马氏体塑性变形制备纳米晶粒钢及其组织性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究目的是提出利用马氏体冷塑性变形及随后低温再结晶,以及马氏体温变形来制备纳米晶钢的方法,并对温变形力学行为、组织和性能的关系进行表征,为制备大块高性能超细晶/纳米晶钢铁材料提供参考。
     采用大压下量冷轧、温压缩和温轧方法,制备出了纳米多层钢板和亚微米级超细晶粒钢板。用Gleeble-3500热力模拟试验机进行了温压缩变形行为和拉伸性能测试,并用透射电镜(TEM)、扫描电镜(SEM)和X射线衍射仪(XRD)分析了微观组织。此外,还对马氏体温轧的可行性进行了分析。
     实验表明,15CrMnMoVA和Q235钢板条马氏体冷轧并低温退火,可以制备出纳米多层钢板,而且,通过调整冷轧压下量和退火工艺,可获得强度、塑性和韧性良好的配合。15CrMnMoVA钢经940℃淬火、65%冷轧及580℃×90min退火,得到了沿轧面近于平行排列的纳米层片晶粒,平均层片厚度约80nm。沿轧向的σ_b=1581MPa、σ_(0.2)=1567 MPa、δ=11.5%、α_k=55J·cm~(-2)、K_(1C)=110.7MPa·m~(-1/2),其在5%NaCl溶液中的K1SSC=94.6 MPa·m~(-1/2);Q235钢经940℃淬火、93.6%冷轧、350℃×60min退火,可获得平均晶粒尺寸为22.4nm、σ_b=1795MPa的纳米晶粒钢板。09MnNiDR钢板条马氏体组织400℃温轧及退火,可制备出纳米晶粒/亚微米晶粒钢板。温轧后经450℃×60min退火得到的平均晶粒尺寸为32.8nm,σ_b=1430MPa、σ_(0.2)=1008 MPa、δ=5.4%。
     钢的化学成分,特别是Mo和V,对纳米晶钢板热稳定性影响较大,Cr-Mo-V钢纳米层片组织的热稳定性最高,层片组织消失的温度高达650℃;其次为09MnNiDR钢,层片组织在500℃开始消失;Q235钢纳米层片组织热稳定性最低,层片组织在450℃开始消失。在本实验条件下,强度和硬度与晶粒尺寸之间在纳米尺度仍符合Hall-Petch关系。纳米多层钢板的耐蚀性高于供货状态,其主要原因是超均质和超细化。Q235纳米多层钢板在350℃×480min退火时钢板的耐蚀性最好,退火温度升高,耐蚀性变差。
     影响45钢马氏体温变形流变行为的主要因素是化学成分、变形温度、应变速率和应变量,其中变形温度影响最大。550~700℃变形,马氏体组织的流变应力与F+P组织相当,加工软化率和应变速率敏感性指数都大于F+P组织,马氏体的表观变形激活能为370.3 kJ·mol-1,F+P的表观变形激活能为355.6 kJ·mol-1,得到了它们的温变形方程和变形抗力与Z参数间的关系。马氏体550~700℃、0.01s-1变形后的组织由平均晶粒尺寸为200nm~1.73μm的等轴状铁素体和平均尺寸为32nm~62nm颗粒状碳化物组成。马氏体温变形组织室温拉伸性能优于F+P温变形组织。
     根据现行铁素体轧制理论,以及本文中碳钢马氏体与F+P温变形行为和组织演化的实验结果,可以证明,马氏体温加工用于超细晶粒钢生产是可行的,提出了马氏体温加工制备超细晶粒钢的新方案。
The aim of this dissertation is to present the methods for the preparation of nanograined steels, one is martensite plastic deformation and subsequent recrystallization; other is martensite warm deformation. In addition, the warm deformation behavior and the relationship between the microstrcture and the property were characterized. This will provide a reference to fabrication of high-performane bulk nano-/ultrafine-grained steels. Nano-multilayer/submicro-grained steels were successfully prepared by using the heavy cold rolling, warm deformation and warm rolling. The warm compressive deformation behavior and the tensile properties were studied on Gleeble-3500 thermo-mechanical simulator. The microstructures was examined by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The feasibility of martensite warm rolling was also discussed.
     Experimental results show that nano-multilayer 15CrMnMoVA and Q235 steels can be prepared by the annealing of the lath martensite. Moreover, good combination of strength, plasticity and toughness can be achieved by modifying reduction and annealing parameter. For 15CrMnMoVA steel, parallel arrangemnt nanoscale lamella with average thickness of about 80 nm can be obtained in 15CrMnMoVA steel by quenching at 940°C, and cold rolling in reduction of 65%, and then annealing at 580°C for 90 min. The properties along rolling direction are as follows:σ_b=1581 MPa,σ_(0.2)=1567 MPa,δ=11.5%,α_k=55J·cm~(-2), K_(1C)=110.7MPa·m~(-1/2), and K_(1SSC)=94.6 MPa·m~(-1/2) in 5%NaCl solution. For Q235 steel, nanograins with size of ~22.4 nm can be obtained by quenching at 940°C, and cold rolling in reduction of 93.6%, and then annealing at 350°C for 60 min, andσb reaches 1795 MPa. For 09MnNiDR steel, nano-/submicro-grained steel plate can be fabricated by warm rolling of martensite at 400°C and annealing. Nanograins with the average size of ~32.8 nm can be attained by annealing at 450°C for 60 min after the warm rolling. The tensile properties areσ_b=1430 MPa,σ_(0.2)=1008 MPa,δ=5.4%.
