辐射导致长期骨髓抑制的机制及MnTE骨髓辐射保护作用的试验观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的电离辐射(ionizing radiation, IR)不仅引起急性组织损伤,也可导致长期的组织损伤,如长期骨髓抑制(long-term bone marrow depression)。导致长期骨髓抑制的主要原因是IR诱导的造血干细胞(hematopoietic stem cells, HSCs)衰老。然而,目前不仅IR引起HSCs衰老的分子机制尚未阐明,而且临床上也缺乏治疗长期骨髓抑制的有效手段。本课题对辐射导致的长期骨髓抑制的机制进行了深入研究,并探讨超氧化物歧化酶模拟化合物MnTE对骨髓长期抑制的治疗作用,为开发新的治疗长期骨髓抑制的药物提供实验基础。
     方法8-10周雄性C57BL/6-Ly-5.2小鼠分为对照组、照射组(亚致死剂量6.5Gy TBI)和照射后给药组(NADPH氧化酶抑制剂DPI;抗氧化剂MnTE)。给药2个月后取小鼠骨髓,进行以下分析:梯度离心分离小鼠骨髓单个核细胞(bone marrow mononuclear cells, BM-MNCs),进行在体HSCs竞争抑制试验(competitive repopulation assay); BM-MNCs在MethoCult M3434 methylcellulose培养基中培养,11天后收取单个CFU-GEMM集落进行细胞遗传学分析;流式细胞仪分选造血干细胞(hematopoietic progenitor cells, HSCs;或者lin-Sca-1+cKit+,LSK-)、造血祖细胞(lin-Sca-1-cKit+, hematopoietic progenitor cells, HPCs) (LSK+),测定两群细胞内活性氧(Reactive oxygen species, ROS)水平;8-羟基-脱氧鸟嘌呤核苷(8-hydroxydeoxyguanine,8-OH-dG)及y-H2AX免疫荧光染色检测DNA氧化损伤和DNA双链断裂(double-strand breaks, DSBs);细胞集落形成试验(Colony-forming cell assay), Cobblestone Area-Forming Cell assay (CAFC)试验和单细胞CAFC分析检测两群细胞的集落形成能力:Annexin V/PI细胞染色流式细胞仪分析细胞凋亡(apoptosis);半定量逆转录聚合酶链反应(RT-PCR)技术检测两群细胞中NADPH氧化酶(NADPH oxidases, NOX),包括NOX1, NOX2,NOX3和NOX4及P16和p53表达水平,并对两群细胞行NOX3和NOX4免疫荧光染色。
     结果在辐射导致骨髓损伤的氧化机制研究中,我们首次发现小鼠接受亚致死剂量全身照射(6.5Gy TBI)后,其造血祖细胞(HPCs)内ROS短暂性升高,之后迅速下降至正常水平;而HSCs内活性氧持续维持在高水平,即处于长期氧化应激状态。TBI诱导的HSCs的慢性氧化应激与持续存在的DNA氧化损伤、DNA双链断裂、HSCs集落形成能力降低及HSCs衰老密切相关,但与细胞凋亡无关。进一步研究发现,TBI所诱导的HSCs长期氧化损伤主要是通过NOX4表达的上调介导的,TBI照射引起HSCs NOX4表达升高,照射后给予diphenylene iodonium(特异性抑制NOXs表达),抑制了NOXs的活性可明显降低TBI诱导HSCs内活性氧的增加,也可减轻DNA氧化损伤和减少DNA双链断裂,并明显提高HSCs的集落形成能力。这些研究结果首次直接证明辐射可能部分通过上调NOX4而选择性提高HSCs慢性氧化应激水平,诱导HSCs衰老,最终导致长期骨髓抑制。
     为了有效预防和治疗核辐射暴露或接受放射治疗患者的长期骨髓抑制,基于TBI诱导HSCs慢性氧化应激导致长期骨髓抑制的机制,我们试图寻找新的抗氧化剂,治疗TBI诱导的长期骨髓抑制。Mn (Ⅲ) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE)是一种超氧化物歧化酶模拟化合物,我们应用上述TBI小鼠模型检测了MnTE对长期骨髓抑制的治疗作用。结果发现,照射后使用MnTE可明显抑制TBI所致的HSCs、造血祖细胞活性氧生成和DNA氧化损伤。HSCs内氧化应激水平下降与骨髓中的HSCs数量增加和功能改善有关。照射后使用MnTE治疗小鼠的HSCs功能与未照射作为对照小鼠的HSCs的功能已无明显差异,提示MnTE治疗可抑制TBI造成的HSCs功能损伤。照射后使用MnTE治疗对辐射造成的HSCs保持休眠或静止能力及增殖分化能力损伤具有保护作用,对TBI小鼠HSCs寿命缩短有改善作用。进一步研究发现,MnTE治疗可降低TBI诱导的HSCs中p16 mRNA的表达水平,提示MnTE治疗抑制了TBI诱导的HSCs的衰老,在体内竞争性移植试验中,MnTE治疗明显改善照射后小鼠HSCs长期再植能力和多系细胞造血重建能力。
     结论辐射诱导造血干细胞损伤机制研究发现:TBI选择性诱导HSCs内持续性ROS升高;HSCs内ROS的持续升高部分是通过NOX4表达上调介导;TBI所诱导的HSCs慢性氧化应激可通过上调p16导致HSCs丧失自我更新能力、HSCs发生衰老,从而诱发长期骨髓抑制。利用强抗氧化剂MnTE进行试验性治疗,研究发现MnTE可抑制ROS-p16通路,减轻辐射诱发的HSCs衰老,缓解TBI所导致的长期骨髓抑制,可能成为有效的TBI损伤治疗药物。
The mechanism of Long-term Bone Marrow Suppression Induced by Ionizing Radiation and The Radioprotectiveeffects of MnTE on bone marrow Exposure to Ionizing Radition
     Objective Ionizing radiation (IR) causes not only acute tissue damage but also late effects including long-term bone marrow (BM) injury. The induction of long-term BM injury is primarily attributable to the induction of hematopoietic stem cells (HSCs) senescence. However, the molecular mechanisms by which IR induces HSCs senescence have not been clearly defined, nor has an effective treatment been developed to ameliorate the injury. Thus, we investigated these mechanisms and the radioprotection of Mn (Ⅲ) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE) on TBI induced BM injury in this study.
