由FC结构母体制备乙醇水蒸气重整制氢镍基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前世界大多数能源来自于化石燃料。但化石燃料的储藏量是有限的,人们认识到石油、天然气和煤能够为人类提供能量的时间是有限的。相对于化石燃料,氢的燃烧不排放污染环境的物质,同时基于燃料电池技术,采用氢为燃料可以构成一个能源系统。所以氢被认为是未来能量的载体。当前大部分的氢气是由化石燃料的水蒸气重整生产的。由化石燃料制氢会排放温室气体并造成大气污染。虽然有很多不同的原料可以用于生产氢气。但是在众多的液体原料中,乙醇有很多的优点,如可再生、容易运输、可生物降解、毒性低等。因此乙醇制氢的相关研究具有重要的意义。
     采用吉布斯自由能最小原理对乙醇氧化水蒸气重整制氢进行了热力学分析。结果表明氧气的加入有效地减少了反应的吸热。本文给出了系统达到自热的条件。发现自热的反应温度是进料H2O/EtOH和O2/EtOH的摩尔比的函数。在700 K及其以下可以在宽广的进料H2O/EtOH和O2/EtOH摩尔比条件下实现自热,但是如此低的温度下有活性的催化剂是很难找到的。900 K时,在一定的H2O/EtOH和O2/EtOH的摩尔比范围内系统可以实现自热。1100 K,在O2/EtOH < 0.9范围内则不存在H2O/EtOH比可以实现自热。在自热条件下氢气的平衡摩尔数在900 K时达到最大,从而900 K被认为是适宜工作条件。对于非自热条件,重点考察了700,900和1100 K,H2O/EtOH和O2/EtOH分别在1.0-10.0,0.0-0.90等条件下氢、甲烷、一氧化碳和碳的平衡摩尔数。提出了提高氢气产率,降低甲烷产率和避免积炭生成的条件。
     由Feitknecht化合物母体出发制备出具有不同负载量的镍基催化剂,对乙醇水蒸气重整反应的活性,稳定性和抗积碳性能进行了研究。结果表明,通过改变负载量,镍的分散度能被控制。发现加入镁可以改变载体的酸性。当催化剂组成为NiMgAl-0.5时表现了最好的活性,氢的选择性和抗积碳性能。催化剂反应100小时后没有失活,但该催化剂表面却有碳纤维生成,镍颗粒也轻微烧结。
     成功地用反相微乳液方法制备出了Feitknecht化合物母体,并将所得到的母体经焙烧后应用于乙醇水蒸气重整反应。与共沉淀和浸渍法制备的具有相同金属负载量的催化剂相比,结果表明反相微乳液法获得的催化剂有较大的比表面积、和较高的镍分散度。该催化剂表现了最好的活性和稳定性,最少量的积碳。
     由Feitknecht化合物母体出发,制备出镧和铈掺的镍镁铝催化剂。将其应用于乙醇水蒸气重整制氢反应。BET结果表明镧和铈掺的镍镁铝催化剂比表面积相对于未掺的镍镁铝催化剂有明显增加,但是镧和铈掺量存在最佳值。氧化物的XRD结果表明一小部分的镧进入到镍镁固溶体中。而铈发生聚集并分布在外表面。TPR结果说明镧和铈的掺提高了催化剂的还原能力,其中镧的作用更加明显。XPS数据表明对比于铈掺的催化剂,镧掺的催化剂被还原成零价镍的量更多。反应后催化剂的XRD结果表明镧掺的催化剂中镍晶粒的直径最小,说明镧能更好的抑制镍晶粒的烧结。活性数据表明镧和铈掺的催化剂提高了催化活性和稳定性。
Most of the present world energy supplys comes from fossil fuels. But reserves of fossil fuels are limited. People recognize that reserves of petroleum, natural gas and coal are finite for providing energy. Unlike fossil fuels, hydrogen can burn cleanly, without emitting any environmental pollutants. FCs use hydrogen as a fuel which results in the formation ofwater vapor only and thus they provide clean energy. H2 is considered to be the energy carrier of the future and could have an important role in reducing environmental emissions. Currently, most of the H2 is produced via the steam reforming of fossil fuels. However, hydrogen production from fossil fuels is always associated with the emission of greenhouse gases and local pollutants. In nature, H2 can be produced from different resources. Among the liquid H2 resources, ethanol is a good candidate for several reasons. Ethanol is renewable and is becoming available easily. It is easy to transport, biodegradable, and low in toxicity.