     The chemical composition of steels, especially Mo and V, has a great effect on thermal stability of the nanograined steels. The thermal stability is the highest for Cr-Mo-V steel, for which the lamella structures start to change when the temperature is up to 650°C; and the secondary for 09MnNiDR, for which the lamella structures start to change when the temperature is 500°C; the lowest for Q235 steel, for which the lamella structures start to change when the temperature reaches just to 450°C. Under the present experiment condition, the dependences of grain size on strength and hardness agree with Hall-Petch correlation. The corrosion resistance of the nano-multilayer steels is higher than that of the as received, which is mainly attributed to superhomogeneous and ultrfinement. The corrosion resistance of nano-multilayer Q235 steel annealed at 350°C for 480 min is better than that annealed under other parameters. The corrosion resistance decreases with annealing temperature increases.
     The main effect factors on flow behavior of warm deformation of martensitic 45 steel are chemical composition, deformation temperature, strain rate and strain, and the deformation temperature has the strongest effect on the flow stress. During deformation in the temperature ranged 550 to700°C, the flow stress of martensite is approximately equal to that of F+P, the working softening rate and strain rate sensitivity index for martensite are more than those for F+P. The appearance activation energies of the warm deformation of martensite and F+P are 370.3 and 355.6 kJ?mol-1, respectively. The warm deformation equations and the relationships between the deformation resistance and Z parameter of 45 steel with martensite and F+P were educed. The microstructure of martensitic 45 steel deformed in 550~700°C at 0.01 s-1 is composed of equiaxial ferritic grains with the mean size of 200nm~1.73μm and the granular cementite with the mean size of 32nm~62nm. The room-temperature tensile properties of warm deformed 45 steel with starting microstructure of martensite excel those of F+P.
     Based on actual ferrite rolling theory and the warm deformation behavior and microstructure evolution of martensitic and F+P microstructural medium carbon steel, it is demonstrated that the production of ultrafine grained steels by using warm deformation of martensite is feasible. The new route to prepare ultrafine grained steels by warm deformation of martensite was presented.
引文
1 A. Saito. Research Project on Innovative Steels in Japan (STX-21 Project). Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. Tsukuba, 2000:1-10
    2 W.P. Lee. Development of High Performance Structural Steels for 21st Century. Proceedings of the International Workshop on the Innovative Structural Materials for Infrastructure in 21st century. Tsukuba, 2000: 33-63
    3翁宇庆.新一代钢铁材料的重大基础研究.微合金化高强高韧钢.钢铁研究总院内部论文集,北京, 1999:1-5
    4 P.D.Hodgson, P.j.Hurley, G.L.Kelly. The formation of ultrafine ferrite in low C steels through thermomechanical processing. Proc Int Symp on Ultrafine Grained Steels (ISUGS 2001), Tokyo: The ISIJ of Japan, 2001: 42-50
    5 T.Maki. Formation of Ultrafine-Grained Structure by Various Themomechanical Processing in Steel. Proc workshop on new generation steel (NG STEEL’2001), Beijing: The Chinese Society for metals, 2001: 27
    6 N. Tsuji, R. Ueji, Y. Saito, Y. Minamino. A New and Simple Process to Obtain Nanostructured Bulk Low-Carbon Steel with Superior Mechanical Property. Scripta Mater., 2002, 46: 305-310
    7 R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi. Ultragrain Refinement of Plain Low Carbon Steel by Coldrolling and Annealing of Martensite. Acta Materialia, 2002, 50: 4177-4189
    8 R. Ueji, N. Tsuji, Y. Minamino, et al. Effect of Rolling Reduction on Ultrafine Grained Structure and Mechanical Properties of Low-Carbon Steel Thermomechanically Processed from Martensite Starting Structure. Science and Technology of Advanced Materials, 2004, 5: 153-162
    9 X. Sauvage, X. Quelennec, J. Jmalandain et al. Nanostructure of a Cold Drawn Tempered Martensitic Steel. Scripta mater., 2006, 54: 1099-1103
    10 Samuel, H. Fawzy. Interrelations of Cold Work Microstructure and Mechanical Behavior of Carbon-Free Cubic Martensites. Zeitschrift fuer Metallkund, 1985, 76(2): 115-119
    11 Jing Tianfu, Gao Ming, et al. High Performance Steel Plates with Micro-Layers Structure Produced by Plastic Deformation. J. of Mater. Sci. Lett., 1997, 16(6): 485-489
