含Mn和P元素ULC-BH钢的显微分析和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车减轻重量和节能减排需求的增大,越来越多的研究集中在如何改善汽车用钢板综合性能上。烘烤硬化(BH)钢作为一种重要的汽车车身用钢长期以来一直是科研和工业领域的研究热点之一。本文结合课题“超低碳含钒烘烤硬化钢的研究”,对经过不同处理尤其是不同退火处理后的BH钢的力学性能和BH性能进行测试;通过热力学计算并结合显微检测,对BH钢热轧、退火和变形过程的显微组织和织构、第二相粒子析出和固溶元素分布进行了分析。讨论了BH钢力学性能、BH性能和成形性能的影响因素,为高性能BH钢的研制提供理论指导。论文的主要研究结果如下:
     根据热力学计算结果及相关理论支持设计了三种不同成分的BH钢(BH-0、BH-Mn、BH-P);对一系列经不同退火温度处理的BH钢进行显微硬度测试,确定了BH钢的再结晶温度;通过热膨胀试验测得三种BH钢的A_c1和A_c3温度;在再结晶温度和A_c1温度的退火温度区间内设计了两种不同的退火工艺,工艺1为直接水淬处理,工艺2在工艺1的基础上于冷却过程中增加了过时效过程。
     退火工艺对BH钢性能的影响规律为:除n值外,BH钢的其它力学性能受退火温度影响不大,BH-Mn钢的综合力学性能优于其它两种BH钢。过时效过程导致三种BH钢的屈服强度、延伸率明显提高,但使得BH钢的抗拉强度略微降低。过时效过程对三种BH钢的r值的影响规律不同,其中BH-0钢经过过时效处理后r值变化不大,BH-Mn钢的r值明显降低,而BH-P钢的r值明显提高。为解释r值的变化原因,对BH-Mn和BH-P钢不同退火温度下的织构进行了检测。得出BH钢的充分再结晶对于形成有利的γ织构非常重要。当再结晶完成后,退火温度的升高对于BH钢织构的影响作用较弱。通过对BH-0、BH-Mn和BH-P钢经过两种退火工艺处理后的织构研究得出,过时效过程对三种BH钢织构的影响规律不同,显微织构对深冲性能的影响是有利织构和不利织构共同作用的结果。
     通过对热轧态BH钢中的析出物类型及固溶元素分布形态的检测分析,得出Mn的添加能够提高MnS的析出温度约300℃。BH-Mn钢中Mn的添加能够形成复的含C化合物,这将导致基体中C浓度的降低。另外,BH-Mn钢中大部分碳化钒颗粒的尺寸都是几十纳米,Mn的添加会导致C和V的小至几纳米的团簇形成。在BH-P钢中,大部分碳化钒附着在MnS和TiS颗粒上共同析出而非单独析出,也有很多纳米级的硫化锰颗粒析出,部分硫化锰颗粒与TiS或Ti_4C_2S_2共同析出。P在BH-P钢中未形成沉淀颗粒,而是全部固溶在BH-P钢的基体中,并以偏聚形态存在。在热轧态BH-Mn和BH-P钢中均没有固溶Ti、N或S原子存在。
     结合退火后BH钢的3DAP分析和拉伸性能测试结果得出,在BH-P钢中P以明显的偏聚形式存在,并和C发生共同偏聚的现象,从而造成对位错的强烈钉扎,这是导致BH-P钢产生明显屈服平台,即钢板表面质量变差的主要原因。同时,P和C对位错的共同钉扎导致BH-P钢水淬退火后的织构比BH-Mn钢织构弱,r值也比后者低。在BH-Mn钢中由于固溶Mn几乎不产生偏聚,而且固溶C的偏聚也很少,因此BH-Mn钢的屈服强度低于BH-P,塑性则优于后者。
     通过对两种不同退火工艺处理后BH-Mn和BH-P钢的显微分析得出,经过时效处理,两BH钢的固溶C浓度降低,而V浓度升高。首次利用3DAP分析得出在过时效过程中没有VC析出,这与本文中的热力学计算结果相吻合。固溶C浓度的降低是由于C扩散至晶界或位错处并钉扎了位错。位错的钉扎是导致过时效后两BH钢屈服强度明显提高的主要原因。在BH-P钢中,P和C的共同偏聚对位错的钉扎是导致其过时效过程织构减弱的主要原因。并且正是由于C的这一扩散过程导致了试验钢的拉伸应力-应变曲线中屈服平台的伸长,即钢板表面质量变差。试验结果还得出预变形量必须大于屈服平台,即完全拖拽开被位错钉扎的柯氏气团才能够获得BH钢的BH现象。一旦预变形量大于屈服平台,两BH钢中的BH值受预变形量的影响不大。
     通过对不同预变形量的BH钢的3DAP显微分析及BH性能测试得出,在BH-Mn钢中,C的分布形态随着预变形量的增加变化很小。而在BH-P钢中,随着预变形量的增加,C发生扩散导致更多的C团簇形成以及基体中C浓度的降低。通过基体中固溶元素分布形态以及最大距离法的测量结果得出,C的团簇是由C本身的偏聚以及C与P的共同偏聚形成,而非碳化钒析出。由于BH-P钢中大量固溶C尤其是足量位错的存在,使得BH-P钢不经过预变形直接烘烤后出现高达20MPa的BH值,这与BH-P钢室温拉伸时出现较长的屈服平台结果相吻合。
With the increasing requirement of vehicle weight reduction and energy conservation from automobile industry, the investigation and development of high strength steel sheet has been stressed extensively. BH steel, as an important kind of automotive body steel sheet, has been paied close attention from scientific and industry researcher. In the present work, project“research on ultra low carbon bake hardening steel”is used as research basic, mechanical properties and BH phenomenon is detected in BH steels after different heat treatment and especially different annealing