     A thermodynamic analysis of ethanol oxidative steam reforming was carried out with a Gibbs free energy minimization method. The addition of oxygen lowers the enthalpy of the system and favors the heat recycle. Thermal-neutral conditions are obtained, at which the heat released from exothermic reactions makes up exactly for the requirement of the endothermic reactions. Thermal-neutral temperature is a function of the feed composition. For 700 K thermal-neutral conditions can be reached in a wide range of H2O/EtOH and O2/EtOH ratios. However, this condition is not practical because that a catalyst active in the range is difficult to find. At 900 K, a given condition range exists for thermal-neutral operation. At 1100 K, no thermal-neutral condition exists in the condition range examined. Under thermal-neutral conditions, the equilibrium moles of hydrogen, methane, carbon monoxide and carbon are examined. 900 K is favorable for hydrogen production where the maximum equilibrium mole of hydrogen appears. For the non- thermal-neutral operations, a detailed calculation is presented on a range of reaction conditions, i.e. temperature 700– 1100 K, H2O/EtOH and O2/EtOH feed ratios in 1.0– 10.0 and 0.0– 0.9, respectively. The equilibrium moles of H2, CH4, CO and C are examined. Hydrogen is favored at low O2/EtOH ratio, high H2O/EtOH ratio and 900 K. Methane is not favored at high temperatures and high O2/EtOH and H2O/EtOH ratios. Carbon formation can be avoided by adjusting the reaction condition in a reasonable range.
     The ethanol steam reforming over nickel supported catalysts with different Ni loadings prepared from Feitknecht compound precursors was studied. By varying the Ni loading, Ni dispersion and nickel phases could be controlled. It was found that the amount of Mg in the catalyst affect the acidity of support. It was shown that NiMgAl-0.5 catalyst obtained from Feitknecht compound precursor showed the best activity, selectivity and resistance to carbon deposition. The deposited carbon has a filamentous structure after 100 hour, and the size of Ni particles only increased slightly.
     Feitknecht compound precursor for preparing mixed oxide catalyst has been successfully synthesized by a novel method. And the mixed oxide obtained from the above method was applied in ethanol steam reforming. Furthermore, for comparison, catalysts prepared from conventional coprecipitation and impregnation methods had the same composition with the catalyst prepared from the new method. The high BET surface area of the catalyst obtained from reverse microemulsion method enhanced the nickel dispersion and the nickel surface area. The catalyst obtained from reverse microemulsion exhibited the best activity, stability, and least carbon deposition. Feitknecht compound precursors for preparing lanthanide promoted catalysts have been applied to ethanol steam reforming. The results showed that the surface area increased greatly for lanthanide promoted catalysts. And there was an optimal value for lanthanide promoted contents. XRD of the mixed oxides indicated that a small amount of La3+ was doped into the Ni-Mg-O solid solution and CeO2 was conglomerated on the surface of the support. TPR results revealed that the presence of lanthanide elements enhanced the catalyst reducibility, which was most evident with lanthanum promoted catalysts. XPS data indicated that lanthanum promoted catalysts exhibited higher Ni0 concentration on surface area compared to cerium promoted catalysts. XRD of the used catalysts indicated that lanthanum prevented the growth of crystallite sizes. Activity experiments showed that adding small amounts of lanthanide elements could improve the catalytic activity and stability significantly.
引文
[1] D. Das, T.N. Veziroglu, Hydrogen production by biological processes: a survey of literature, Int. J. Hydrog. Energy, 2001, 26 (1): 13~28
    [2] S. Fields, Making the best of biomass-hydrogen for fuel cells, Environ. Health Perspect., 2003, 111 (1): A38~A41
    [3] S. Dunn, Hydrogen futures: toward a sustainable energy system, World watch Institute, Washington, DC, 2001