    12荆天辅,张静武,高明. 15CrMnMoV钢分层致韧效应的研究.钢铁, 1992, 27(2):
    13荆天辅,张静武,傅万堂等.一种新型层压钢板及其制造技术.中国发明专利,专利号: 99106907.2, 2003
    14荆天辅,肖福仁,蔡大勇.纳米晶粒低合金钢板及其制造技术.中国发明专利,专利号:00101493.5, 2003
    15 R.Z. Valiev, N.A. Krasilnilov, N.K. Tsenev. Plastic Deformation of Alloy with Submicron- Grained Structure. Materials Science and Engineering A, 1991, 137 35-40
    16 V.M. Segal. Materials Processing by Simple Shear. Mater. Sci. and Eng. A, 1995,197(2): 157-164
    17 V.M. Segal. Equal Channel Angular Extrusion: from Macromechanics to Structure Formation. MSE A, 1999, 271(1-2): 322-333
    18 V.M. Segal, K.T. Hartwig, R.E Goforth. In situ Composites Processed by Simple Shear. MSEA, 1997, 224(1-2): 107-115
    19 V.M. Segal. Severe Plastic Deformation: Simple Shear Versus Pure Shear. MSE A, 2002, 338(1-2): 331-344
    20 V.V. Stolyarov, R. Lapovok, I.G. Brodova, et al. Ultrafine-grained Al-5 wt.% Fe Alloy Processed by ECAP with Backpressure. MSE A, 2003, 357(1-2): 159-167
    21 V.M. Segal. Slip Line Solutions, Deformation Mode and Loading History during Equal Channel Angular Extrusion. MSE A, 2003, 345(1-2): 36-46
    22 S. Ferrasse, V.M. Segal, S.R. Kalidindi, et al. Texture Evolution during Equal Channel Angular Extrusion: Part I. Effect of Route, Number of Passes and Initial Texture. MSE A, 2004, 368(1-2): 28-40
    23 S. Ferrasse, V.M. Segal, F. Alford. Texture Evolution during Equal Channel Angular Extrusion (ECAE): Part II. An Effect of Post-Deformation Annealing. MSE A, 2004, 372(1-2): 235-244
    24 W.J. Kim, S.I. Hong, Y.S. Kim, et al. Texture Development and Its Effect on Mechanical Properties of an AZ61 Mg Alloy Fabricated by Equal Channel Angular Pressing. Acta Mater., 2003, 51(11): 3293-3307
    25 S. Ferrasse, V.M. Segal, F. Alford. Effect of Additional Processing on Texture Evolution of Al0.5Cu Alloy Processed by Equal Channel Angular Extrusion (ECAE). MSEA, 2004, 372(1-2): 44-55
    26 V.M. Segal. Engineering and Commercialization of Equal Channel Angular Extrusion (ECAE). MSE A, 2004, 386(1-2): 269-276
    27李伟,郑子樵,李世晨.细化晶粒的新方法-等径角挤压.材料导报, 2001, 15(10): 25-28
    28索涛,李玉龙.等径通道挤压中晶粒细化影响因素的研究进展.材料科学与工程学报, 2004, 22(1):132-137
    29 Y. Fukuda, K. Oh-ishi, Z. Horita, et al. Processing of a Low-carbon Steel by Equal-channel Angular Pressing. Acta Mater., 2002, 50: 1359–1368
    30 D.H. Shin, B.C. Kim, Y.S. Kim, et al. Microstructural Evolution in a Commercial Low Carbon Steel by Equal Channel Angular Pressing. Acta Mater., 2000, 48(9): 2247-2255
    31 D.H. Shin, B.C. Kim, K.T. Park, et al. Microstructural Changes in Equal Channel Angular Pressed Low Carbon Steel by Static Annealing. Acta Mater., 2000, 48(12): 3245-3252
    32 K.T. Park, Y.S. Kim, J.G. Lee, et al. Thermal Stability and Mechanical Properties of Ultrafine Grained Low Carbon Steel. MSE A, 2000, 293(1-2): 165-172
    33 J. Kim, I. Kim, D.H. Shin. Development of Deformation Structures in Low Carbon Steel by Equal Channel Angular Pressing. Scripta Mater., 2001, 45(4): 421-426
    34 D.H. Shin, J.J. Pak, Y.K. Kim, et al. Effect of Pressing Temperature on Microstructure and Tensile Behavior of Low Carbon Steels Processed by Equal Channel Angular Pressing. MSE A, 2002, 323(1-2): 409-415
    35 W.J. Kim, J.K. Kim, W.Y. Chao, et al. Large Strain Hardening in Ti2V Carbon Steel Processed by Equal Channel Angular Pressing. Mater. Lett., 2001 ,51(2):177-182.
    36 K.T. Park, D.H. Shin. Annealing Behavior of Submicrometer Grained Ferrite in a Low Carbon Steel Fabricated by Severe Plastic Deformation. MSE A, 2002, 334(1-2): 79-86
    37 D.H. Shin, K.T. Park, Y.S. Kim. Formation of Fine Cementite Precipitates in an Ultra-fine Grained Low Carbon Steel. Scripta Mater., 2003, 48(5): 469-473
    38 H.K. Kim, M.I. Choi, C.S. Chung, et al. Fatigue Properties of Ultrafine Grained Low Carbon Steel Produced by Equal Channel Angular Pressing. MSE A, 2003, 340(1-2): 243-250
    39 O.V. Rybalchenko, S.V. Dobatkin, L.M. Kaputkina, G.I. Raab, N.A. Krasilnikov. Strength of Ultrafine-grained Corrosion-resistant Steels after Severe Plastic Deformation. MSE A, 2004, 387-389 (Complete): 244-248
    40 A.B. Ma, Y. Nishida, K. Suzuki, et al. Characteristics of Plastic Deformation by Rotary-die Equal Channel Angular Pressing. Scripta Materialia, 1999, 40(7): 795-800
    41 R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch, et al. Structure and Deformation Behaviour of Armco Iron Subjected to Severe Plastic Deformation. Acta Mater., 1996, 44: 4705-4712
