氩弧熔敷原位自生颗粒增强镍基复合涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在煤矿开采领域,刮板运输机中部底槽的主要材料为16Mn钢,每年因为磨损失效造成巨大的经济损失。为了提高16Mn钢的耐磨性,本文采用氩弧熔敷方法进行了Ni60A、Ti-C和Ti-C-Nb等材料体系的熔敷试验。优选出了氩弧熔敷最佳工艺参数。利用XRD、SEM、TEM等手段对涂层的微观组织进行了分析;热力学计算了原位合成TiC的可行性;研究了TiC的形成条件和长大机制,并测试了熔敷层在不同载荷作用下不同时间的摩擦磨损性能,分析了磨损机制。
     对不同预涂层厚度、熔敷电流、熔敷速度工艺参数下熔敷试验的硬度测试结果表明,最佳熔敷工艺参数为:预涂层厚度为1.5mm左右,熔敷电流120A,熔敷速度为8.0mm/s。
     微观组织和透射分析表明:熔敷层的组织分为三个区:熔敷区、稀释区和热影响区,在热影响区和稀释区交界处存在扩散层。熔敷层与基体结合无气孔、裂纹等缺陷,呈冶金结合。复合涂层内部组织存在明显的梯度分布,在表层的颗粒相比较多。对复合涂层的能谱和物相分析表明:涂层组织由γ-Ni, Cr23C6、TiC和(Ti,Nb)C颗粒相组成。TiC和(Ti,Nb)C颗粒相弥散分布在γ-Ni晶界和晶内,其形态为粒状、花瓣状、团絮状和树枝状。Nb元素固溶到TiC颗粒相中,形成(Ti,Nb)C化合物。合金粉末中Nb含量越高,(Ti,Nb)C的Nb含量就越高。TiC颗粒与基体金属的结合界面洁净,无反应物、附着物和非晶相,界面清洁。
     热力学分析证明氩弧熔敷条件下,熔敷过程中Ti和C发生冶金反应原位合成TiC的可行性。原位合成TiC生长基元为八面体形状,生长机制包括独立形核长大,沉淀析出和连接生长。连接生长为八面体顶角连接和棱边连接,长大形态为花瓣状、团絮状和枝晶状。
     通过对母材、熔敷层的磨损试验表明:在相同磨损条件下,氩弧熔敷Ti-C熔敷层的相对耐磨性是Ni60熔敷层的1.5倍,是16Mn钢的7倍;氩弧熔敷Ti-C-Nb熔敷层的相对耐磨性是Ni60熔敷层的2倍,是16Mn钢的11倍。16Mn钢的磨损机理为磨粒磨损、粘着磨损和剥层磨损;氩弧熔敷Ni60熔敷层和Ti-C复合涂层的磨损机理为磨粒磨损、粘着磨损。氩弧熔敷Ti-C-Nb熔敷层的磨损机理为显微擦划磨损和氧化磨损。原位合成TiC和(Ti,Nb)C与涂层基体结合良好,磨损过程中未发现脱落,复合涂层表现优异的抗磨性能。
The central section trough of scraping belt transporter was mainly made of 16Mn steel which wear-out invalidation created huge economic loss every year in coal exploration field. In this research,cladding tests of Ni60A,TiC and Ti-C-Nb were tested by means of argon arc cladding technique to enhance wear resistance of 16Mn steel and the optimum parameters of argon arc cladding was determined. The microstructure of the coating was analyzed by XRD、SEM、TEM and the formation condition and growth mechanism of TiC were investigated. The fesibility was investigated by thermodynamic computing to which TiC is in situ synthesis,too.At the same time friction attrition resistance was tested under different load and time and attrition mechanism was analyzed.