     Methods 4-8 weeks old 57BL/6-Ly-5.2 were classified into three groups: control group, radiation group and radiation plus drug group, radiation was 6.5 Gy total body irradiation (TBI) and drugs includes diphenylene iodonium and MnTE. Bone marrow mononulcer cells(BM-MNCs) isolated form these mice were used to perform competitive repopulation assay in vivo and CFU-GEMM individual colonies were developed by culturing BM-MNCs in MethoCult GF M3434 methylcellulose medium after 11 days were used to performcytogenetic analyses. and hematopoietic progenitor cells (HPCs) sorted out by flow cytometry were used to examine the following tests:the level of ROS by 2', 7'-dichlorofluorescin diacetate (DCFDA), the DNA damage and DNA double strand breaks by using 8-hydroxydeoxyguanine and H2AX staining, respectively; Colony forming function were analyzed by in vitro colony-forming cell assay, cobblestone area-forming cell assay and single cobblestone area-forming cell assay. Apoptosis was detected by Annexin V/7-AAD; The expression of NOXs, p16 and p53, were assayed by RT-PCR or immunostaining.
     Results The results showed that exposure of mice to a sublethal. dose of total body irradiation (TBI) induced a persistent increase in reactive oxygen species (ROS) production in HSCs selectively. The induction of chronic oxidative stress in HSCs was associated with sustained increases in oxidative DNA damage, DNA double-strand breaks (DSBs), inhibition of HSC clonogenic function, and induction of HSC senescence but not apoptosis. The induction of chronic oxidative stress in HSCs by TBI is probably attributable to the up-regulation of NADPH oxidase 4 (NOX4), because irradiated HSCs expressed an increased level of NOX4, and inhibition of NOX activity with diphenylene iodonium but not apocynin significantly reduced TBI-induced increases in ROS production, oxidative DNA damage, and DNA DSBs in HSCs and dramatically improved HSC clonogenic function.
     Then, we examined if Mn (Ⅲ) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE), a superoxide dismutase mimetic and potent antioxidant, can mitigate TBI-induced long-term BM injury in a mouse model. Our results showed that post-TBI treatment with MnTE significantly inhibited the increases in ROS production and DNA damage in HSCs and reduction in HSC frequency and clonogenic function induced by TBI. In fact, the clonogenic function of HSCs from irradiated mice after MnTE treatment was comparable to that of HSCs from normal controls on a per HSC basis, suggesting that MnTE treatment inhibited the induction of HSC senescence by TBI. In addition, MnTE treatment can mitigate TBI induced defects in the abilities of HSCs to maitain quiescence, proliferate and survive in vitro. This suggestion is supported by the findings that MnTE treatment also reduced the expression of p16Ink4a (p16) mRNA in HSCs induced by TBI and improved the long-term and multi-lineage engraftment of irradiated HSCs after transplantation.
     Conclusions TBI selectively induces a persistent increase in reactive oxygen species (ROS) production in HSCs only. The induction of chronic oxidative stress in HSCs by TBI is probably attributable to the up-regulation of NADPH oxidase 4 (NOX4)。Chronic oxidative stress in HSCs leads to the loss of HSCs self-renewal and the induction of HSC senescence via up-regulation of p16, which leads to long-term bone marrow suppression. TBI-induced long-term BM suppression can be mitigated by antioxidant treanment. We found MnTE can mitigate IR-induced HSC senescence inhibiting the ROS-p16 pathway and be used to a therapeutic agent to mitigate TBI-induced long-term BM suppression by TBI.
引文
[1]National Council on Radiation Protection and Measurements. Management of terrorist events involving radioactive materials., in Bethesda, MD:NCRP Publications; NCRP Report 2001. p. No.138.
    [2]Ricks, M. E. Berger and F. M.O' Hara, The Medical Basis for Radiation-Accident Preparedness The Clinical Care of Victims. Pantheon, New York,2002.
    [3]Moulder JE. Report on an interagency workshop on the radiobiology of nuclear terrorism. Molecular and cellular biology dose (1-10 Sv) radiation and potential mechanisms of radiation protection (Bethesda, Maryland, December 17-18,2001)[J]. Radiat Res,2002.158(1):118-124.
    [4]Waselenko JK, MacVittie TJ, Blakely WF, et al. Medical management of the acute radiation syndrome:recommendations of the Strategic National Stockpile Radiation Working Group[J]. Ann Intern Med,2004. 140(12):1037-1051.
    [5]Mauch P,Constine L, Greenberger J, et al. Hematopoietic stem cell compartment:acute and late effects of radiation therapy and chemotherapy[J]. Int J Radiat Oncol Biol Phys,1995.31 (5):1319-1339.
    [6]Testa NG, Hendry JHMolineux G. Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy[J]. Anticancer Res,1985.5(1):101-110.
    [7]Osawa M, Hanada K, Hamada H, et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell[J]. Science,1996.273(5272):242-245.
    [8]Gardner RV, Begue RMcKinnon E. The effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on primitive hematopoietic stem cell (PHSC) function and numbers, after chemotherapy[J]. Exp Hematol,2001. 29(9):1053-1059.
    [9]van Os R,Robinson S, Sheridan T, et al. Granulocyte colony-stimulating factor enhances bone marrow stem cell damage caused by repeated administration of cytotoxic agents[J]. Blood,1998.92(6):1950-1956.
    [10]van Os R, Robinson S, Sheridan T, et al. Granulocyte-colony stimulating factor impedes recovery from damage caused by cytotoxic agents through increased differentiation at the expense of self-renewal[J]. Stem Cells, 2000.18(2):120-127.
    [11]Hellman S. Botnick LE. Stem cell depletion:an explanation of the late effects of cytotoxins[J]. Int J Radiat Oncol Biol Phys,1977. 2(1-2):181-184.
    [12]Mauch P, Rosenblatt MHellman S. Permanent loss in stem cell self renewal capacity following stress to the marrow[J]. Blood,1988.72(4):1193-1196.
    [13]Meng A, Wang Y, Van Zant G, et al. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells[J]. Cancer Res,2003.63(17):5414-5419.
    [14]Wang Y,Schulte BA, LaRue AC, et al. Total body irradiation selectively induces murine hematopoietic stem cell senescence[J]. Blood,2006. 107(1):358-366.
    [15]Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells[J]. Nat Med,2006. 12(4):446-451.
    [16]Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool[J]. Cell Stem Cell,2007.1(1):101-112.
    [17]Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress[J]. Cell,2007.128(2):325-339.
    [18]Yalcin S, Zhang X, Luciano JP, et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells[J]. J Biol Chem,2008.283(37):25692-25705. [19]Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells[J]. Nature,2004. 431(7011):997-1002.