    42 A. Vorhauer, R. Pippan. On the Homogeneity of Deformation by High Pressure Torsion. Scripta Mater., 2004, 51(9): 921-925
    43 E. Schafler, R. Pippan. Effect of Thermal Treatment on Microstructure in High Pressure Torsion (HPT) Deformed Nickel. MSE A, 2004, 387-389(Complete): 799-804
    44 Z. Lee, F. Zhou, R.Z.Valiev, et al. Microstructure and Microhardness of Cryomilled Bulk Nanocrystalline Al-7.5%Mg Alloy Consolidated by High Pressure Torsion. Scripta Mater., 2004, 51(3): 209-214
    45 C. Rentenberger, C. Mangler, H.P. Karnthaler. Nanostructures in L12-ordered Cu3Au Processed by Torsion under High Pressure. MSE A, 2004, 387-389(Complete): 795-798
    46 Yu. Ivanisenko, W. Lojkowski, R.Z. Valiev, et al. The Mechanism of Formation of Nanostructureand Dissolution of Cementite in a Pearlitic Steel during High Pressure Torsion. Acta Mater., 2003, 51: 5555-5570
    47 H.S. Kim, S.I. Hong, Y.S. Lee, et al. Deformation Behavior of Copper during a High Pressure Torsion Process. J. Mater. Process Tech., 2003, 142(2): 334-337
    48 T. Hebesberger, H.P. Stawe, A. Vorhauer, et al. Structure of Cu Deformed by High Pressure Torsion. Acta Mater., 2005, 53(2): 393-402
    49 V.V. Tcherdyntsev, S.D. Kaloshkin, D.V. et al. Phase Composition and Microhardness of Rapidly Quenched Al-Fe Alloys after High Pressure Torsion Deformation. MSE A, 2004, 375-377 (Complete): 888-893
    50 Yu. Ivanisenko, R.Z. Valiev, H.J. Fecht. Grain Boundary Statistics in Nano-structured Iron Produced by High Pressure Torsion. MSE A, 2005, 390(1-2): 159-165
    51 R.K. Islamgaliev, R. Kuzel, E.D. Obraztsova, et al. TEM, XRD and Raman Scattering of Germanium Processed by Severe Deformation. MSE A,1998, 249(1-2):152-157
    52 R.K. Islamgaliev, R. Kuzel, S.N. Mikov, et al. Structure of Silicon Processed by Severe Plastic Deformation. MSE A, 1999, 266(1-2): 205-210
    53 Y. Saito, N. Tsuji, H. Utsunomiya, et al. Ultra-fine Grained Bulk Aluminum Produced by Accumulative Roll-bonding (ARB) Process. Scripta Mater., 1998, 39:1221-1227
    54 N. Tsuji, Y. Saito, H. Utsunomiya, et al. Ultra-fine Grained Bulk Steel Produced by Accumulative Roll-bonding (ARB) Process. Scripta Mater, 1999, 40(7): 795-800
    55 N. Tsuji, Y. Ito, Y. Saito, et al. Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing. Scripta Materialia, 2002, 47: 893-899
    56 N. Kamikawa, N. Tsuji, Y. Minamino. Microstructure and Texture through Thickness of Ultralow Carbon IF Steel Sheet Severely Deformed by Accumulative Roll-bonding. Sci. Technol. Adv. Mater., 2004, 5(1-2): 163-172
    57 S.H. Lee, Y. Saito, N. Tsuji, et al. Role of Shear Strain in Ultragrain Refinement by Accumulative Roll-bonding (ARB) Process. Scripta Mater., 2002, 46: 281-285
    58 R.M. Imayev, V.M. Imayev, G.A. Salishchev. Formation of Submicrocrystalline Structure in TiAl Intermetallic Compound. J. Mater. Sci., 1992, 27: 4465-4471
    59 O.R. Valiakhmetov, R.M. Galeyev, G.A. Salishchev. Mechanical Properties of the Titanium Alloy VT8 with Submicrocrystalline Structure. Phys. Met. Metallogr., 1990, 70(4): 198-200
    60 G.A. Salishchev, O.R. Valiakhmetov, V.A. Valitov, et al. Submicrocrystalline and Nanocrystalline Structure Formation in Materials and Search for Outstanding Superplastic Properties. Mater. Sci. Forum, 1994, 170-172: 121-130
    61 V.M. Imayev, G.A. Salishchev, M.R. Shagiev, et al. Low-temperature Superplasticity ofSubmicro-crystalline Ti-48Al-2Nb-2Cr Alloy Produced by Multiple Forging. Scripta Mater., 1998, 40(2): 183-190
    62 G.A. Salishchev, R.M. Imayev, O.N. Senkov, et al. Formation of a Submicrocrystalline Structure in TiAl and Ti3Al Intermetallics by Hot Working. MSE A, 2000, 286(2): 236-243
    63 G.A. Salishchev, R.M. Imayev, O.N. Senkov. Microstructural Control in Ti-Al for Enhanced Mechanical Properties. JOM, 2000, 52(12): 46-48
    64 G.A. Salishchev, S.V. Zherebtsov, R.M. Galeyev. Evolution of Microstructure and Mechanical Behavior of Titanium during Warm Multiple Deformations. TMS Annu. Meet., 2002, Seattle: 123-131
    65 S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, et al. Production of Submicrocrystalline Structure in Large-scale Ti-6Al-4V Billet by Warm Severe Deformation Processing. Scripta Mater., 2004, 51(12): 1147-1151
    66 A. Belyakov, R. Kaibyshev. Structural Changes of Ferritic Stainless Steel during Severe Plastic Deformation. Nano. Mater., 1995, 6(5-8): 893-896