     Under different thickness of pre-placed coating, welding current and cladding speed,Hardness test results indicated that the optimum parameters is the thickness of pre-placed coating with 1.5mm, the welding current with 120A and the cladding speed with 8.0mm/s
     Microstructure and trasmission analysis indicated that the structure of the coating was divided into three regions,namely:the clad zone, the dilution zone and heat-affected zone and a diffusion layer was found at the interface of the heat-affected zone and the the dilution zone. Excellent bonding between the coating and the substrate is ensured by the strong metallurgical interface and the coating is uniform, continuous and almost defect-free. Interior structure of the composite coating appeard visible gradient distribution and there was more particles on the surface layer. Analysis of power spectrum and the phase indicated that the composite coating is consisted of y-Ni, Cr23C6,TiC and (Ti,Nb)C particles. The TiC and (Ti,Nb)C particles are dispersively distributed in intergranular of y-Ni. The TiC and (Ti,Nb)C particles are granular shape,the petal-like shape, flocculation-like and tree-like shape.There was (Ti,Nb)C after Nb solided into TiC particles.The more content of Nb in alloy power, the more content of Nb in (Ti,Nb)C.The interface between TiC particles and the matrix metal remained clean and free from deleterious and amorphous phase.
     The thermodynamic analysis indicated that in situ synthesis TiC was feasibe by the argon arc cladding. Its growth element was octahedron shape, the growth mechanism included the independent nucleation growth, the precipitation separating out and connection growth. The connection growth was in the forms of octahedron verte-linked connection and edge -shared connection and the growth form was petal-like shape, dendrite and flocculation-like shape. Wear test of the coating indicated that the relative wear resistance of Ti-C coating was 1.5 times compared with Ni60 and 7 times compared with 16Mn steel; the relative wear resistance of Ti-C-Nb coating was 2 times compared with Ni60 and was 11 times compared with 16Mn steel under same wear condition.16Mn steel wear mechanism was peeling-off type of wear, abrasion and adhesion wear; the abrasion mechanism of the Ti-C-Nb coating was micro scratch wear and the oxidation type of wear. The interface between in-situ TiC or (Ti,Nb)C and the based metal was good and no fallen off during the wear process. The composite coating had excellent wear resistance.