    [20]Batinic-Haberle I, Reboucas JSSpasojevic I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential[J]. Antioxid Redox Signal,2010.13(6):877-918.
    [21]Batinic-Haberle I,Spasojevic I, Tse HM, et al. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities[J]. Amino Acids,2010.
    [22]Lee JH. Park JW. A manganese porphyrin complex is a novel radiation protector[J]. Free Radic Biol Med,2004.37(2):272-283.
    [23]Gauter-Fleckenstein B, Fleckenstein K, Owzar K, et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage[J]. Free Radic Biol Med,2010. 48(8):1034-1043.
    [24]Mao XW, Crapo JD, Mekonnen T, et al. Radioprotective effect of a metalloporphyrin compound in rat eye model[J]. Curr Eye Res,2009. 34(1):62-72.
    [25]Moeller BJ, Batinic-Haberle I, Spasojevic I, et al. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness[J]. Int J Radiat Oncol Biol Phys,2005.63(2):545-552.
    [26]Jaramillo MC, Frye JB, Crapo JD, et al. Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells[J]. Cancer Res,2009. 69(13):5450-5457.
    [27]Batinic-Haberle I. Manganese porphyrins and related compounds as mimics of superoxide dismutase[J]. Methods Enzymol,2002.349:223-233.
    [28]Down JD. Ploemacher RE. Transient and permanent engraftment potential of murine hematopoietic stem cell subsets:differential effects of host conditioning with gamma radiation and cytotoxic drugs[J]. Exp Hematol,1993. 21(7):913-921.
    [29]Down JD, Boudewi jn A, van Os R, et al. Variations in radiation sensitivity and repair among different hematopoietic stem cell subsets following fractionated irradiation[J]. Blood,1995.86 (1):122-127.
    [30]Ploemacher RE, van der Loo JC, van Beurden CA, et al. Wheat germ agglutinin affinity of murine hemopoietic stem cell subpopulations is an inverse function of their long-term repopulating ability in vitro and in vivo[J]. Leukemia,1993.7(1):120-130.
    [31]Down JD, de Haan G, Dillingh JH, et al. Stem cell factor has contrasting effects in combination with 5-fluorouracil or total-body irradiation on frequencies of different hemopoietic cell subsets and engraftment of transplanted bone marrow[J]. Radiat Res,1997.147(6):680-685.
    [32]Ploemacher RE, van der Sluijs JP, van Beurden CA, et al. Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse[J]. Blood,1991.78(10):2527-2533.
    [33]Du W, Adam Z, Rani R, et al. Oxidative stress in Fanconi anemia hematopoiesis and disease progression[J]. Antioxid Redox Signal,2008. 10(11):1909-1921.
    [34]Miyamoto K. [Fox03a is essential for the maintenance of hematopoietic stem cell pool][J]. Rinsho Ketsueki,2008.49(3):141-146.
    [35]Naka K, Muraguchi T, Hoshii T, et al. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells[J]. Antioxid Redox Signal,2008.10(11):1883-1894.
    [36]Ergen AV. Goodell MA. Mechanisms of hematopoietic stem cell aging[J]. Exp Gerontol,2010.45 (4):286-290.
    [37]Rothkamm K. Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses[J]. Proc Natl Acad Sci U S A,2003.100(9):5057-5062.
    [38]Toyokuni S, Iwasa Y,Kondo S, et al. Intranuclear distribution of 8-hydroxy-2'-deoxyguanosine. An immunocytochemical study[J]. J Histochem Cytochem,1999.47(6):833-836.
    [39]Krishnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging[J]. J Clin Invest,2004.114(9):1299-1307. [40]Sharpless NE. Ink4a/Arf links senescence and aging[J]. Exp Gerontol, 2004.39(11-12):1751-1759.
    [41]Dimri GP. The search for biomarkers of aging:next stop INK4a/ARF locus[J]. Sci Aging Knowledge Environ,2004.2004(44):pe40.
    [42]Satyanarayana A. Rudolph KL. p16 and ARF:activation of teenage proteins in old age[J]. J Clin Invest,2004.114(9):1237-1240.
    [43]Collins CJ.Sedivy JM. Involvement of the INK4a/Arf gene locus in senescence[J]. Aging Cell,2003.2(3):145-150.
    [44]Kim GJ, Chandrasekaran KMorgan WF. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability:a review[J]. Mutagenesis,2006. 21(6):361-367.
    [45]Spitz DR, Azzam EI, Li JJ, et al. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation:a unifying concept in stress response biology[J]. Cancer Metastasis Rev,2004.23(3-4):311-322.
    [46]Bedard K. Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology[J]. Physiol Rev,2007.87(1):245-313.
    [47]Lambeth JD. Nox enzymes, ROS, and chronic disease:an example of antagonistic pleiotropy[J]. Free Radic Biol Med,2007.43(3):332-347.
    [48]Piccoli C, Ria R, Scrima R, et al. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity[J]. J Biol Chem,2005.280(28):26467-26476.
    [49]Piccoli C, D'Aprile A, Ripoli M, et al. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species[J]. Biochem Biophys Res Commun,2007. 353(4):965-972.
    [50]Serrander L, Cartier L, Bedard K, et al. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation[J]. Biochem J, 2007.406(1):105-114.
    [51]Wilson A, Laurenti E, Oser G, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair[J]. Cell, 2008.135(6):1118-1129.
    [52]Orford KW. Scadden DT. Deconstructing stem cell self-renewal:genetic insights into cell-cycle regulation[J]. Nat Rev Genet,2008.9(2):115-128.
    [53]Qian H,Buza-Vidas N, Hyland CD, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells[J]. Cell Stem Cell, 2007.1(6):671-684.
    [54]Thoren LA, Liuba K, Bryder D, et al. Kit regulates maintenance of quiescent hematopoietic stem cells[J]. J Immunol,2008.180(4):2045-2053.
    [55]Yoshihara H, Arai F, Hosokawa K, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche[J]. Cell Stem Cell,2007.1(6):685-697.
    [56]Alexander P. Connell DI. Shortening of the life span of mice by irradiation with x-rays and treatment with radiomimetic chemicals[J]. Radiat Res,1960.12:38-48.
    [57]Spalding JF, Freyman RWHolland LM. Effects of 800-MHz electromagnetic radiation on body weight, activity, hematopoiesis and life span in mice[J]. Health Phys,1971.20(4):421-424.
    [58]Watson GE, Lorimore SA, Macdonald DA, et al. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation[J]. Cancer Res,2000.60(20):5608-5611.