    67 A. Belyakov, H. Miura, T. Sakai. Dynamic Recrystallization under Warm Deformation of a 304 Type Austenitic Stainless Steel. MSE A, 1998, 255(1-2): 139-147
    68 W. Gao, A. Belyakov, H. Miura, T. Sakai. Dynamic Recrystallization of Copper Polycrystals with Different Purities. MSE A, 1999, 265(1-2): 233-239
    69 A. Belyakov, K. Tsuzaki, H. Miura, et al. Effect of Initial Microstructures on Grain Refinement in a Stainless Steel by Large Strain Deformation. Acta Mater., 2003, 51: 847-861
    70 Y.T. Zhu, H. Jiang, J. Huang, et al. A New Rout to Bulk Nanostructured Metals. Metall. Mater. Trans. A, 2001, 32(6): 1559-1562
    71 J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Low. Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Sraightening. Acta Mater., 2001, 49: 1497-1505
    72冯淦,石连捷,吕坚等.低碳钢超声喷丸表面纳米化的研究.金属学报, 2000, 36(3): 300-302
    73 G. Liu, S.C. Wang, X.F. Lou, et al. Low Carbon Steel with Nanostructured Surface Layer Induced by High-energy Shot Peening. Scripta Mater., 2001, 44: 1791-1795
    74 G. Liu, J. Lu, K. Lu. Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening. MSE A, 2000, 286(1): 91-95
    75 R.Z. Valiev, A.K. Mukherjee. Nanostructures and Unique Properties in Intermetallics, Subjected to Severe Plastic Deformation. Scripta Mater., 2001, 44(8-9): 1747-1750
    76 V.V. Rybin. Large Plastic Deformation and Structure of Metals. Moscow: Mettallurgy, 1986: 61
    77 A. Belyakov, T. Sakai, H. Miura, et al. Continuous Recrystallization in Austenitic Stainless Steelafter Large Strain Deformation. Acta Mater., 2002, 50: 1547-1557
    78 Yuichiro Watanabe, Keiichi N. Ishihara and P. Hideo Shingu. Strength of Nano-thickness Multi-layered Fe-Cu Composites Produced by Repeated Pressing and Rolling. Scripta Mater., 2001, 44: 1853–1857
    79 I.V. Alexandrov, K. Zhang, A.R. Kilmametov, et al. X-ray Characterization of the Ultrafine- Grained Cu Processed by Different Methods of Severe Plastic Deformation. MSE A, 1997, 234-236: 331-334
    80 V.Y. Gertsman, R.Z. Valiev, N.A. Akhmadeev, et al. Deformation Behavior of Ultrafine-grained Materials. Mater. Sci. Forum, 1996, 225-227: 739-744
    81 R.Z. Valiev, V. Yu. Gertsman, O.A. Kaibyshev. Grain Boundary Structure and Properties under External Influences. Phys. Status Solidi A, 1986, 97(1): 11-56
    82 R.Z.Valiev, E.V. Kozlov, Yu.F. Ivanov, et al. Nazarov. Deformation Behaviour of Ultra-fine- grained Copper. Acta Metall. Mater., 1994, 42: 2467-2475
    83 R.K. Islamgaliev, D.A. Salimonenko, L.O. Shestakova, et al. High Strength State of Ultrafine- grained Aluminium Alloys. Izv. Vuzav Tsve. Metall., 1997, (6): 52-57
    84 R.Z. Valiev, R.K. Islamgaliev, V.V. Stolyarov, et al. Processing and Mechanical Properties of Nanocrystalline Alloys Prepared by Severe Plastic Deformation. Mater. Sci. Forum, 1997, 269-272: 969-974
    85牧正志,钢铁材料组织控制的最新进展.《高洁净度超细晶粒微合金化高强高韧钢》.高怀,焦晓渝,主编, 1999,文集3: 42-45
    86林透,鸟塚史朗,三井达朗,等.马氏体温加工获得微细铁素体晶粒组织.上海钢研, 1999, 3: 42-43
    87 Liu M,Shi B,Guo J,et al. Lattice Constant Dependence of Elastic Modulus for Ultrafine Grained Mild Steel. Scripta Mater, 2003, 49: 167-171
    88 F. Yin, T. Hanamura, O. Umezawa, et al. Phosphorus-induced Dislocation Structure Variation in the Warmrolled Ultrafine-Grained Low-carbon Steels. MSE A, 2003, 354: 31-39
    89 Y.Z. Bao, Y. Adachi, Y. Toomine, et al. Dynamic Recrystallization by Rapid Heating Followed by Compression for a 17Ni–0.2C Martensite Steel. Scripta Materialia, 2005, 53(12): 1471-1476
    90 S.L. Semiatin, D.P. DeLo. Equal Channel Angular Extrusion of Difficult-to-work Alloys. Materials and Design, 2000, 21: 311-322
    91 Y.D. Huang, W.Y. Yang, Z.Q. Sun. Formation of Ultrafine Grained Ferrite in Low Carbon Steel by Heavy Deformation in Ferrite or Dual Phase Region. J of Mater.Pro.Tech., 2003, 134: 19-25
    92 Lin Xinbo, Xiao Hongsheng, Zhang Zhiliang. Flow Stress of Carbon Steel 08F in Temperature Range of Warm-Forging. Journal of Materials Processing Technology, 2003, 139: 543–546
    93 B P Kashyap. Towards Interrelationship of Grain Size Cell Parameters and Flow Stress in TYPe 316L Stainless Steel. Acta Materialia, 2002, 50: 2413–2427
    94 Siamak Serajzadeh. Serrated Flow during Warm Forming of Low Carbon Steels. Materials Letters, 2003, 57: 4515– 4519
    95 Siamak Serajzadeh. Modelling the Warm Rolling of a Low Carbon Steel. Materials Science and Engineering A, 2004, 371: 318–323
