】 Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 1997; 15:351-69.
    [13】 Czech MP. Differential effects of sulfhydryl reagents on activation and deactivation of the fat cell hexose transport system. J Biol Chem 1976;251(4):1164-70.
    [14]Whitacre CM, Cathcart MK. Oxygen free radical generation and regulation of proliferative activity of human mononuclear cells responding to different mitogens. Cell Immunol 1992;144(2):287-95.
    [15]Burdon RH, Gill V. Cellularly generated active oxygen species and HeLa cell proliferation. Free Radic Res Commun 1993;19(3):203-13.
    [16]Burdon RH, Alliangana D, Gill V. Endogenously generated active oxygen species and cellular glutathione levels in relation to BHK-21 cell proliferation. Free Radic Res 1994;21(3):121-33.
    [17]Bauer G. Reactive oxygen and nitrogen species:efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res 2000;20(6B):4115-39.
    [18】 Mohler ER, Franklin MT, Adam LP. Intracellular signaling by 8-epi-prostaglandin F2 alpha is mediated by thromboxane A2/prostaglandin endoperoxide receptors in porcine carotid arteries. Biochem Biophys Res Commun 1996;225(3):915-23.
    [19]Touyz RM. Reactive oxygen species as mediators of calcium signaling by angiotensin Ⅱ:implications in vascular physiology and pathophysiology. Antioxid Redox Signal 2005;7(9-10):1302-14.
    [20]Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin 2006;27(7):821-6.
    [21]Maher J, Yamamoto M. The rise of antioxidant signaling--the evolution and hormetic actions of Nrf2. Toxicol Appl Pharmacol 2010;244(1):4-15.
    【22] Webb JD, Coleman ML, Pugh CW. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 2009;66(22):3539-54.
    [23]Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008;132(3):344-62.
    [24】 Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 2000;28(9):1317-27.
    [25]Glineur C, Davioud-Charvet E, Vandenbunder B. The conserved redox-sensitive cysteine residue of the DNA-binding region in the c-Rel protein is involved in the regulation of the phosphorylation of the protein. Biochem J 2000;352 Pt 2:583-91.
    [26]Hainaut P, Milner J. Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res 1993;53(19):4469-73.
    [27]Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K. Role of cysteine residues in regulation of p53 function. Mol Cell Biol 1995;15(7):3892-903.
    [28]Puca R, Nardinocchi L, Starace G, et al. Noxl is involved in p53 deacetylation and suppression of its transcriptional activity and apoptosis. Free Radic Biol Med 2010;48(10):1338-46.
    [29]Xanthoudakis S, Miao G, Wang F, Pan YC, Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. Embo J 1992;11(9):3323-35.
    [30]Huang RP, Adamson ED. Characterization of the DNA-binding properties of the early growth response-1 (Egr-1) transcription factor:evidence for modulation by a redox mechanism. Dna Cell Biol 1993;12(3):265-73.
    [31]Tell G, Zecca A, Pellizzari L, et al.. Anenvironment to nucleus signaling system operates in B lymphocytes:redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation. Nucleic Acids Res 2000;28(5):1099-105.
    [32]Cao X, Kambe F, Ohmori S, Seo H. Oxidoreductive modification of two cysteine residues in paired domain by Ref-1 regulates DNA-binding activity of Pax-8. Biochem Biophys Res Commun 2002;297(2):288-93.
    [33]Demple B, Herman T, Chen DS. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease:definition of a family of DNA repair enzymes. Proc Natl Acad Sci U S A 1991;88(24):11450-4.
    [34]Robson CN, Hickson ID. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res 1991;19(20):5519-23.
    [35]Tell G, Quadrifoglio F, Tiribelli C, Kelley MR. The many functions of APE1/Ref-1:not only a DNA repair enzyme. Antioxid Redox Signal 2009;11(3):601-20.
    [36]Orkin SH, Zon LI. Hematopoiesis and stem cells:plasticity versus developmental heterogeneity. Nat Immunol 2002;3(4):323-8.
    [37]Orkin SH, Zon LI. Hematopoiesis:an evolving paradigm for stem cell biology. Cell 2008; 132(4):631-44.
    [38]Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4(1-2):7-25.
    [39]Fuchs EJ, Whartenby KA. Hematopoietic stem cell transplant as a platform for tumor immunotherapy. Curr Opin Mol Ther 2004;6(1):48-53.
    [40]Morrison SJ, Spradling AC. Stem cells and niches:mechanisms that promote stem cell maintenance throughout life. Cell 2008;132(4):598-611.
    [41]Naka K, Ohmura M, Hirao A. Regulation of the self-renewal ability of tissue stem cells by tumor-related genes. Cancer Biomark 2007;3(4-5):193-201.
    [42]Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A 1999;96(6):3120-5
    [43]Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010;115(20):4030-8.
    [44]Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007;110(8):3056-63.
    [45】 Coffer PJ, Burgering BM. Stressed marrow:FoxOs stem tumour growth. Nat Cell Biol2007;9(3):251-3.
    [46]Tothova Z, Kollipara R, Huntly BJ, et al.. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007;128(2):325-39.
    [47]Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007; 1(2):140-52.
    [48】 Miyamoto K, Araki KY, Naka K, et al.. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1(1):101-12.
    [49】 Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009;461(7263):537-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700