引文
[1]徐滨士,朱韶华等编著.表面工程的理论与技术[M].北京:国防工业出版社,1999
    [2]孙希泰等编著.材料表面强化技术[M].北京:化学工业出版社,2005
    [3]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术[M].北京:化学工业出版社,2005
    [4]吴人洁.金属基复合材料研究进展[J].复合材料学报,1987,4(3):1-10页
    [5]Ibrahim.I.A, Mohamed F.A, Lavernia E J. Particulate reinforced Metal Matrix Composites. A Review. Journal of Materials Science,1991,26: 1137-1156P
    [6]张国定.金属基复合材料界面问题[J].材料研究学报,1997,11(6):649-652页
    [7]吴人洁.金属基复合材料的发展现状与应用情况[J].航空制造技术,第十三届国际复合材料学术会议专辑.2001,3
    [8]PEN G H X, FEN Z. In situ Al3Ti-Al2O3 intermetallic matrix composite: synthesis, microstructure and compressive behavior[J]. Journal of materials research,2000,15 (9):1943-1949P
    [9]耿林,倪丁瑞.原位自生非连续增强钛基复合材料的研究现状与展望[J].复合材料学报.2006(1):1-11页
    [10]袁晓东,钱翰城.金属基复合材料喷射沉积技术[J].材料导报,1993(2):72-75页
    [11]王自东,曾松岩,李庆春.原位接触反应法制取TiC颗粒增强Al复合材料的研究[J].金属学报,1994,30(7):314-317页
    [12]Michael. J. Koxzak, Philadelphia. Pa, K. Sharvan Kumar and Baltimore: In situ Process for Producing a Composite Containing Refractory Material, United State Patent, US4808372,1989
    [13]KHATRI, KOCZAK M J. Metal matrix composites fabricated by in-situ reaction method[J]. Mater Sci Eng 1993,162A(3):15-162P
    [14]CHOI.Y, MULLINS M. E. Fabrication of metal matrix composites of TiC-Al through self-production synthesis reaction[J]. Metall Trans, 1992,23(9):23-87P
    [15]Saboo P, Koczak K J. Elevated Temperature Response of In Situ TiC Reinforced Alumintum Copper Alloys[J]. Mater Sci Eng,1990, A144 (1): 25-28P
    [16]Brapbaeher J M. Rapid Soldifieation of metal. second phase composites [P]. US Pat,4830982.1989
    [17]M itra R, Fine M E, Weertamn J R. Interfaces in AsExtrudod XD Al/ TiC and Al/TiB2 MMCs[J]. J Mater Rea,1993,8(9):2380-2384P
    [18]朱和国,王恒志,熊党生.用XD法合成的铝基复合材料的组织与力学性能[J].金属学报,2008,41(8):829-834页
    [19]吴申庆,潘治,朱和国,等.金属基复合材料的原位反应制备方法[J].特种铸造及有色合金,2008年年会专刊:289-293页
    [20]范群成,柴惠芬,范学华,等.TiC-Fe金属陶瓷的自蔓延高温合成[J].西安交通大学学报,1994,28(7):123-128页
    [21]邹正光,傅正义,袁润章.Ti-C-xFe体系自蔓延高温合成及机理[J].材料研究学报,2000,14(5):531-537页
    [22]邹正光,傅正义,袁润章.自蔓延高温合成TiC复合添加剂增强铁基粉末冶金材料[J].中国有色金属学报,2001,11(3):408-411页
    [23]Yi H C, Moore J J. Review self-propagating high-temperature (combustion) synthesis(SHS) of powder-compacted materials [J]. J Mater Sci,1990,25:1159-1166P
    [24]王为民.材料合成新技术-自蔓延高温合成[J].材料导报,1993,7(5):47-50页
    [25]王英辉,李晓敏,吴一等.SHS结合热压制备TiC-Al2O3/Fe Al复合材 料[J].桂林工学院学报,2005,25(2):187-190页
    [26]吴军,王成国,孙康宁.TiC弥散强化铁基合金粉末的研究[J].金属热处理学报,1996,17(4):57-60页
    [27]李伟,黄春燕.机械活化-还原扩散法制备Fe-TiC复合粉末的新工艺[J].山东交通学院学报,2004,12(3):5-9页