    [4] The hydrogen economy: opportunities, costs, barriers, and R&D needs national research council and national academy of enginering, The National Academic Press: Washington, DC, 2004, p 256
    [5] J.A. Turner, Sustainable hydrogen production, Science, 2004, 305 (5686): 972~974
    [6] Z.X. Chen, Y.B. Yan, S.S.E.H. Elnashaie, Catalyst deactivation and engineering control for steam reforming of higher hydrocarbons in a novel membrane reformer, Chem. Eng. Sci., 2004, 59 (10): 1965~1978
    [7] R.F. Service, The hydrogen backlash, Science, 2004, 305 (5686): 958~961
    [8] F. de Bruijn, The current status of fuel cell technology for mobile and stationary applications, Green Chem., 2005, 7: 132~150
    [9] M. Momirlan, T.N. Veziroglu, The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet, Int. J. Hydrogen Energy, 2005, 30: 795~802
    [10] A.Stefanescu, A.C. van Veen, E. Duval-Brunel, et al. Investigation of a Ni-based steam reforming catalyst developed for the coating of microstructures, Chem. Eng. Sci., 2007, 62(18-20): 5092~5096
    [11] N. Rubbia, Discusses china italy cooperation at 13th world hydrogen conference, Hydrogen Fuel Cell Lett, 2000, 2
    [12] S. Dunn, Hydrogen futures: toward a sustainable energy system, Int. J. Hydrogen Energy, 2002, 27: 235~264
    [13] M. Steinberg, H.C. Cheng, Modern and prospective technologies for hydrogen production from fossil fuels, Int. J. Hydrogen Energy, 1989, 14: 797~820
    [14] M.L. Ghirardi, J.P. Zhang, J.W. Lee, et al. Microalgae: a green source of renewable H2, Trends Biotechnol., 2000, 18 (12): 506~511
    [15] J.H. Reith, R.H. Wijffels, H. Barten, Bio-methane and biohydrogen: status and perspectives of biological methane and hydrogen production; Dutch Biological Hydrogen Foundation: Petten, The Netherlands, 2003, p 166
    [16] D.B. Levin, L. Pitt, M. Love, Biohydrogen production: prospects and limitations to practical application, Int. J. Hydrog. Energy, 2004, 29 (2): 173~185
    [17] D.A. Morgenstern, J.P. Fornango, Low-temperature reforming of ethanol over copper-plated Raney nickel: A new route to sustainable hydrogen for transportation, Energy Fuels, 2005, 19: 1708~1716
    [18] M. Prigent, On board hydrogen generation for fuel cell powered electric cars-A review of various available techniques, Revue De L’Institut Francais DU Petrole, 1997, 52 (3): 349~358
    [19] G.A. Deluga, J.R. Salge, L.D. Schmidt, et al. Renewable hydrogen from ethanol by autothermal reforming, Science, 2004, 303 (5660): 993~997
    [20] F. Marino, M. Boveri, G. Baronetti, et al. Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts, Int. J. Hydrogen Energy, 2004, 29: 67~71
    [21] S. Cavallaro, Ethanol steam reforming on Rh/Al2O3 catalysts, Energy Fuels, 2000, 14 (6): 1195~1199
    [22] J. Llorca, N. Homs, J. Sales, et al. Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol, J. Catal., 2004, 222 (2): 470~480
    [23] M. Benito, R. Padilla, L. Rodriguez, et al. Zirconia supported catalysts for bioethanol steam reforming: Effect of active phase and zirconia structure, J. Power Sources, 2007, 169 (1): 167~176
    [24] J.A. Torres, J. Llorca, A. Casanovas, et al. Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe-and Mn-promoted Co/ZnO catalysts, J. Power Sources, 2007, 169 (1): 158~166
    [25] J. Llorca, P.R. de la Piscina, J. Sales, et al. Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts, Catal. Commun., 2001, (7): 641~642
    [26] F. Frusteri, S. Freni, V. Chiodo, Hydrogen from biomass-derived ethanol to feed a MC fuel cell: A comparison among MgO supported Rh, Pd, Co and Ni catalysts, Presented in the Technical Program, Pisa, Italy, 2004, May: 16~19
    [27] M. Tiziano, D.R. Loredana, G. Valentina, et al. Design of Rh@Ce0.2Zr0.8O2-Al2O3 nanocomposite for ethanol steam reforming, J. Alloy. Compd., 2007, In Press
    [28] M. Toth, M. Domok, J. Raskox, et al. Steam reforming of ethanol on different supported Rh catalysts, Presented in the Technical Program, Pisa, Italy, 2004, May: 16~19
    [29] A.N. Fatsikostas, D.I. Kondarides, X.E. Verykios, Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications, Catal. Commun., 2001, (9): 851~852
    [30] P.Y. Sheng, H. Idriss, Ethanol reactions over Au-Rh/CeO2 catalysts. Total decomposition and H2 formation, J. Vac. Sci. Technol. A, 2004, 22 (4): 1652~1658