processes; according to thermodynamic calculation and microanalysis results, microstructure, second phase precipitates and solute distributions were analyzed in hot-rolled, annealed and pre-deformed BH steels. The effect factors of mechanical properties, BH phenomenon and formability in BH steel was discussed; this provides theoretical guidance for preparing high performace BH steel. The main research result from the present work is as follows:
     Three kinds of BH steels (BH-0, BH-Mn, BH-P) were prepared according to thermodynamic calculation results and related theory; micro hardness in BH steels with different annealing temperatures were tested, the recrystalization temperature of BH steels were thereby determined; Ac1 and Ac3 temperatures were determined according to thermal expansion test result; thermal expansion test result also shows that no martensite phase transformation was happened during annealing process in the three BH steels, that is, the microstructure is exclusive ferrite phase in BH steels after annealing; two different annealing processes were designed in the temperature range between recrystalization and Ac1, annealing process 1 is water quenching, annealing process 2 is added an over time aging stage as compared with process 1.
     The effect law of annealing process on mechanical properties of BH steels is as follows: mechanical properties of BH steels were hardly affected by the annealing temperature except for n value; the general property of BH-Mn steel is better than BH-0 and BH-P steels. Over time aging process will induce increase of yield strength and tensile elongation as well as the slight decrease of tensile strength in BH steels. The effect law of over time aging on r value in the three BH steels is completely different, the r value in BH-0 steel changes little after over aging process, while it shows obvious decrease in BH-Mn steel and increase in BH-P steel. In order to explain the r value variation, micro texture in the three BH steels were detected after different annealing temperature and annealing processes. It is obtained that the completeness of recrystalization in BH steels is especially important for goodγtexture. Once after recrystalization, the increase of annealing temperature has slight effect on BH steel texture. According to the results of the three BH steels texture after two annealing processes, the effect law of over time aging on the three BH steels texture is quite different, the effect of texture on deep drawing property is induced by both advantageous and disadvantageous textures.