    [59]Zhao W, Diz DIRobbins ME. Oxidative damage pathways in relation to normal tissue injury[J]. Br J Radiol,2007.80 Spec No 1:S23-31.
    [60]Zhao W.Robbins ME. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury:therapeutic implications[J]. Curr Med Chem,2009.16(2):130-143.
    [61]Suda T, Arai FShimmura S. Regulation of stem cells in the niche [J]. Cornea, 2005.24(8 Suppl):S12-S17.
    [62]Collins-Underwood JR, Zhao W, Sharpe JG, et al. NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells[J]. Free Radic Biol Med,2008.45(6):929-938.
    [63]Jang YY. Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche[J]. Blood,2007.110(8):3056-3063.
    [64]Rossi DJ, Jamieson CHWeissman IL. Stems cells and the pathways to aging and cancer[J]. Cell,2008.132(4):681-696.
    [65]Kenyon J. Gerson SL. The role of DNA damage repair in aging of adult stem cells[J]. Nucleic Acids Res,2007.35(22):7557-7565.
    [66]Niedernhofer LJ. DNA repair is crucial for maintaining hematopoietic stem cell function[J]. DNA Repair (Amst),2008.7(3):523-529.
    [67]Nijnik A, Woodbine L, Marchetti C, et al. DNA repair is limiting for haematopoietic stem cells during ageing[J]. Nature,2007. 447(7145):686-690.
    [68]Rossi DJ, Bryder D, Seita J, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age[J]. Nature,2007. 447(7145):725-729.
    [69]Park Y. Gerson SL. DNA repair defects in stem cell function and aging[J]. Annu Rev Med,2005.56:495-508.
    [70]Huang L, Snyder ARMorgan WF. Radiation-induced genomic instability and its implications for radiation carcinogenesis[J]. Oncogene,2003. 22(37):5848-5854.
    [71]Wright EG. Radiation-induced genomic instability in haemopoietic cells[J]. Int J Radiat Biol,1998.74(6):681-687.
    [72]McIlrath J, Lorimore SA, Coates PJ, et al. Radiation-induced genomic instability in immortalized haemopoietic stem cells[J]. Int J Radiat Biol, 2003.79(1):27-34.
    [73]Blanpain C,Mohrin M,Sotiropoulou PA, et al. DNA-damage response in tissue-specific and cancer stem cells [J]. Cell Stem Cell,2011.8(1):16-29.
    [74]Milyavsky M, Gan OI, Trottier M, et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal[J]. Cell Stem Cell,2010.7(2):186-197.
    [75]Mohrin M, Bourke E, Alexander D, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis[J]. Cell Stem Cell,2010. 7(2):174-185.
    [76]Hakem R. DNA-damage repair; the good, the bad, and the ugly[J]. EMBO J,2008.27(4):589-605.
    [77]Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints[J]. Annu Rev Biochem, 2004.73:39-85.
    [78]Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors[J]. Cell,2005.120(4):513-522.
    [79]Beausejour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence:roles of the p53 and p16 pathways[J]. EMBO J,2003. 22(16):4212-4222.
    [1]National Council on Radiation Protection and Measurements. Management of terrorist events involving radioactive materials. in Bethesda, MD:NCRP Publications; NCRP Report No.138.2001.
    [2]Ricks, M. E. Berger and F. M.O' Hara, The Medical Basis for Radiation-Accident Preparedness The Clinical Care of Victims. Pantheon, New York,2002.
    [3]Moulder JE. Report on an interagency workshop on the radiobiology of nuclear terrorism. Molecular and cellular biology dose (1-10 Sv) radiation and potential mechanisms of radiation protection (Bethesda, Maryland, December 17-18,2001)[J]. Radiat Res,2002.158 (1):118-124.
    [4]van Os R, Robinson S, Sheridan T, et al. Granulocyte colony-stimulating factor enhances bone marrow stem cell damage caused by repeated administration of cytotoxic agents[J]. Blood,1998.92 (6):1950-1956.
    [5]van Os R, Robinson S,Sheridan T, et al. Granulocyte-colony stimulating factor impedes recovery from damage caused by cytotoxic agents through increased differentiation at the expense of self-renewal[J]. Stem Cells, 2000.18(2):120-127.
    [6]Osawa M, Hanada K, Hamada H, et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell[J]. Science,1996.273(5272):242-245.
    [7]Mauch P, Constine L, Greenberger J, et al. Hematopoietic stem cell compartment:acute and late effects of radiation therapy and chemotherapy[J]. Int J Radiat Oncol Biol Phys,1995.31 (5):1319-1339.
    [8]Testa NG, Hendry JHMolineux G. Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy[J]. Anticancer Res,1985.5(1):101-110.
    [9]Meng A, Wang Y, Van Zant G, et al. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells[J]. Cancer Res,2003.63(17):5414-5419.
    [10]Hellman S. Botnick LE. Stem cell depletion:an explanation of the late effects of cytotoxins[J]. Int J Radiat Oncol Biol Phys,1977. 2(1-2):181-184.
    [11]Mauch P, Rosenblatt MHellman S. Permanent loss in stem cell self renewal capacity following stress to the marrow[J]. Blood,1988.72(4):1193-1196.
    [12]Orkin SH. Zon LI. Hematopoiesis:an evolving paradigm for stem cell biology[J]. Cell,2008.132(4):631-644.
    [13]Wilson A, Laurenti E, Oser G, et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair [J]. Cell, 2008.135(6):1118-1129.
    [14]Rossi DJ, Bryder D, Seita J, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age[J]. Nature,2007. 447(7145):725-729.
    [15]Reya T. Regulation of hematopoietic stem cell self-renewal[J]. Recent Prog Horm Res,2003.58:283-295.
    [16]Weissman IL,Anderson DJGage F. Stem and progenitor cells:origins, phenotypes, lineage commitments, and transdifferentiations[J]. Annu Rev Cell Dev Biol,2001.17:387-403.
    [17]Wilson A, Laurenti ETrumpp A. Balancing dormant and self-renewing hematopoietic stem cells[J]. Curr Opin Genet Dev,2009.19(5):461-468.
    [18]Wang Y, Schulte BAZhou D. Hematopoietic stem cell senescence and long-term bone marrow injury[J]. Cell Cycle,2006.5(1):35-38.
    [19]Sancar A,Lindsey-Boltz LA, Unsal-Kacmaz K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints[J]. Annu Rev Biochem, 2004.73:39-85.
    [20]Lindahl T. Instability and decay of the primary structure of DNA[J]. Nature,1993.362 (6422):709-715.