    [31] S. Zhao, T. Luo, R.J. Gorte, Deactivation of the water-gas-shift activity of Pd/ceria by Mo, J. Catal., 2004, 221 (2): 413~420
    [32] J.C. Amphlett, S. Leclerc, R.F. Mann, et al. Fuel cell hydrogen production by catalytic ethanol steam reforming, Proceedings of the 33rd Intersociety Energy Conversion Engineering Conference, Colorado Sprongs, CO, 1998, August: 98~269
    [33] E.Y. Garcia, M.A. Laborde, Hydrogen production by the steam reforming of ethanol thermodynamic analysis, Int. J. Hydrogen Energy, 1991, 16 (5): 307~312
    [34] K. Vasudeva, N. Mitra, P. Umasankar, et al. Steam reforming of ethanol for hydrogen production: Thermodynamic analysis, Int. J. Hydrogen Energy, 1996, 21 (1): 13~18
    [35] I. Fishtik, A. Alexander, R. Datta, et al. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions, Int. J. Hydrogen Energy, 2000, 25: 31~45
    [36] F. Aupretre, C. Descorme, D. Duprez, et al. Catalytic steam reforming: use for on-board hydrogen production from hydrocarbons or alcohols, Sci. Mater., 2001, 26 (4): 93~106
    [37] F. Aupretre, C. Descorme, D. Duprez, Hydrogen production for fuel cells from the catalytic ethanol steam reforming, Top. Catal., 2004, 30/31: 487~491
    [38] S. Freni, G. Maggio, S. Cavallaro, Ethanol steam reforming in a molten carbonate fuel cell: A thermodynamic approach, J. Power Sources, 1996, 62: 67~74
    [39] I. Thoephilus, Thermodynamic analysis of ethanol processors for fuel cell applications, J. Power Sources, 2001, 92: 17~25
    [40] V. Mas, R. Kiproes, N. Amadeo, et al. Thermodynamic analysis of ethanol/water system with the stoichiometric method, Int. J. Hydrogen Energy, 2006, 31 (1): 21~28
    [41] F. Gallucci, A. Basile, S. Tosti, et al. Methanol and ethanol steam reforming in membrane reactors: An experimental study, Int. J. Hydrogen Energy, 2007, 32: 1201~1210
    [42] J. Sun, X.P. Qiu, F. Wu, et al. H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application, Int. J. Hydrogen Energy, 2005, 30: 437~445
    [43] A. Therdthianwong, T. Sakulkoakiet, S. Therdthianwong, Hydrogen production by catalytic ethanol steam reforming, ScienceAsia, 2001, 27: 193~198
    [44] F. Marino, M. Boveri, G. Baronetti, et al. Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts, Int. J. Hydrogen Energy, 2004, 29: 67~71
    [45] A.J. Akande, Production of hydrogen by reforming of crude ethanol, M.Sc. Thesis, University of Saskatchewan, 2005
    [46] A.J. Akande, R.O. Idem, A.K. Dalai, Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production, Appl. Catal. A: Gen., 2005, 287: 159~175
    [47] A. Aboudheir, A. Akande, R. Idem, et al. Experimental studies and comprehensive reactor modeling of hydrogen production by the catalytic reforming of crude ethanol in a packed bed tubular reactor over a Ni/Al2O3 catalyst, Int. J. Hydrogen Energy, 2006, 31(6): 752~761
    [48] F. Aupretre, C. Descorme, D. Duprez, Bio-ethanol catalytic steam reforming over supported metal catalysts, Catal. Commun., 2002, 3 (6): 263~267
    [49] V. Fierro, V. Klouz, O. Akdim, et al. Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications, Catal. Today, 2002, 75 (1-4): 141~144
    [50] C. Diagne, H. Idriss, A. Kiennemann, Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts, Catal. Commun., 2002, 3 (12): 565~571
    [51] S. Cavallaro, V. Chiodo, A. Vita, et al. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst, J. Power Sources, 2003, 123 (1): 10~16
    [52] N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat, Reactivity of high surface area CeO2 synthesized by surfactant-assisted method to ethanol decomposition with and without steam, Chem. Eng. J., 2007, 127: 31~38
    [53] J. Comas, F. Marino, M. Laborde, et al. Bio-ethanol steam reforming on Ni/Al2O3 catalyst, Chem. Eng. J., 2004, 98 (1-2): 61~68
    [54] J.P. Breen, R. Burch, H.M. Coleman, Metal-catalysed steam reforming ofethanol in the production of hydrogen for fuel cell applications, Appl. Catal. B: Environ., 2002, 39: 65~74
    [55] C. Diagne, H. Idriss, A. Kiennemann, Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts, Catal. Commun., 2002, 3: 565~571