    [28]严红革,陈振华,黄培云.反应合成原位(In-Situ)复合材料制备技术进展[J].材料科学与工程,1997,15(1):6-10页
    [29]梁波, 卜景龙.机械合金化在金属陶瓷制备领域的应用[J].河北陶瓷,2001,29(1):24-27页
    [30]Urquhart A. W. Novel Reinforced Ceramics and Metals. Review of Lanxide's Composite Technologies. Mater. Sci. Eng,1991,144A(1-2): 75-81P
    [31]严红革.反应合成原位复合材料制备技术进展[J].材料科学与工程,1997,15(1):6-10页
    [32]马颖,郝远,寇生中,等.原位自生增强金属基复合材料的制备方法[J],材料导报,2002,16(12):23-25页
    [33]Xu binshi, Zhang wei, Xu weipu. Influence of oxides on high velocity arc sprayed Fe-Al/Cr3C2 composite coatings[J]. Joural of Central Unibersity of Technology,2005,12(3):259-262P
    [34]Chen.Y, Wang.H.M. Growth morphogies and mechanism of TiC in the laser surface alloyed coating on the substrate ofa TiAl intermetallics[J]. Journal of Alloys and Compounds.2003,351:304-308P
    [35]Sun.R.L, Yang.D.Z, Guo.L.X, et al. Laser cladding of Ti-6A1-4V alloy with TiC and TiCp Ni-Cr-B-Si powders [J]. Surface and Coatings Technology.2001,135:307-312P
    [36]Jongmin Lee, Kwangjun Euh, Jun Cheol Oh, et al. Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation[J].Materials Science and Engineering.2002,A323:251-259P
    [37]V.Lopex,et al. Laser melting of plasma-sprayed alumina coatings[J].materials Science and Engineering,2000, A172:189-195P
    [38]K.C.Chang, et al. Oxidation behavior of thermal barrier coatings modified by laser remelting[J].Surface and Coatings Technology.1998,102: 197-204P
    [39]杨森,钟敏霖,刘文今.激光熔覆制备Ni/TiC原位自生复合涂层及其组织形成规律的研究[J].应用激光,2002,4,22(2):105-108页
    [40]洪永昌,夏正文.激光扫描速度对Co基合金堆焊重熔层组织和硬度的影响[J].金属热处理,2006,21(1):31-35页
    [41]张松,张春华,吴维弢,等.Ti6Al4V表面激光熔覆原位自生TiC增强Ti基复合材料及摩擦磨损性能[J].金属学报,2001,37(3):315-320页
    [42]杨森,钟敏霖,刘文今.激光熔覆制备原位自生TiC颗粒增强Ni基合金复合涂层的研究[J].航空材料学报,2002,22(1):26-30页
    [43]裴宇韬,欧阳家虎,雷廷权.激光熔覆TiCp/Ni基自熔合金复合耐磨涂层的组织[J].哈尔滨工业大学学报,1994,26(2):97-100页
    [44]王彦芳,刘忆,李刚.钛板表面激光熔覆锆基合金涂层的组织结构[J].复合材料学报.2003,(3):89-92页
    [45]李刚,王彦芳,王存山.激光熔覆Zr基涂层的组织性能研究[J].机械工程材料2003,(5):44-47页
    [46]李刚,夏延秋,王彦芳.激光熔覆Zr-Al-Ni-Cu复合涂层组织及其摩擦磨损性能[J].摩擦学学报.2002,(5):343-346页
    [47]李刚,王彦芳,王存山.激光熔覆Zr65A17.5Ni10Cu17.5复合涂层组织结构[J].激光技术.2003,(1):21-23页
    [48]董世运,韩杰才,杜善义.激光熔覆铜基自生复合材料涂层及其耐磨性能[J].材料开发与应用.2000,(6):1-4页
    [49]左铁钏,施定远,陈铠.激光加工技术的优势及在工业生产中的应用[J].激光志.1999,(4):8-10页
    [50]朱佩蒂,曾晓雁,胡项.汽轮机末级叶片的激光熔覆研究[J].中国激光.1994,(6):526-529页
    [51]胡木林,谢长生,祝柏林.多道搭接激光熔覆镍基合金中裂纹断口形貌研究[J].材料热处理学报.2001,22(2):23-26页
    [52]A. W. Mullendore, D. M. Mattox. Plasma sprayed coatings for fusion reactor application[J]. Thin Solid Films,1979,63 (2):243-247P
    [53]S. Dallalre, B. Champagne. Plasma Spray Synthesis of TiB2-Fe Coatings [J]. Thin Solid Films,1984,118 (4):477-482P