    [21]Rossi DJ, Jamieson CHWeissman IL. Stems cells and the pathways to aging and cancer[J]. Cell,2008.132(4):681-696.
    [22]He S, Nakada DMorrison SJ. Mechanisms of stem cell self-renewal[J]. Annu Rev Cell Dev Biol,2009.25:377-406.
    [23]Weissman IL. Stem cells:units of development, units of regeneration, and units in evolution[J]. Cell,2000.100(1):157-168.
    [24]Orford KW. Scadden DT. Deconstructing stem cell self-renewal:genetic insights into cell-cycle regulation[J]. Nat Rev Genet,2008.9(2):115-128.
    [25]Arai F.Suda T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche[J]. Ann N Y Acad Sci,2007.1106:41-53.
    [26]Li L.Xie T. Stem cell niche:structure and function[J]. Annu Rev Cell Dev Biol,2005.21:605-631.
    [27]Wilson A, Oser GM, Jaworski M, et al. Dormant and self-renewing hematopoietic stem cells and their niches[J]. Ann N Y Acad Sci,2007.
    1106:64-75.
    [28]Eliasson P. Jonsson JI. The hematopoietic stem cell niche:low in oxygen but a nice place to be[J]. J Cell Physiol,2010.222 (1):17-22.
    [29]Parmar K, Mauch P, Vergilio JA, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia[J]. Proc Natl Acad Sci U S A,2007.104(13):5431-5436.
    [30]Winkler IG, Barbier V, Wadley R, et al. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo:serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches[J]. Blood,2010.116 (3):375-385.
    [31]Simsek T,Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche[J]. Cell Stem Cell,2010.7(3):380-390.
    [32]Takubo K,Goda N, Yamada W, et al. Regulation of the HIF-lalpha level is essential for hematopoietic stem cells[J]. Cell Stem Cell,2010. 7(3):391-402.
    [33]Jang YY. Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche[J]. Blood,2007.110(8):3056-3063.
    [34]Danet GH,Pan Y, Luongo JL, et al. Expansion of human SCID-repopulating cells under hypoxic conditions[J]. J Clin Invest,2003.112(1):126-135.
    [35]Meijne EI, van der Winden-van Groenewegen RJ, Ploemacher RE, et al. The effects of x-irradiation on hematopoietic stem cell compartments in the mouse[J]. Exp Hematol,1991.19 (7):617-623.
    [36]Milyavsky M, Gan 01, Trottier M, et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal[J]. Cell Stem Cell,2010.7(2):186-197.
    [37]Asai T, Liu Y, Bae N, et al. The p53 tumor suppressor protein regulates hematopoietic stem cell fate[J]. J Cell Physiol,2010.
    [38]Seita J,Rossi DJWeissman IL. Differential DNA damage response in stem and progenitor cells[J]. Cell Stem Cell,2010.7 (2):145-147.
    [39]Mohrin M, Bourke E, Alexander D, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis[J]. Cell Stem Cell,2010. 7 (2):174-185.
    [40]Hakem R. DNA-damage repair; the good, the bad, and the ugly[J]. EMBO J,2008.27(4):589-605.
    [41]Mothersill C, Crean M, Lyons M, et al. Expression of delayed toxicity and lethal mutations in the progeny of human cells surviving exposure to radiation and other environmental mutagens[J]. Int J Radiat Biol,1998. 74(6):673-680.
    [42]Limoli CL,Corcoran JJ,Milligan JR, et al. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation[J]. Radiat Res,1999.151 (6):677-685.
    [43]Limoli CL, Kaplan MI, Phillips JW, et al. Differential induction of chromosomal instability by DNA strand-breaking agents[J]. Cancer Res,1997. 57(18):4048-4056.
    [44]Morgan WF, Corcoran J,Hartmann A, et al. DNA double-strand breaks, chromosomal rearrangements, and genomic instability[J]. Mutat Res,1998. 404(1-2):125-128.
    [45]Yamada Y, Park MS, Okinaka RT, et al. Molecular analysis and comparison of radiation-induced large deletions of the HPRT locus in primary human skin fibroblasts[J]. Radiat Res,1996.145(4):481-490.
    [46]Kiefer J, Schreiber A, Gutermuth F, et al. Mutation induction by different types of radiation at the Hprt locus[J]. Mutat Res,1999.431(2):429-448.
    [47]Singleton BK, Griffin CSThacker J. Clustered DNA damage leads to complex genetic changes in irradiated human cells[J]. Cancer Res,2002. 62(21):6263-6269.
    [48]Moynahan ME. Jasin M. Loss of heterozygosity induced by a chromosomal double-strand break [J]. Proc Natl Acad Sci U S A,1997.94(17):8988-8993.
    [49]Richardson C. Jasin M. Frequent chromosomal translocations induced by DNA double-strand breaks[J]. Nature,2000.405(6787):697-700.
    [50]Phillips JW. Morgan WF. Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome[J]. Mol Cell Biol,1994. 14(9):5794-5803.
    [51]Coleman CN, Stone HB, Moulder JE, et al. Medicine. Modulation of radiation injury[J]. Science,2004.304(5671):693-694.
    [52]Waselenko JK, MacVittie TJ, Blakely WF, et al. Medical management of the acute radiation syndrome:recommendations of the Strategic National Stockpile Radiation Working Group[J]. Ann Intern Med,2004. 140(12):1037-1051.
    [53]Neben S, Hellman S, Montgomery M, et al. Hematopoietic stem cell deficit of transplanted bone marrow previously exposed to cytotoxic agents[J]. Exp Hematol,1993.21(1):156-162.
    [54]Puck TT.Marcus PI. Action of x-rays on mammalian cells[J]. J Exp Med, 1956.103(5):653-666.
    [55]Elkind MM. Sutton H. X-ray damage and recovery in mammalian cells in culture[J]. Nature,1959.184:1293-1295.
    [56]Trott KR. Hug o. Intraclonal recovery of division probability in pedigrees of single x-irradiated mammalian cells[J]. Int J Radiat Biol Relat Stud Phys Chem Med,1970.17(5):483-486.
    [57]Thompson LH.Suit HD. Proliferation kinetics of x-irradiated mouse L cells studied WITH TIME-lapse photography. Ⅱ [J]. Int J Radiat Biol Relat Stud Phys Chem Med,1969.15(4):347-362.
    [58]Sinclair WK. X-Ray-Induced Heritable Damage (Small-Colony Formation) in Cultured Mammalian Cells[J]. Radiat Res,1964.21:584-611.