    [56] S. Freni, Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells, J. Power Sources, 2001, 94: 14~19
    [57] E.C. Wanat, K. Venkatraman, L.D. Schmidt, Steam reforming and water-gas shift of ethanol on Rh and Rh-Ce catalysts in a catalytic wall reactor, Appl. Catal. A: Gen., 2004, 276: 155~162
    [58] R.M. Navarro, M.C. Alvarez-Galvan, M. Cruz Sanchez-Sanchez, et al. Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La, Appl. Catal. B: Environ., 2005, 55: 229~241
    [59] M.A. Goula, S.K. Kontau, P.E. Tsiakaras, Hydrogen production by ethanol steam reforming over a commercial Pd/gamma-Al2O3 catalyst, Appl. Catal. B: Environ. 2004, 49: 135~144
    [60] M.A. Goula, S.K. Kontau, W. Zhou, et al. Hydrogen production over a commercial Pd/Al2O3 catalyst for fuel cell utilization, Ionics, 2003, 9: 248~252
    [61] V.V. Galvita, V.D. Belyaev, V.A. Semikolenov, et al. Ethanol decomposition over Pd-based catalyst in the presence of steam, Kinet. Catal. Lett., 2002, 76 (2): 343~351
    [62] F. Frusteri, S. Freni, L. Spadaro, et al. H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts, Catal. Commun., 2004, 5: 611~615
    [63] D.K. Liguras, D.I. Kondarides, X.E. Verykios, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Appl. Catal. B: Environ., 2003, 43: 345~354
    [64] V. Fierro, O. Akdim, C. Mirodatos, On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts, Green Chem., 2003, 5 (1): 20~24
    [65] F. Haga, T. Nakajima, K. Yamashita, et al. Effect of crystallite size on the catalysis of alumina-supported cobalt catalyst for steam reforming of ethanol, Kinet. Catal. Lett., 1998, 63: 253~259
    [66] S. Cavallaro, N. Mondello, S. Freni, Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell, J. Power Sources, 2001, 102: 198~204
    [67] J. Llorca, N. Homs, J. Sales, et al. Efficient production of hydrogen oversupported cobalt catalysts from ethanol steam reforming, J. Catal., 2002, 209 (2): 306~317
    [68] J. Llorca, P.R. de la Piscina, J.A. Dalmon, et al. CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts-Effect of the metallic precursor, Appl. Catal. B-Environ., 2003, 43 (4): 355~369
    [69] F. Haga, T. Nakajima, H. Miya, et al. Catalytic properties of supported cobalt catalysts for steam reforming of ethanol, Catal. Lett., 1997, 48: 223~227
    [70] S. Freni, S. Cavallaro, N. Mondello, et al. Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts, Catal. Commun., 2003, 4: 259~268
    [71] A. Kaddouri, C. Mazzocchia, A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming, Catal. Commun., 2004, 5: 339~345
    [72] M.C. Batista, R.K.S. Santos, E.M. Assaf, et al. High efficiency steam reforming of ethanol by cobalt-based catalysts, J. Power Sources, 2004, 134: 27~32
    [73] J. Comas, F. Marino, M. Laborde, et al. Bio-ethanol steam reforming on Ni/Al2O3 catalyst, Chem. Eng. J., 2004, 98: 61~68
    [74] F. Frusteri, S. Freni, V. Chiodo, et al. Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell, Appl. Catal. A: Gen., 2004, 270: 1~7
    [75] A.N. Fatsikostas, D.I. Kondarides, X.E. Verykios, Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications, Chem. Commun., 2001, 851~852
    [76] A.N. Fatsikostas, D.I. Kondarides, X.E. Verykios, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol, Catal. Today, 2002, 75: 145~155
    [77] A.N. Fatsikostas, X.E. Verykios, Reaction network of steam reforming of ethanol over Ni-based catalysts, J. Catal., 2004, 225: 439~452
    [78] G. Jacobs, R.A. Keogh, B.H. Davis, Steam reforming of ethanol over Pt/ceria with co-fed hydrogen, J. Catal., 2007, 24: 326~337
    [79] F. Aupretre, C. Descorme, D. Duprez, Hydrogen production for fuel cell from the catalytic ethanol steam reforming, Top. Catal., 2004, 30~31
    [80] V. Klouz, V. Fierro, P. Denton, et al. Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimization, J. Power Sources, 2002, 105: 26~34
    [81] F. Marino, E.G. Cerrella, S. Duhalde, et al. Hydrogen from steam reforming of ethanol: characterization and performance of copper-nickel supported catalysts,Int. J. Hydrogen Energy, 1998, 23 (12): 1095~1012