    [54]H. Fukubavashi. Coated article with improved thermal emissivity [P] USP:4975621,1990
    [55]S. J. Albert. Method for producing a TiB2 based coating [P]. USP: 5837327,1998
    [56]M. Jones, A. J. Horlock. A comparison of the abrasive wear behaviour of HVOF sprayed titanium carbide and titannium diboride based cermet coatings[J]. Wear,2001 (251):1009-1013P
    [57]刘长松,殷声.反应热喷涂的发展[[J].材料保护.2000,33(1):83-85页
    [58]Liu HuiYuan, Huang JiHua. Reactive flame spraying of TiC-Fe cermet coating using asphalt as a carbonaceous precursor[J].Surface and Coatings Technology.2006,200(18-19):5328-5333P
    [59]吴玉萍.等离子弧熔敷Fe基合金+TiC涂层中的陶瓷相行为与相结构[J].焊接学报.2001,22(6):89-91页
    [60]曹明,贾吴玉萍,胡俊华,等.等离子弧熔覆TiC/Ni超厚梯度熔覆层的组织与性能[J].焊接学报,2008,29(2):13-16页
    [61]T. Watanabe, X. Wang, E. Pfender,J. Heberlein. Correlations between electrode phenomena and coating properties in wire arc spraying[J].Thin Solid Films.1998,316(1-2):169-173P
    [62]Chen Zheng, Zhou Y. Surface modification of resistance welding electrodes by electro-spark deposited composite coatings Part Ⅱ. Metallurgical behavior during welding[J]. Surface and Coatings Technology.2006,201(6):2419-2430P
    [63]张勇,綦秀玲,等.焊条电弧堆焊自熔性合金复合粉末的研究[J].焊接,2008,12:51-54页
    [64]ArvindA.garwal, Narendra B. Dahotre. Pulse electrode deposition of superhard boride coatings on ferrous alloy[J].Surface and Coatings Technology.1998,106(2-3):242-250P
    [65]王振廷,陈华辉,李学伟.感应加热熔敷微米和纳米碳化钨复合涂层的研究[J].金属热处理,2004,29(4):27-29页
    [66]王振廷,陈华辉.碳化钨颗粒增强金属基复合材料涂层的组织及其摩擦磨损性能[J].摩擦学学报,2005,25(3):203-206页
    [67]Wang Zhenting, Chen Huahui. Study on the Wear Resistance of Micro-nanostructured WC Composite Coating Sintered by Induced Heating[J]. Key Engineering Materials, vols.280-283(2005)pp.1489-1492P
    [68]王振廷,陈华辉,郑光海.感应熔敷微-纳米碳化钨复合涂层的耐磨性研究[J].机械工程材料,2004,28(3):44-46页
    [69]王振廷,王永东.原位自生TiC/Ni复合材料涂层滑动磨损行为[J].辽宁工程技术大学学报,2006,25(3):440-443页
    [70]王振廷,王永东,陈华辉.感应熔覆原位自生TiCp/Ni基合金复合涂层组织与摩擦磨损特性[J].铸造技术,2006,27(2):125-127页
    [71]Wang Zhengting, Wang Yongdong.Microstructure and Properties of In-Situ Synthesis of Tic Particle Reinforced Composite Coating by Induction Cladding. Key Engineering materials. Advanced Ceramics Division of the Chinese Ceramic Society Chengdu, Vols.336-338P
    [72]张文.焊接冶金学(基本原理)[M].北京:机械工业出版社,1993,5
    [73]韩国明.焊接工艺理论及技术[M].北京:机械工业出版社,2007,157-160页
    [74]Riickert G, Huneau B, Marya S. Optinuzing the design of silica coating for productivity gains during the TIG welding of 304L stainless steel[J]. Materials & Design.2007, Article in Press.