    [59]Seymour CB, Mothersill CAlper T. High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation[J]. Int J Radiat Biol Relat Stud Phys Chem Med,1986.50(1):167-179.
    [60]Mendonca MS, Kurohara W, Antoniono R, et al. Plating efficiency as a function of time postirradiation:evidence for the delayed expression of lethal mutations[J]. Radiat Res,1989.119(2):387-393.
    [61]Chang WP. Little JB. Delayed reproductive death in X-irradiated Chinese hamster ovary cells[J]. Int J Radiat Biol,1991.60(3):483-496.
    [62]Suzuki K, Takahara R, Kodama S, et al. In situ detection of chromosome bridge formation and delayed reproductive death in normal human embryonic cells surviving X irradiation[J]. Radiat Res,1998.150(4):375-381.
    [63]Roy K, Kodama S, Suzuki K, et al. Delayed cell death, giant cell formation and chromosome instability induced by X-irradiation in human embryo cells[J]. J Radiat Res (Tokyo),1999.40(4):311-322.
    [64]Trott KR, Jamali M, Manti L, et al. Manifestations and mechanisms of radiation-induced genomic instability in V-79 Chinese hamster cells[J]. Int J Radiat Biol,1998.74(6):787-791.
    [65]Little JB. Radiation-induced genomic instability[J]. Int J Radiat Biol, 1998.74(6):663-671.
    [66]Little JB. Genomic instability and bystander effects:a historical perspective[J]. Oncogene,2003.22(45):6978-6987.
    [67]Mothersill C.Seymour C. Radiation-induced bystander effects:past history and future directions[J]. Radiat Res,2001.155(6):759-767.
    [68]Lorimore SA. Wright EG. Radiation-induced genomic instability and bystander effects:related inflammatory-type responses to radiation-induced stress and injury? A review[J]. Int J Radiat Biol,2003. 79(1):15-25.
    [69]Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation:II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects[J]. Radiat Res, 2003.159(5):581-596.
    [70]Morgan WF. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?[J]. Oncogene,2003.22(45):7094-7099.
    [71]Prise KM, Belyakov OV,Folkard M, et al. Studies of bystander effects in human fibroblasts using a charged particle microbeam[J]. Int J Radiat Biol, 1998.74(6):793-798.
    [72]Zhou H, Randers-Pehrson G, Waldren CA, et al. Induction of a bystander mutagenic effect of alpha particles in mammalian cells[J]. Proc Natl Acad Sci U S A,2000.97(5):2099-2104.
    [73]Barcellos-Hoff MH. Brooks AL. Extracellular signaling through the microenvironment:a hypothesis relating carcinogenesis, bystander effects, and genomic instability[J]. Radiat Res,2001.156(5 Pt 2):618-627.
    [74]Clutton SM, Townsend KM, Walker C, et al. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures[J]. Carcinogenesis,1996.17(8):1633-1639.
    [75]Narayanan PK, Goodwin EHLehnert BE. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells[J]. Cancer Res,1997.57(18):3963-3971.
    [76]Limoli CL, Hartmann A, Shephard L, et al. Apoptosis, reproductive failure, and oxidative stress in Chinese hamster ovary cells with compromised genomic integrity[J]. Cancer Res,1998.58(16):3712-3718.
    [77]Roy K, Kodama S, Suzuki K, et al. Hypoxia relieves X-ray-induced delayed effects in normal human embryo cells[J]. Radiat Res,2000.154(6):659-666.
    [78]Morgan WF, Hartmann A, Limoli CL, et al. Bystander effects in radiation-induced genomic instability[J]. Mutat Res,2002. 504(1-2):91-100.
    [79]Morgan WF, Day JP, Kaplan MI, et al. Genomic instability induced by ionizing radiation[J]. Radiat Res,1996.146(3):247-258.
    [80]Fitzek M. Trott KR. Clonal heterogeneity in delayed decrease of plating efficiency of irradiated HeLa cells[J]. Radiat Environ Biophys,1993. 32(1):33-39.
    [81]Pampfer S. Streffer C. Increased chromosome aberration levels in cells from mouse fetuses after zygote X-irradiation[J]. Int J Radiat Biol,1989. 55(1):85-92.
    [82]Kadhim MA, Macdonald DA, Goodhead DT, et al. Transmission of chromosomal instability after plutonium alpha-particle irradiation[J]. Nature,1992. 355(6362):738-740.
    [83]Holmberg K, Falt S, Johansson A, et al. Clonal chromosome aberrations and genomic instability in X-irradiated human T-lymphocyte cultures[J]. Mutat Res,1993.286(2):321-330.
    [84]Grosovsky AJ, Parks KK, Giver CR, et al. Clonal analysis of delayed karyotypic abnormalities and gene mutations in radiation-induced genetic instability[J]. Mol Cell Biol,1996.16(11):6252-6262.
    [85]Ponnaiya B, Cornforth MNUllrich RL. Induction of chromosomal instability in human mammary cells by neutrons and gamma rays[J]. Radiat Res,1997. 147(3):288-294.
    [86]Chang WP. Little JB. Persistently elevated frequency of spontaneous mutations in progeny of CHO clones surviving X-irradiation:association with delayed reproductive death phenotype[J]. Mutat Res,1992.270(2):191-199.
    [87]Harper K, Lorimore SAWright EG. Delayed appearance of radiation-induced mutations at the Hprt locus in murine hemopoietic cells[J]. Exp Ⅱematol, 1997.25(3):263-269.
    [88]Little JB, Nagasawa H, Pfenning T, et al. Radiation-induced genomic instability:delayed mutagenic and cytogenetic effects of X rays and alpha particles[J]. Radiat Res,1997.148(4):299-307.
    [89]Li CY, Little JB, Hu K, et al. Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures[J]. Cancer Res,2001. 61 (2):428-432.
    [90]Huang LC,Clarkin KCWahl GM. Sensitivity and selectivity of the DNA damage sensor responsible for activating p53-dependent G1 arrest[J]. Proc Natl Acad Sci U S A,1996.93(10):4827-4832.
    [91]Suzuki K. Multistep nature of X-ray-induced neoplastic transformation in mammalian cells:genetic alterations and instability[J]. J Radiat Res (Tokyo),1997.38(1):55-63.
    [92]Smith LE,Parks KK, Hasegawa LS, et al. Targeted breakage of paracentromeric heterochromatin induces chromosomal instability[J]. Mutagenesis,1998.13 (5):435-443.
    [93]Lo AW, Sprung CN,Fouladi B, et al. Chromosome instability as a result of double-strand breaks near telomeres in mouse embryonic stem cells[J]. Mol Cell Biol,2002.22(13):4836-4850.