    96 Akira Yanagida,Jun Yanagimoto. A Novel Approach to Determine the Kinetics for Dynamic Recrystallization by Using the Flow Curve. Journal of Materials Processing Technology, 2004, 151: 33–38
    97 A Niechajowicz,A Tobota. Warm Deformation of Carbon Steel. Journal of Materials Processing Technology,2000,106:123-130
    98 R Song,D Ponge,D Raabe,R Kaspar. Microstructure and Crystallographic Texture of an Ultrafine Grained C-Mn Steel and their Evolution during Warm Deformation and Annealing. Acta Materialia, 2005, 53: 845-858
    99 Jing Shi, C Richard Liu. Flow Stress Property of a Hardened Steel at elevated Temperatures with Tempering Effect. International Journal of Mechanical Sciences, 2004, 46: 891-906
    100 D B Santos,R K Bruzszek,P C M Rodrigues,E V Pereloma. Formation of Ultra-Fine Ferrite Microstructure in Warm Rolled and Annealed C-Mn Steel. Materials Science and Engineering A, 2003, 346: 189-195
    101 Zhao Xin,Jing Tianfu,GaoYuwei,Qiao Guiying,Zhou Jifeng,Wang Wei. Annealing Behavior of Nano-Layered Steel Produced by Heavy Cold-Rolling of Lath Martensite. Materials Science and Engineering A, 2005, 397: 117-121
    102 Feng Xiuming, Wang Baoqi, Gu Nanju, Mao Xiaoli. Effect of Moderate Temperature Deformationon Microstructure.of Link Chain Steel 23MnNiCrMo5. Journal of Ironand Steel Researc, 2005, 17(3): 42-46
    103 Akira Yanagida, Jun Yanagimoto. A Novel Approach to Determine the Kinetics for Dynamic Recrystallization by Using the Flow Curve. Journal of Materials Processing Technology, 2004, 151: 33-38
    104周纪华,管克智.金属塑性变形阻力.北京:机械工业出版社, 1989: 59-98
    105韩冬峰,郑子樵,蒋呐,李劲风.高强可焊2195铝-锂合金热压缩变形的流变应力.中国有色金属学报, 2004, 14(12): 2090-2095
    106 L.X.Li, Y.Lou, L.B.Yang, D.S.Peng, K.P.Rao. Flow Stress Behavior and Deformation Characteristics of Ti-3al-5V-5Mo Compressed at Elevated Temperatures. Materials and Design, 2002, 23: 451-457
    107 K.P.Rao, Y.K.D. V.Prasad, E.B.Hawbolt. Hot Deformation Studies on a Low-carbon Steel: Part 1-low Curves and the Constitutive Relationship. Journal of Materials Processing Technology, 1996, 56: 897-1907
    108 Madakasira Prabhakar Phaniraj, Ashok Kumar Lahiri. The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels. Journal of Materials Processing Technology, 2003, 141: 219–227
    109许云波,刘相华,王国栋.低碳钢低温区流变应力的预测.钢铁研究学报, 2002, 14(2): 40-43
    110王方,李维娟. SS400钢低温区流变应力的预测.鞍山科技大学学报, 2004, 27(4): 248-251
    111刘战英,冯运莉,田薇,诸葛铭毅. 45钢低温轧制的变形抗力模型.轧钢, 2004, 21(1): 12-14
    112胡昌明,贺红亮,胡时胜. 45号钢的动态力学性能研究.爆炸与冲击, 2003, 23(2): 187-192
    113 Siamak Serajzadeh. Modelling the Warm Rolling of a Low Carbon Steel. Materials Science and Engineering A, 2004, 371: 318-323
    114 C.Huang, E.B.Hawbolt, X.Chen, T.R.Meadowcroft, D.K.Matlock. Flow Stress Modeling and Warm Rolling Simulation Behavior of Two Ti-Nb Interstitial-Free Steels in the Ferrite Region. Acta materialia, 2001, 49: 1445-1452
    115吴瑞恒,张鸿冰,徐祖耀,阮雪榆.基于晶粒尺寸的结构钢热变形流变应力数学模型.上海交通大学学报, 2003, 37(10): 1497-1500
    116 B.P. Kashyap. Towards Interrelationship of Grain Size, Cell Parameters and Flow Stress in Type 316l Stainless Steel. Acta Materialia, 2002, 50: 2413-2427
    117 A.Oudin, M.R.Barnett, P.D.Hodgson. Grain Size Effect on the Warm Deformation Behaviour of a Ti-IF Steel. Materials Science and Engineering A, 2004, 367: 282-294
    118 Kumar, H.Van Swygenhoven, S.Suresh. Mechanical Behavior of Nanocrystalline Metals and Alloys. Acta Materialia, 2003, 51: 5743-5774
    119 M.Y.Liu, B.Shi, C.Wang, S.K.Ji, X.Cai, H.W.Song. Normal Hall-Petch Behavior of Mild Steel with Submicron Grains. Materials Letters, 2003, 57: 2798-2802
    120 H.Hidaka, T.Tsuchiyama, S.Takaki. Relation between Microstructure and Hardness in Fe-C Alloys with Ultra Fine Grained Structure. Scripta Mater., 2001, 44: 1503-1506
    121 Setuso Takaki, Kenji Kawasaki, Yuji Kimura. Mechanical Properties of Ultra Fine Grained Steels. Journal of Materials Process Technology, 2001, 117: 359-363
    122 M.Zhao, J.C.Li, Q.Jiang. Hall–Petch Relationship in Nanometer Size Range. Journal of Alloys and Compounds, 2003, 361: 160–164
    123 H.Hahn, P.Mondal, K.A.Padmanabhan. Plastic Deformation of Nanocrystalline materials. Nanostructured Matarials, 1997, 9: 603-606
    124 S.G.Zaichenko, D.A.M.Glezer. Disclination. Mechanism of Plastic Deformation of Nano-crystalline Materials. Interface Science, 1999, 7: 57-67
    125 E.Arzt. Size Effects in Materials due to Microstructural and Dimensional Constraints: a Comparative Review. Acta Materialia, 1998, 46(16): 5611-5626