    [75]Soner Buytoz, Mustafa Ulutan, M. Mustafa Yldirim. Dry sliding wear behavior of TIG welding clad WC composite coatings[J].Applied Surface Science.2005,252(5):1313-1323P
    [76]Cheng. F. T. K. H. Lo. H. C. Man. NiTi cladding on stainless steel by TIG Surfacing process Part Ⅰ. Cavitation erosion behavior[J].Surface and Coatings Technology.2003,172(2-3):308-315P
    [77]张传明,尚丽娟,胡南昌.等.氩弧熔敷镍基自熔合金的工艺研究[J].沈阳工业大学学报,28(1):33-36页
    [78]刘喜明.氩弧熔敷Fe-Cr-Si-B系熔敷层的物相分析[J].金属热处理,1998,(12):22-25页
    [79]Wang X H, Song S L, Zou Z D, etal. Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process. Materials Science and EngineeringA,441(2006):60-67P
    [80]Wang X H, Zhang M, Zou Z D. In situ production of Fe-TiC surface composite coatings by tungsten-inert gas heat source. Surface & Coatings Technology 200 (2006):6117-6122P
    [81]宋思利,邹增大,王新洪,等.多层氩弧熔敷含TiC颗粒增强涂层的微观组织及耐磨性能[J].焊接学报,2007,28(4):33-37页
    [82]宋思利,王新洪,邹增大,等.氩弧原位合成TiC颗粒增强基复合层[J].焊接学报,2006,27(2):39-42页
    [83]宋思利.钨极氩弧原位合成TiC增强铁基熔敷层的研究[D].山东大学博 士学位论文,2007.4
    [84]王振廷,陈丽丽.氩弧熔覆WC+Ni3Si/Ni基复合涂层的组织与耐磨性[J].金属热处理,2008,33(10):54-56页
    [85]王振廷,陈丽丽,张显友.钛合金表面氩弧熔覆TiC增强复合涂层组织与性能分析[J].焊接学报,2008,29(9):43-45.页
    [86]王振廷,孟君晟,王永东,胡国梁.原位自生TiCp/Ni60A复合涂层组织结构及长大特性[J].稀有金属材料与工程,2007,36(2):709-711页
    [87]王振廷,孟君晟,赵国刚.氩弧熔敷原位生成TiCp/Ni60A金属基复合涂层的滑动磨损特性[J].粉末冶金技术.2008,26(3):176-179页
    [88]王永东,刘兴,孟君晟,等.氩弧原位自生TiC复合涂层组织与抗磨性能研究[J].兵器材料科学与工程,2008,33(6):83-85页
    [89]王永东,王振廷,孟君晟,等.氩弧熔覆SiC/Ni复合材料涂层组织与抗磨性分析[J].焊接学报,2009,30(3):58-60页
    [90]王永东,刘兴,朱艳,等.Q235钢表面氩弧熔覆Mo-Si复合涂层组织和性能分析[J].焊接学报,2009,30(5):42-44页
    [91]王永东,王振廷,陈丽丽,等.Q235钢表面氩弧熔覆MoNiSi/Ni3Si金属硅化物复合涂层组织与性能研究[J].粉末冶金技术,2009,27(2):83-86页
    [92]Abbas G., West D. R.F. SPIE,1989,1132:232-238P
    [93]王维夫,王茂才,孙凤久.激光熔覆钛基复合涂层中原位自生TiC的形态特征与生长机制[J].金属热处理,2009,34(2):65-69页
    [94]王振廷.感应加热熔敷原位自生TiC/Ni60A耐磨复合涂层的研究[D].中国矿业大学博士学位论文,2005
    [95]Flemings M C, Solidfication Processing. New York:McGraw-Hill, 1974:194P
    [96]严有为,魏伯康,傅正义等Fe-Ti-C熔体在大气条件下原位合成TiC P/Fe复合材料的研究[J].复合材料学报,2000,17(3):51-54页
    [97]许志宏,王乐珊.无机热力学数据库[M].科学出版社,1987
    [98]伊赫桑巴伦,程乃良,牛四通.纯物质热化学数据手册[M].科学出版社,2003.
    [99]Kanury A M, Metall. Trans.1992,23:2349P
    [100]张晓东.钛合金表面激光熔覆镍包石墨涂层的研究[D].哈尔滨工业大学硕士学位论文,2006,06
    [101]严有为,魏伯康,傅正义,等Fe-Ti-C熔体中TiC颗粒的原位合成及长大过程研究[J].金属学报,1999,35(9):909-912页
    [102]BRICE J C. The Growth of Crystals from Liquids. Amsterdam:North-Holland,1977.96
    [103]李荣久主编.陶瓷—金属复合材料(第2版)[M].北京:冶金工业出版社,2004.