    [94]Obe G, Pfeiffer P, Savage JR, et al. Chromosomal aberrations:formation, identification and distribution[J]. Mutat Res,2002.504(1-2):17-36.
    [95]Desmaze C, Alberti C,Martins L, et al. The influence of interstitial telomeric sequences on chromosome instability in human cells[J]. Cytogenet Cell Genet,1999.86(3-4):288-295.
    [96]Cremer T. Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells[J]. Nat Rev Genet,2001.2(4):292-301.
    [97]Parada L. Misteli T. Chromosome positioning in the interphase nucleus[J]. Trends Cell Biol,2002.12(9):425-432. [98]Tanabe H, Habermann FA, Solovei I, et al. Non-random radial arrangements of interphase chromosome territories:evolutionary considerations and functional implications[J]. Mutat Res,2002.504(1-2):37-45.
    [99]Marshall WF. Order and disorder in the nucleus[J]. Curr Biol,2002. 12(5):R185-192.
    [100]Boulikas T. Homeotic protein binding sites, origins of replication, and nuclear matrix anchorage sites share the ATTA and ATTTA motifs[J]. J Cell Biochem,1992.50(2):111-123.
    [101]Figgitt M. Savage JR. Interphase chromosome domain re-organization following irradiation[J]. Int J Radiat Biol,1999.75(7):811-817.
    [102]Jackson SP. Sensing and repairing DNA double-strand breaks[J]. Carcinogenesis,2002.23(5):687-696.
    [103]Shiloh Y. Kastan MB. ATM:genome stability, neuronal development, and cancer cross paths[J]. Adv Cancer Res,2001.83:209-254.
    [104]Shiloh Y. ATM and related protein kinases:safeguarding genome integrity[J]. Nat Rev Cancer,2003.3(3):155-168.
    [105]Vogelstein B, Lane DLevine AJ. Surfing the p53 network[J]. Nature,2000. 408(6810):307-310.
    [106]Oren M, Damalas A, Gottlieb T, et al. Regulation of p53:intricate loops and delicate balances[J]. Biochem Pharmacol,2002.64(5-6):865-871.
    [107]Vousden KH. Lu X. Live or let die:the cell's response to p53[J]. Nat Rev Cancer,2002.2(8):594-604.
    [108]Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139[J]. J Biol Chem,1998. 273(10):5858-5868.
    [109]Suzuki K,Mori I, Nakayama Y, et al. Radiation-induced senescence-like growth arrest requires TP53 function but not telomere shortening[J]. Radiat Res,2001.155(1 Pt 2):248-253.
    [110]Ito K, Takubo K, Arai F, et al. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes[J]. J Immunol,2007.178(1):103-110.
    [111]Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress[J]. Cell,2007.128(2):325-339.
    [112]Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool[J]. Cell Stem Cell,2007.1(1):101-112.
    [113]Yalcin S, Zhang X, Luciano JP, et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells[J]. J Biol Chem,2008. 283(37):25692-25705.
    [114]Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells[J]. Nature,2003. 423(6937): 302-305.
    [115]Schuringa JJ. Vellenga E. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells [J]. Curr Opin Hematol, 2010.17(4):294-299.
    [116]Abbas HA, Maccio DR, Coskun S, et al. Mdm2 is required for survival of hematopoietic stem cells/progenitors via dampening of ROS-induced p53 activity[J]. Cell Stem Cell,2010.7(5):606-617.
    [117]Chen C,Liu Y,Liu R, et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species[J]. J Exp Med,2008.205(10):2397-2408.
    [118]Du W, Adam Z, Rani R, et al. Oxidative stress in Fanconi anemia hematopoiesis and disease progression[J]. Antioxid Redox Signal,2008. 10(11):1909-1921.
    [119]Tuttle SW, Varnes ME, Mitchell JB, et al. Sensitivity to chemical oxidants and radiation in CHO cell lines deficient in oxidative pentose cycle activity[J]. Int J Radiat Oncol Biol Phys,1992.22(4):671-675.
    [120]Varnes ME. Inhibition of pentose cycle of A549 cells by 6-aminonicotinamide:consequences for aerobic and hypoxic radiation response and for radiosensitizer action[J]. NCI Monogr,1988(6):199-203.
    [121]Claiborne A, Mallett TC, Yeh JI, et al. Structural, redox, and mechanistic parameters for cysteine-sulfenic acid function in catalysis and regulation[J]. Adv Protein Chem,2001.58:215-276.
    [122]Guo G, Yan-Sanders Y, Lyn-Cook BD, et al. Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses[J]. Mol Cell Biol,2003.23 (7):2362-2378.
    [123]Azzam EI, De Toledo SM, Spitz DR, et al. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures[J]. Cancer Res, 2002.62(19):5436-5442.
    [124]Leach JK, Black SM, Schmidt-Ullrich RK, et al. Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation[J]. J Biol Chem,2002.277(18):15400-15406.
    [125]Leach JK, Van Tuyle G, Lin PS, et al. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen[J]. Cancer Res,2001.61(10):3894-3901.
    [126]Dent P, Yacoub A, Fisher PB, et al. MAPK pathways in radiation responses[J]. Oncogene,2003.22(37):5885-5896.
    [127]Watters DJ. Oxidative stress in ataxia telangiectasia[J]. Redox Rep, 2003.8(1):23-29.
    [128]Wei SJ, Botero A, Hirota K, et al. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation[J]. Cancer Res,2000. 60(23):6688-6695.
    [129]Bradbury CM, Locke JE, Wei SJ, et al. Increased activator protein 1 activity as well as resistance to heat-induced radiosensitization, hydrogen peroxide, and cisplatin are inhibited by indomethacin in oxidative stress-resistant cells[J]. Cancer Res,2001.61(8):3486-3492.
    [130]Karimpour S, Lou J, Lin LL, et al. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation[J]. Oncogene,2002.21(41):6317-6327.
    [131]Balaban RS, Nemoto SFinkel T. Mitochondria, oxidants, and aging[J]. Cell,2005.120(4):483-495.
    [132]Liu J, Cao L, Chen J, et al. Bmil regulates mitochondrial function and the DNA damage response pathway[J]. Nature,2009.459(7245):387-392.
    [133]Bedard K. Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology[J]. Physiol Rev,2007.87(1):245-313.
    [134]Lambeth JD. Nox enzymes, ROS, and chronic disease:an example of antagonistic pleiotropy[J]. Free Radic Biol Med,2007.43(3):332-347.