    126 Yu Ivanisenko, R.K.Wunderlich, R.Z.Valiev, H.J. Fecht. Annealing Behaviour of Nanostructured Carbon Steel Produced by Severe Plastic Deformation. Scripta Materialia, 2003, 49: 947–952
    127 Mingyuan Liu, Bi Shi, Gang Bi, Hanging Cao, X. Cai, Hongwei Song. A Submicron Mild Steel Produced by Simple Warm Deformation. Materials and Engineering A, 2003, 360: 101-106
    128王占学,于淑娴,李贵.奥氏体不锈钢温加工新技术的研究.东北工学院学报, 1989, 10(3): 289- 295
    129 A. Schmickl, D. Yu, C. Killmore, D. Langle, T. Chandra. Prediction of Carbon Steel Ferrite Grain Size after Warm Deformation. The Iron And Steel Institute of Japan, 1996, 36(10): 1279-1285
    130范建文,易敏,孟振生等.普通碳锰钢的中温变形研究.中国钢铁年会论文集, 2003:433-437
    131 D. B. Santos, R. K. Bruzszek, P. C. M. Rodrigues, E. V. Pereloma. Formation of Ultra- fine Ferrite Microstructure in Warm Rolled and Annealed C-Mn Steel. Materials Science and Engineering A, 2003, 346:189-195
    132石淑琴.细晶铁素体组织.国外金属热处理, 2001, 22(6): 9-12
    133林透.马氏体温加工获得等轴微细铁素体晶粒组织.上海金属, 1999, 3: 42-43
    134 H.William. Parks, S.Christopher. Haggerty, R. Timothy. Rock. Ferritic Rolling of Interstitial-Free Steel. Iron and Steel Engineer, 1997, 74(10): 35-36
    135陈景浒.传统热连轧生产技术的发展.南方金属, 2002, 125(4): 7-9
    136毛新平.薄板坯连铸连轧技术综述.冶金丛刊, 2004, 150(2): 35-39
    137毛新平.薄板坯连铸连轧铁素体轧制工艺.钢铁, 2004, 39(5): 71-75
    138毕刚.低碳低合金钢晶粒超细化研究. [上海交通大学博士学位论文]. 2004, 5: 23-32
    139 K.Renganathan, B.Nageswara Rao, M.K.Jana. Failure Pressure Estimation on a Solid Propellant Rocket Motor with a Circular Perforated Grain, International journal of pressure vessels and piping, 1999,76:955-963
    140 Huang.Y, Lin,X,R., Xu,J., Li,S.X and Li.W. Thermographic Examination of Fatigue Exercise on High Strength Pressure Vessel, Acta Metall. Sinc., 2004, 30(5): A195- A199
    141 L.W.Tsay, C.S.Chung and C.Chen. Fatigue Crack Propagation of D6AC Laser Welds. Int. J. Patigue, 1997, 19(1): 25-31,
    142 Palmer, D.D. King, D.C. Dods B.G.. Barkhausen Effect Measurements on Compressively Overloaded 300M Steel, Proceedings of the 15th Annual Review of Progress in Quantitative Nondestructive Evaluation.La Joila, California (USA), 31 Jul-5 Aug., 1988, 8B: 2033-2041
    143 Jiles, D C Garikepati, P Palmer D D. Evaluation of Residual Stress in 300M Steels UsingMagnetization, Barkhausen Effect and X-ray Diffraction Techniques. Proceedings of the 15th Annual Review of Progress in Quantitative Nondestructive Evaluation.La Joila, California (USA), 31 Jul-5 Aug. 1988, 8B: 2081-2087
    144 Yi He, Ke Yang, Wenshen Qu, Ganya Kong, Guoyue Su. Strengthening and Toughening of a 2800-MPa Grade Maraging Steel. Materials Letters, 2002, 56: 763- 769
    145 S J Kim, C M Wayman. Strengthening Behaviour and Embrittlement Phenomena in Fe-Ni-Mn-(Ti) Maraging Alloys. Materials Science and Engineering A, 1996, 207: 22-29
    146 G P Tiwari, A Bose, J K Chakravartty, et al. A Study of Internal Hydrogen Embrittlement of Steels. Materials Science and Engineering, 2000, A286: 269-281
    147肖纪美.金属韧性与韧化.上海:上海科学技术出版社, 1980.10: 365
    148 Yoshiyuki, Tomita. Improved Lower Temperature Fracture Toughness of Ultrahigh Strength 4340 Steel Through Modified Heat Treatment. Metall Trans, 1987, 18A(8): 1495-1501
    149雷廷权,姚忠凯,杨德庄,高彩桥,姜虹,赵连城.钢的形变热处理.北京:机械工业出版社, 1979.10:496
    150李恒德,师昌绪.中国材料发展现状及迈入新世纪对策.济南:山东科技出版社, 2002.8: 176-182
    151 D Raabe, K Miyake, H Takahara. Processing Microstructure and Properties of Ternary High-Strength Cu-Cr-Ag in Situ Composites. Materials Science and Engineering, 2000, A291: 186-197
    152 W Grünberger, M Heilmaier, L Schultz. Development of High-Strength and High-Conductivity Conductor Materials for Pulsed High-field Magnets at Dresden. Physica, 2001,B 294-295: 643-647
    153 Jianguo Cui, Yonghui Fu, Nian Li, Jun Sun, Jiawen He, Yao Dai. Study on Fatigue Crack Propagation and Extrinsic Toughening of an Al-Li-alloy. Materials Science and Engineering A, 2000, 281:126-131
    154 J M Yang, S M Jeng, K Bain, R A Amato. Microstructure and Mechanical Behavior of In-situ Directional Solidified NiAl/Cr(Mo) Eutectic Composite. Acta Mater, 1997, 45(1): 295-305
    155 S Milenkovic, A A Coelho, R Caram. Directional solidification processing of eutectic alloys in the Ni-Al-V system. Journal of Crystal Growth 2000, 211: 485- 490
    156 W A Spitzing. Strength and Electrical Conductivity of a Deformation-process Cu5Pct-Nb Composite. Metall Trans, 1993, 24A: 7-14