    [104]金云学TiCp/Ti复合材料TiC生长形态及其控制[D].哈尔滨工业大学博士学位论文
    [105]Zhong W Z, Hua S K,Geometry of Crystal Growth.Beijing:Science Press,1999:205-207P
    [106]Yin Y J. Handbook of College Chemistry. Jinan:Shan-dong Science and Techmology Press,1985
    [107]Liu L.Ph. D. Dissertation.Northwestern Polytechnical University,Xi an:1998
    [108]施尔畏,仲维卓,华素坤,等.关于负离子配位多面体生长基元模型[J].中国科学,1998,28(1):37-39页
    [109]Nukami T, Flemings M C. In situ Synthesis of TiC Particulate Reinforced Aluminum Matrix Composite [J]. Metallurgical and Materials Transactions,1995,26(A):1877-1884.P
    [110]Tong X C, Fang H S. Al-TiC Composites in situ Processed by Ingot Metallurgy and Rapid Solidification Techology:part1 Microstructural Evolution [J]. Metallurgical and Materials Transactions,1998,29(A): 875-891P
    [111]铃木寿.超硬合金的烧结硬质材料[M].丸善株式会社,1986
    [112]孙明.激光制备WC及原位TiC陶瓷增强复相涂层[D].兰州理工大学硕士学位论文,2007.05
    [113]Lu Weijie, Zhang Di, Xiaonong Zhang, et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique[J]. Journal of Alloys and Compounds.2001,327(1-2):248-252P
    [114]Padma Gopalan, R. Rajaraman, B. Viswanathan, et al. The kinetics of formationand growth of TiC precipitates in Ti-modified stainless steel studied by positron annihilation spectroscopy[J]. Journal of Nuclear Materials.1998,256(2-3):229-234P
    [115]Cui Chengyun, Guo Zuoxing, Wang Hongying, etal. In situ TiCparticles reinforced grey cast iron composite fabricated by laser cladding of Ni-Ti-C system[J].Journal of Materials Processing Technology.2007,183(2-3): 380-385P
    [116]Julius J. Nickl, Riidiger Vesper. Morphologie des gasphasenabgeschiedenen systems titancarbid-graphit[J].Journal of the Less Common Metals.2001, 25(3):275-285P
    [117]于熙乱,张静华,胡壮麒,等.快速凝固条件下单晶镍基高温合金中MC碳化物的形态及生长机制[J].金属学报.1994,30(2):55-59页
    [118]王华明,于利根,李晓轩,等.MC碳化物准快速凝固形态与生长机制研究[J].金属学报.1999,35(12):1246-1248页
    [119]裴宇韬,孟庆昌,欧阳家虎,等.激光熔覆TiCp/Ni合金复合涂层中TiC颗粒的溶解析出行为与分布特征[J].中国激光,1995,22(12:935-938页
    [120]陈瑶,王华明TiAl合金激光表面合金层中TiC凝固生长形态及机制[J].中国有色金属学报,2002,12(5):863-868页
    [121]吴玉萍,林萍华,王泽华.等离子熔敷原位合成TiC陶瓷颗粒增强复合涂层的组织与性能[J].中国有色金属学报,2004,14(8):1335-1339页
    [122]刘 林,傅恒志.Ni基高温合金中MC碳化物生长的理论形貌[J].材料科学进展,1989,3(5):396-400页.
    [123]金云学,张虎,曾松岩,等.自生TiCp/Ti复合材料中TiC的生长习性[J].金属学报,2002,38(11):1223-1227页
    [124]刘林,傅恒志,史正兴.高温合金中碳化物的初生形貌与晶体结构的关系[J].金属学报,25(1989)4:282-287页
    [125]李新林.TiC颗粒增强镁基复合材料的制备[D].吉林大学博士学位论文,2005.06
    [126]万华明,刘林,田荫棠.高温合金中MC碳化物晶体生长的稳定性[J].航空学报,1991,12(11):A605-609页
    [127]崔忠圻,覃耀春主编.金属学与热处理[M].哈尔滨工大出版社,2008.09

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700