    [82] F. Marino, M. Boveri, G. Baronetti, et al. Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/gamma-Al2O3 catalysts. Effect of Ni, Int. J. Hydrogen Energy, 2001, 26: 665~668
    [83] F. Marino, G. Baronetti, M. Jobbagy, et al. Cu-Ni-K/gamma-Al2O3 supported catalysts for ethanol steam reforming formation of hydrotalcite-type compounds as a result of metal-support interaction, Appl. Catal. A: Gen., 2003, 238: 41~54
    [84] S. Velu, N. Satoh, C.S. Gopinath, et al. Oxidative reforming of bio-ethanol over CuNiZnAl mixed oxide catalysts for hydrogen production, Catal. Lett., 2002, 82 (1-2): 145~152
    [85] S. Velu, K. Suzuki, M. Vijayaraj, et al. In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol, Appl. Catal. B: Environ., 2005, 55: 287~299
    [86] C.A. Luengo, G. Ciampi, M.O. Cencig, et al. A novel catalyst system for ethanol gasification, Int. J. Hydrogen Energy, 1992, 17 (9): 677~681
    [87] J. Kugai, S. Velu, C. Song, Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production, Catal. Lett., 2005, 101 (3-4): 255~264
    [88] S. Cavallaro, S. Freni, Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation, Int. J. Hydrogen Energy, 1996, 21 (6): 465~469
    [89] T. Nishiguchi, T. Matsumoto, H. Kanai, et al. Catalytic steam reforming of ethanol to produce hydrogen and acetone, Appl. Catal. A: Gen., 2005, 279: 273~277
    [90] J.C. Amphlett, S. Leclerc, R.F. Mann, et al. Proc. 33rd Intersoc. Energy Conserv. Eng. Conf. (cf CA), 1998, 129: 205166
    [91] M. Tiziano, D.R. Loredana, G. Valentina, et al. Rh(1%)@CexZr1-xO2–Al2O3 nanocomposites: Active and stable catalysts for ethanol steam reforming, Appl. Catal. B: Environ., 2007, 71: 125~134
    [92] A. Haryanto, S. Fernando, N. Murali, et al. Current status of hydrogen production techniques by steam reforming of ethanol: A review, Energy Fuels, 2005, 19: 2098~2106
    [93] P.Y. Sheng, A. Yee, G.A. Bowmaker, et al. H2 production from ethanol over Rh-Pt/CeO2 catalysts: The role of Rh for the efficient dissociation of the carbon-carbon bond, J. Catal., 2002, 208: 393~403
    [94] M. Mavrikakis, M.A. Barteau, Oxygenate reaction pathways on transition metal surfaces, J. Mol. Catal. A, 1998, 131: 135~147
    [95] J. Xu, X. Zhang, R. Zenobi, et al. Ethanol decomposition on Ni(111): observation of ethoxy formation by IRAS and other methods, Surf. Sci., 1991, 256: 288~300
    [96] S.M. Gates, J.N. Russel Jr., J.T. Yates Jr., Bond activation sequence observed in the chemisorption and surface-reaction of ethanol on Ni(111), Surf. Sci., 1986, 171: 111~134
    [97] B.A. Raich, H.C. Foley, Ethanol dehydrogenation with a palladium membrane reactor: an alternative to wacker chemistry, Ind. Eng. Chem. Res., 1998, 37: 3888~3895
    [98] Y.J. Tu, V.W. Chen, Effects of alkaline-Earth oxide additives on silica-supported copper catalysts in ethanol dehydrogenation, Ind. Eng. Chem. Res., 1998, 37: 2618~2622
    [99] G.A. Deluga, J.R. Salge, L.D. Schmidt, et al. Renewable hydrogen from ethanol by autothermal reforming, Science, 2004, 303 (5660): 993~997
    [100] C. Wheeler, A. Jhalani, E.J. Klein, et al. The water-gas-shift reaction at short contact times, J. Catal., 2004, 223: 191~199
    [101] D. Duprez, P. Peireira, A. Miloudi, et al. Steam dealkylation of aromatic hydrocarbons: II. Role of the support and kinetic pathway of oxygenated species in toluene steam dealkylation over group VIII metal catalysts, J. Catal., 1982, 75: 151~163
    [102] F. Aupretre, C. Descorme, D. Duprez, Bio-ethanol catalytic steam reforming over supported metal catalysts, Catal. Commun., 2002, 3: 263~267
    [103] F. Aupretre, C. Descorme, D. Duprez, et al. Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxide-supported Rh catalysts, J. Catal., 2005, 233: 464~477
    [104] J. Llorca, P. Ramirez de la Piscina, J. Sales, et al. Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts, Chem. Commun., 2001, 641~642
    [105] F. Sadi, D. Duprez, F. Gerard, et al. Hydrogen formation in the reaction of steam with Rh/CeO2 catalysts: a tool for characterising reduced centres of ceria, J. Catal., 2003, 213: 226~234
    [106] D. Srinivas, C.V.V. Satyanarayana, H.S. Potdar, et al. Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol, Appl. Catal. A: Gen., 2003, 246 (2): 323~334