     The addition of Mn will increase MnS precipitation temperature by about 300℃. The addition of Mn in BH steel will induce the formation of complicated compound and decrease the solubility of C. Besides, dimensions of most vanadium carbides are tens of nanometers in BH-Mn steel, addition of Mn induces the clusters of V and C with size of several nanometers in the matrix. In BH-P steel, however, more vanadium carbides precipitate over manganese sulfide and titanium sulfide rather than exist alone. Much nanometer-sized particles of manganese sulfide precipitate in the steel, part of which precipitate together with TiS (or Ti4C2S2). In addition, all P is dissolved in BH-P steel and exists as segregation rather than precipitates as particles. No free Ti, N or S atoms are dissolved in BH-Mn and BH-P steels.
     According to 3DAP analysis and tensile test result, P segregates mainly in BH-P steel, and part of P segregates together with C, which strongly pin the dislocations and is the main reason that induces the yield point elongation and the worsening of steel sheet surface quality during tensile process. This also induces the weaker microstructure and lower r value in BH-P steel as compared with BH-Mn steel. In BH-Mn steel, Mn hardly segregates in the matrix and C segregates very little, so the yield strength of BH-Mn steel is lower than that of BH-P steel, whereas the plasticity of it is better than the latter.
     According to microanalysis of BH-Mn and BH-P steels with different annealing processes, it is found that C concentration decreases, whereas V increases during over time aging in the two BH steels. It is originally obtained by 3DAP that no vanadium carbide forms during overaging in the BH steels, this is in agreement with the thermodynamic calculation result. The decrease of C concentration is reasonably due to the diffusion of C to grain boundaries and/or dislocations. The pinning of dislocations by C is the key factor that induces the increase of yield strength in the two BH steels during over time aging. The together segregation of C and P is the main factor that induces the worsening of microstructure in BH-P steel during over time aging. This diffusion of C further induces the increase of yield point elongation and the worsening of steel sheet surface quality. Pre-deformation must be higher than the yield point elongation and totally drag away the Cottrell atmosphere formed during the over time aging in order to obtain the BH phenomenon. Results also reveal that once the pre-deformation is more than yield point elongation, BH value in the same BH steel will be affected slightly by the variation of pre-deformation.
     Solute distributions in BH steels with different pre-deformations were investigated by 3DAP. BH values of these steels were tested by tensile experiments. Results indicate that C distribution changes little with the increase of pre-deformation in BH-Mn steel. In BH-P steel however, C diffuses during pre-deformation and baking process, which forms more C clusters and induces the decrease of C concentration in the matrix. Distribution patterns and maximum separation distance method results prove that the C cluster is just C segregation or C together with P segregation rather than vanadium carbides precipitate. BH value in BH-P steel without pre-deformation is 20MPa, much higher than that in BH-Mn steel, which is induced by the much solute C and enough dislocations in the BH-P matrix. This is in agreement with the result that there is a long yield point elongation in BH-P steel during tensile test.
引文
[1]金琳.世界钢铁工业未来十年的发展前景[J],冶金管理, 2007, (12): 33-34.
    [2]朱久发.我国汽车板生产技术现状及市场需求分析[J],钢铁研究, 2006, 34 (1): 58-62.
    [3] Storozheva LM. Ultralow-carbon Steels for Automotive Industry with the effect of hardening upon Drying of Completed Parts[J], Metallooved Termicheskaya Obrabotka Meesllow, 2001, (9): 9-18.
    [4]江海涛,康永林,于浩.烘烤硬化汽车钢板的开发与研究进展[J],汽车工艺与材料, 2005, (3): 1-4,7.
    [5]关小军,王先进.超低碳高强度烘烤硬化钢板研究的新进展[J],汽车技术, 1996, 12: 43-45.
    [6]罗石念.武钢低碳耐候烘烤硬化汽车板开发[C].钢铁年会论文集.冶金工业出版社, 2003.
    [7]康永林.《现代汽车板的质量控制与成形性》[M].北京:冶金工业出版社, 1999.
    [8] Mitchell P, Gladman T. Vanadium in interstitial free steels[C]. Iron & Steel Soc of AIME, 1997, 37-48.
    [9]康永林.汽车板的研究发展现状及发展趋势[J],鞍钢技术, 2003, (6): 1-7.