    [135]Piccoli C, Ria R, Scrima R, et al. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity[J]. J Biol Chem,2005.280(28):26467-26476.
    [136]Piccoli C,D'Aprile A,Ripoli M, et al. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species[J]. Biochem Biophys Res Commun,2007.353 (4):965-972.
    [137]Kinder M, Wei C, Shelat SG, et al. Hematopoietic stem cell function requires 12/15-1ipoxygenase-dependent fatty acid metabolism[J]. Blood, 2010.115(24):5012-5022.
    [138]Juntilla MM,Patil VD, Calamito M, et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species[J]. Blood,2010.115(20):4030-4038.
    [139]Lewandowski D, Barroca V, Duconge F, et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution[J]. Blood,2010.115(3):443-452.
    [140]Owusu-Ansah E. Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation[J]. Nature,2009. 461(7263):537-541.
    [141]Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells[J]. Nat Med,2006. 12(4):446-451.
    [142]Hayflick L. The Limited in Vitro Lifetime of Human Diploid Cell Strains[J]. Exp Cell Res,1965.37:614-636.
    [143]Campisi J, Kim SH, Lim CS, et al. Cellular senescence, cancer and aging: the telomere connection[J]. Exp Gerontol,2001.36(10):1619-1637.
    [144]Marcotte R.Wang E. Replicative senescence revisited[J]. J Gerontol A Biol Sci Med Sci,2002.57(7):B257-269.
    [145]Allsopp RC, Morin GB, DePinho R, et al. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation[J]. Blood,2003.102(2):517-520.
    [146]Goytisolo FA, Samper E, Martin-Caballero J, et al. Short telomeres result in organismal hypersensitivity to ionizing radiation in mammals[J]. J Exp Med,2000.192 (11):1625-1636.
    [147]Greenwood MJ. Lansdorp PM. Telomeres, telomerase, and hematopoietic stem cell biology[J]. Arch Med Res,2003.34(6):489-495.
    [148]Samper E, Fernandez P, Eguia R, et al. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells[J]. Blood,2002. 99(8):2767-2775.
    [149]Yamaguchi H, Calado RT, Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia[J]. N Engl J Med,2005. 352(14):1413-1424.
    [150]Allsopp RC, Morin GB, Horner JW, et al. Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells[J]. Nat Med,2003.9(4):369-371.
    [151]Allsopp RC. Weissman IL. Replicative senescence of hematopoietic stem cells during serial transplantation:does telomere shortening play a role?[J]. Oncogene,2002.21 (21):3270-3273.
    [152]Serrano M. Blasco MA. Putting the stress on senescence[J]. Curr Opin Cell Biol,2001.13 (6):748-753.
    [153]Lessard J. Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells[J]. Nature,2003.423 (6937):255-260.
    [154]Molofsky AV, Pardal R, Iwashita T, et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation[J]. Nature, 2003.425(6961):962-967.
    [155]Lowe SW. Sherr CJ. Tumor suppression by Ink4a-Arf:progress and puzzles[J]. Curr Opin Genet Dev,2003.13(1):77-83.
    [156]Sharpless NE. DePinho RA. The INK4A/ARF locus and its two gene products[J]. Curr Opin Genet Dev,1999.9(1):22-30.
    [157]Narita M, Nunez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence[J]. Cell,2003. 113(6):703-716.
    [158]Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors[J]. Cell,2005.120(4):513-522.
    [159]Robles SJ. Adami GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts[J]. Oncogene,1998.16(9):1113-1123.
    [160]te Poele RH, Okorokov AL, Jardine L, et al. DNA damage is able to induce senescence in tumor cells in vitro and in vivo[J]. Cancer Res,2002. 62(6):1876-1883.
    [161]Beausejour CM, Krtolica A, Galimi F, et al. Reversal of human cellular senescence:roles of the p53 and p16 pathways[J]. EMBO J,2003. 22(16):4212-4222.
    [162]Sherr CJ. Weber JD. The ARF/p53 pathway[J]. Curr Opin Genet Dev,2000. 10(1):94-99.
    [163]Lewis JL, Chinswangwatanakul W, Zheng B, et al. The influence of INK4 proteins on growth and self-renewal kinetics of hematopoietic progenitor cells[J]. Blood,2001.97(9):2604-2610.
    [164]Stepanova L. Sorrentino BP. A limited role for p16Ink4a and p19Arf in the loss of hemtopoietic stem cells during proliferative stress[J]. Blood, 2005.106(3):827-832.
    [165]Janzen V, Forkert R, Fleming HE, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a[J]. Nature,2006. 443(7110):421-426.
    [166]Kyriakis JM. Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiol Rev,2001.81(2):807-869.
    [167]Deng Q, Liao R, Wu BL, et al. High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts[J]. J Biol Chem,2004,279(2):1050-1059.
    [168]Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a[J]. Cell, 1997.88(5):593-602.
    [169]Zhu J, Woods D, McMahon M, et al. Senescence of human fibroblasts induced by oncogenic Raf[J]. Genes Dev,1998.12(19):2997-3007.
    [170]Iwasa H, Han JIshikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway[J]. Genes Cells,2003. 8(2):131-144.
    [171]Haq R, Brenton JD,Takahashi M, et al. Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence[J]. Cancer Res,2002.62 (17):5076-5082.
    [172]Wang W,Chen JX, Liao R, et al. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence[J]. Mol Cell Biol,2002.22 (10):3389-3403.
    [173]Katsoulidis E, Li Y, Yoon P, et al. Role of the p38 mitogen-activated protein kinase pathway in cytokine-mediated hematopoietic suppression in myelodysplastic syndromes[J]. Cancer Res,2005.65(19):9029-9037.
    [174]Verma A, Deb DK, Sassano A, et al. Cutting edge:activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia[J]. J Immunol, 2002.168(12):5984-5988.
    [175]Voncken JW, Niessen H, Neufeld B, et al. MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmil[J]. J Biol Chem,2005.280(7):5178-5187.
    [176]Hara E, Smith R, Parry D, et al. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence [J]. Mol Cell Biol, 1996.16(3):859-867.
    [177]Wang W, Martindale JL, Yang X, et al. Increased stability of the p16 mRNA with replicative senescence[J]. EMBO Rep,2005.6(2):158-164.
    [178]Dean JL, Sully G, Clark AR, et al. The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation[J]. Cell Signal,2004. 16(10):1113-1121.
    [179]Gaestel M. MAPKAP kinases-MKs-two's company, three's a crowd[J]. Nat Rev Mol Cell Biol,2006.7(2):120-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700