    [107] V.S. Bergamaschi, F.M.S. Carvalho, C. Rodrigues, et al. Preparation and evaluation of zirconia microspheres as inorganic exchanger in adsorption of copper and nickel ions and as catalyst in hydrogen production from, Chem. Eng. J., 2005, 11: 153~158
    [108] L.S. Lobo, D.L. Trimm, J.L. Figueiredo, Proceedings of the fifth international congress on catalysis, 1972, Palm Beach, vol. 2, North Holland/American Elsevier, Amsterdam/New York, 1973, 1125
    [109] S. Cavallaro, V. Chiodo, S. Freni, et al. Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC, Appl. Catal. A: Gen, 2003, 249: 119~128
    [111] F. Cavani, F. Trifiro, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 1991, 11: 173~186
    [112] M.N. Barroso, M.F. Gomez, L.A. Arrua, et al. Reactivity of aluminum spinels in the ethanol steam reforming reaction, Catal. Lett., 2006, 109: 13~19
    [113] D.K. Liguras, K. Goundani, X.E. Verykios, Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts, Int. J. Hydrogen Energy, 2004, 29: 419~427
    [114] D.K. Liguras, K. Goundani, X.E. Verykios, Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts, J. Power Sources, 2004, 130: 30~37
    [115] T. Ioannides, Thermodynamic analysis of ethanol processors for fuel cell applications, J. Power Sources, 2001, 92: 17~25
    [116] A.C.C. De-Souza, J. Luz-Silveira, M.I. Sosa, Physical chemical and thermodynamic analyses of ethanol steam reforming for hydrogen production, J. Fuel Cell Sci. Technol., 2006, 3: 43~50
    [117] J. Comas, M. Laborde, N. Amadeo, Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent, J. Power Sources, 2004, 138(1-2): 61~67
    [118] P. Tsiakaras, A. Demin, Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol, J. Power Sources, 2001, 102: 210~217
    [119] F. Frusteri, S. Freni, V. Chiodo, et al. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts, Int. J. Hydrogen Energy, 2006, 31: 2193~2199
    [120] A. Roine, Outokumpu HSC Chemistry 4.0, Pori, Finland, 1999
    [121] J.A. Dean, Lange’s Handbook of Chemistry, 14th ed.. New York: McGraw-Hill, 1992.p. 5.142
    [122] N. Homs, J. Llorca, P.R. De la Piscina, Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts: The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts, Catal. Today, 2006, 116(3): 361~366
    [123] J.T. Richardson, Principles of catalyst development. New York: Plenum Press, 1989. p. 185~222
    [124] V. Fierro, O. Akdim, H. Provendieret al. Ethanol oxidative steam reforming over Ni-based catalysts, J. Power Sources, 2005, 145: 659~666
    [125] K. Schulze, W. Makowski, R. Chyzy, et al. Nickel doped hydrotalcites as catalyst precursors for the partial oxidation of light paraffins, Appl. Clay Sci., 2001, 18: 59~69
    [126] R. Villa, C. Cristiani, G. Groppi, et al. Ni based mixed oxide materials for CH4 oxidation under redox cycle conditions, J. Mol. Catal. A, 2003, 204-205: 637~646
    [127] D. Tichit, F. Medina, B. Coq, et al. Activation under oxidizing and reducing atmospheres of Ni-containing layered double hydroxides, Appl. Catal. A: Gen., 1997, 159: 241~258
    [128] A. Tsyganok, T. Tsunoda, S. Hamakawa, et al. Dry reforming of methane over catalysts derived from nickel-containing Mg-Al layered double hydroxides, J. Catal., 2003, 213: 191~203
    [129] O. Clause, B. Rebours, E. Merlen, et al. Preparation and characterization of nickel-aluminum mixed oxides obtained by thermal decomposition of hydrotalcite-type precursors, J. Catal., 1992, 133: 231~246
    [130] D.C. Puxley, I.J. Kitchener, C. Komodromos, et al. The effect of preparation method upon the structures, stability and metal/support interactions in nickel/alumina catalysts, Stud. Surf. Sci. Catal., 1982, 16: 227~230
    [131] Y.D. Li, J.L. Chen, L. Chang, et al. The doping effect of copper on the catalytic growth of carbon fibers from methane over a Ni/Al2O3 catalyst prepared from Feitknecht compound precursor, J. Catal., 1998, 178(1): 76~83
    [132] J.L. Chen, Y.D. Li, Y.M. Ma, et al. Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions, Carbon, 2001, 39(10): 1467~1475
    [133] J.L. Chen, Y.D. Li, Z.Q. Li, et al. Production of COx-free hydrogen and nanocarbon by direct decomposition of undiluted methane on Ni–Cu–alumina catalysts, Appl. Catal. A: Gen., 2004, 269(1-2): 179~186