    157 L S Sigl. Microcrack Toughening in Brittle Materials Containing Weak and Strong Interfaces. Acta mater, 1996, 44(9): 3599-3609
    158 H Tan, Y Zhang, Y Li. Synthesis of La-based In-situ Bulk Metallic Glass Matrix Composite.Intermetallics, 2002, 10: 1203-1205
    159 Changan Wang, Yong Huang, Qingfeng Zan, Hai Guo, Shengyou Cai. Biomimetic Structure Design-a Possible Approach to Change the Brittleness of Ceramics in Nature. Materials Science and Engineering C, 2000, 11: 9-12
    160 H W Chandler, I J Merchant, R J Henderson, D E Macphee. Enhanced Crack-Bridging by Unbonded Inclusions in a Brittle Matrix. Journal of the European Ceramic Society, 2002, 22: 129-134
    161 J Cook, J E Gardon. A Mechanism for the Control of Crack Propagation in All-brittle Systems, Pro. Roy. Soc. A, 1964, 282(1391): 508-520
    162 K.G.Kreider.温仲元译.金属基复合材料.北京:国防工业出版社,1982:30
    163 Saito Y, Tsuji N, Utsunomiya H, Sakai T. Novel Ultra-high Straining Process for Bulk Materials- Development of the Accumulative Roll-Bonding (ARB) Process. Acta Mater., 1999,47: 579-583
    164 P M Anderson, C Li. Hall-Petch Relations for Multilayered Materials. Nanostructured materials, 1995,5(3):349-362
    165蔡大勇,张春玲,高聿为,胡怡,荆天辅. CrMoV钢板条马氏体塑性变形诱发内生复合效应的研究.材料热处理学报, 2001, 22(4): 43-47
    166荆天辅,许守廉,王戟如.平板冷弯法对K1C值的估算和15CrMnMoV钢形变时效工艺参数的筛选.物理测试, 1991, 3: 34-37
    167 G L Hanna, A B Troiano, E A Steigerwald. ASM Trans Quart, 1964, 57(3): 658-671
    168蔡大勇,张春玲,荆天辅.一种内生复合板弱界面结合强度的测试方法.物理测试, 2000(2): 41-43
    169 M Umemoto, B Huang, K Tsuchiya, N Suzuki. Formation of Nanocrystalline Structure in Steel by Ball Drop Test. Scripta Mater, 2002,46:383-388
    170 Y H Zhao, H W Sheng, K Lu. Microstructure Evolution and Thermal Properties in Nanocrystalline Fe during Mechanical Attrition. Acta Mater, 2001,49:365-375
    171 R Z Valiev, R K Islamgaliev, I V Alexandrov. Bulk Nanostructured Materials from Severe Plastic Deformation. Prog. Mater. Sci., 2000,45:103-189
    172 Jing Tianfu, Zhang Jingwu, Fu Wantang, Gao Ming. High Performance Steel Plates with Micro-Laminated Layer Structure Produced by Plastic Deformation. J.mater.sci.lett., 1997, 16: 485- 489
    173赵军. Q235纳米晶粒钢板的制备及其微观结构和力学性能.硕士学位论文,秦皇岛:燕山大学, 2003: 26
    174张春玲. DISC钢板中弱界面结合强度及其强韧化机制的研究.硕士学位论文,秦皇岛:燕山大学, 1999: 31
    175 Qiao, A S Argon. Cleavage Crack-Growth-Resistance of Grain Boundaries in Polycrystalline Fe-2%Si Alloy: Experiments and Modeling. Mechanics of Materials, 2003,35:129-154
    176 P Shanmugam, S D Pathak. Technical Note some Studies on the Impact Behavior of Banded Microalloyed Steel. Engineering Fracture Mechanics, 1996,53(6): 991-1005
    177卢光熙,侯增寿.金属学教程.上海:上海科学技术出版社, 1985: 193
    178 O.Engler.On the Influence of Orientation Pinning on Growth Selection of Recrystallisation. Acta Metallurgica, 1998,46(5):1555-1568
    179 B Faucher, B Dogan. Evaluation of the Fracture Toughness of Hot-Rolled Low-Alloy Ti-V Plate Steel. Met. Trans., 1988,19A:505-516
    180孙本荣,王有铭,陈英.中厚钢板生产.北京:冶金工业出版社, 1993.1: 460
    181田村今男.热处理,1981, 21(6): 324-330
    182徐祖耀.马氏体相变与马氏体.北京:科学出版社, 1981.3: 100-206
    183 M Khobaib, R Quattrone, C M Wayman. Met. Trans. A, 1978, 9: 1431
    184 A Niechajowicz,A Tobota. Warm Deformation of Carbon Steel. Journal of Materials Processing Technology, 2000, 106: 123-130
    185 Feng Xiuming, Wang Baoqi, Gu Nanju, Mao Xiaoli. Effect of Moderate Temperature Deformationon Microstructure.of Link Chain Steel 23MnNiCrMo5. Journal of Ironand Steel Researc, 2005, 17(3): 42-46
    186 S. Morito, J. Nishikawa, T. Maki. Dislocation Density within Lath Martensite in Fe-C and Fe-Ni Alloys. The Iron And Steel Institute of Japan,2003,43(9):1475-1477
    187 Lydia Storojeva, Radko Kaspar, Dirk Ponge. Effects of Heavy Warm Deformation on Microstructure and Mechanical Properties of a Medium Carbon Ferritic-Pearlitic Steel. The Iron And Steel Institute of Japan,2004,44(7): 1211-1216
    188梁小凯,孙新军,刘清友,董翰.超细晶粒钢在不同温度下塑性变形机制的研究.钢铁, 2004, 39(11): 53-57
    189 C.M.Sellars. Modeling-an Interdisciplinary Activity. Yue S eds Proc Int Conf. On mathematical modeling of hot rolling of steel, Hamilton: CIMM. 1990: 1-8
    190 G.Palumbo, S.J.Thorpe, K.T.Aust. Scripta Metallurgica et Materials, 1990,24: 1347
    191贺东风,田乃媛.两种类型薄板坯连铸连轧生产线配置研究.钢铁, 2005, 40 (3): 36-39
    192 George, Krauss. Martensite in Steel: Strength and Structure. Materials Science and Engineering A, 1999, 273-275: 40-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700