    [134] Y.D. Li, J.L. Chen, Y.N. Qin, et al. Simultaneous production of hydrogen and nanocarbon from decomposition of methane on a nickel-based catalyst, Energ. Fuel, 2000, 14: 1188~1194
    [135] F. Millange, R.I. Walton, D. O'Hare, Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg-Al-carbonate hydrotalcite-like compounds, J.Mater.Chem., 2000, 10: 1713~1720
    [135] A. Djaidja, S. Libs, A. Kiennemann, et al. Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts, Catal. Today, 2006; 113:194~200
    [136] S. Freni, S. Cavallaro, N. Mondello, et al. Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC, J. Power Sources, 2002, 108: 53~57
    [137] A. Demirbas, Progress and recent trends in biofuels, Prog. Energy Combust Sci., 2007, 33:1~18
    [138] P. Biswas, D. Kunzru, Steam reforming of ethanol for production of hydrogen over Ni/CeO2-ZrO2 catalyst: Effect of support and metal loading, Int. J. Hydrog Energy, 2007, 32(8): 969~980
    [139] N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst, Appl. Catal. B-Environ., 2006, 66: 29~39
    [140] M.N. Barroso, M.F. Gomez, L.A. Arrua, et al. Hydrogen production by ethanol reforming over NiZnAl catalysts. Appl. Catal. A-Gen., 2006, 304: 116~123
    [141] A.J. Zarur, J.Y. Ying, Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion, Nature, 2000, 403(6765): 65~67
    [142] F. Teng, J.G. Xu, Z.J. Tian, et al. Formation of a novel type of reverse microemulsion system and its application in synthesis of the nanostructured La0.95Ba0.05MnAl11O19 catalyst, Chem. Commun., 2004, (16): 1858~1859
    [143] D. Chen, J.J. Li, C.S. Shi, et al. Properties of core-shell Ni-Au nanoparticles synthesized through a redox-transmetalation method in reverse microemulsion, Chem. Mat., 2007, 19(14): 3399~3405
    [144] J.H. Kim, D.J. Suh, T.J. Park, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts, Appl. Catal. A-Gen., 2000, 197(2):191~200
    [145] B. Zhang, X.L. Tang, Y. Li, et al. Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts, Catal. Commun., 2006, 7:367~372
    [146] L.P. Haack, J.E. de Vries, K. Otto, et al. Characterization of lanthanum-modifiedγ-alumina by X-ray photoelectron spectroscopy and carbon dioxide absorption, Appl. Catal. A: Gen., 1992, 82: 199~214
    [147] S. Damyanova, J.M.C. Bueno. Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts, Appl. Catal. A: Gen., 2003, 253: 135~150
    [148] P. Chen, H.B. Zhang, G.D. Lin, et al. Development of coking-resistant Ni-based catalyst for partial oxidation and CO2-reforming of methane to syngas, Appl. Catal. A: Gen., 1998, 166: 343~350
    [149] J.B. Claridge, M.L.H. Green, S.C. Tsang, et al. A study of carbon depositionon catalysts during the partial oxidation of methane to synthesis gas, Catal. Lett., 1993, 22: 299~305
    [150] S. Natesakhawat, O. Oktar, U.S. Ozkan, Effect of lanthanide promotion on catalytic performance of sol-gel Ni/Al2O3 catalysts in steam reforming of propane, J. Mol. Catal. A-Chem., 2005, 241: 133~146
    [151] Z.L. Zhang, X.E. Verykios, Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts, Appl. Catal. A: Gen., 1996, 138: 109~133
    [152] M.C. Sánchez-Sánchez, R.M. Navarro, J.L.G. Fierro, Ethanol steam reforming overNi/MxOy-Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production, Int. J. Hydrogen Energy, 2007, 32: 1462~1471
    [153] Z.L. Zhang, X.E. Verykios, S.M. MacDonald, et al. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts, J. Phys. Chem., 1996, 100: 744~754
    [154] G.D. Squire, H. Luc, D.C. Puxley, In situ X-ray diffraction study of lanthanum oxide catalysts during the oxidative coupling of methane, Appl. Catal. A: Gen., 1994, 108: 261~278
    [155] R.M. Navarro, M.C. Alvarez-Galvan, F. Rosa, et al. Hydrogen production by oxidative reforming of hexadecane over Ni and Pt catalysts supported on Ce/La-doped Al2O3, Appl. Catal. A: Gen., 2006, 297: 60~72
    [156] S. Casenave, H. Martinez, C. Guimon, et al. Effect of composition and thermal pretreatment on properties of Ni-Mg-Al catalysts for CO2 reforming of methane, Thermochim. Acta, 2001, 373: 85~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700