    [10] Akamatsu Satoshi, Hasebe Mitsuhiro, Senuma Takehide, Matsumura Yoshikazu, Akisue Osamu. Thermodynamic calculation of solute carbon and nitrogen in Nb and Ti added extra-low carbon steels[J], ISIJ International, 1994, 34 (1): 9-16.
    [11]李光瀛,刘浏.汽车板开发与生产[J],中国冶金, 2002, 15-18(1): 42.
    [12]关小军.超低碳高强度烘烤硬化钢板研究的新进展[J],汽车技术, 1996, (12): 34-38
    [13]关小军.《超低碳烘烤硬化钢板》[M]. 2000年5月.
    [14] M. Hua, Garcia C. I., DeArdo A. J. New Approaches to the Design of ULC Sheet Steels[C]. 40TH MWSP CONF. PROC., ISS. 1998. 111-115.
    [15] Garrison Jennifer A, Speer John G, Thompson Steven W, Glodowski Robert J, Williams Keith P. Aluminum and vanadium competition for nitrogen in CSP sheet steels[C]. Materials Science and Technology 2005 Conference, September 25, 2005 - September 28, 2005. Association for Iron and Steel Technology, AISTECH, 187-198.
    [16] Shen Y., Apple C. A., Hansen S. S. The Effect of Wanadium on The Hardenability andMechanical Properties of a C-Mn-B Steel[C]. 34th MWSP CONF. PROC., ISS-AIME. 1993, 35-44.
    [17] Hirokazu Taniguchi, Kazamasa Yamazaki, Goto Koichi. Cold Rolled Steel Sheet Having Improved Bake Hardenability[P]. US 6, 217, 675 B1. 2001. 1-14.
    [18] Ollilainen V., Kasprzak W., Holappa L. The effect of silicon, vanadium and nitrogen on the microstructure and hardness of air cooled medium carbon low alloy steels[J], Journal of Materials Processing Technology, 2003, 134 (3): 405-412.
    [19] Girina O., Bhattacharya D. Effect of Vanadium on Mechanical Properties and Bake Hardenability in ULC Steels[C]. 41ST MWSP CONF. PROC. ISS. 1999. 435-443.
    [20] Taylor K. A, Speer J. G. Development of vanadium-alloyed, bake-hardenable sheet steels for hot-dip coated applications[C]. 39TH MWSP CONF. PROC., ISS. Iron & Steel Soc of AIME, 1997, 49-61.
    [21]康永林,刘光明,赵虎等.钛和钒复合添加的超低碳烘烤硬化钢板及其制造方法[P]. CN 1986863 A. 2006. 1-6.
    [22] Ress G I, Perdrix J. The effect of Niobium in solid on the transformation kinetic of Bainite[J], Materials Science and Engineering A, 1995, 194: 179-186.
    [23] Palmiere E J, Garcia C I, J. Deardo A. Compositional and microstructural changes which attend reheating and grain coarsening in steel containing Niobium[J], METALLURGICAL AND MATERIALS TRANSACTIONS A, 1994, 25A: 277-286.
    [24]齐俊杰,黄运华,张跃.《微合金化钢》[M]. 2006. 75.
    [25] Kawasaki K. Bake Hardenability of Cold Rolled Ti-Bearing Extra Low Carbon Steel Sheets Due to Precipitation Control[J], Tetsu-to-Hagane, 1993, 79 : 76-82.
    [26] Akamatsu Satoshi, Senuma Takehide, Hasebe Mitsuhiro. Generalized Nb(C,N) precipitation model applicable to extra low carbon steel[J], ISIJ International, 1992, 32 (3): 275-282.
    [27] Kang Yonglin, Yu Hao, Fu Jie, Wang Kelu, Wang Zhongbing. Morphology and precipitation kinetics of AlN in hot strip of low carbon steel produced by compact strip production[J], Materials Science and Engineering A, 2003, 351 (1-2): 265-271.
    [28] Mishra S. K, Das S, Ranganathan S. Precipitation in high strength low alloy (HSLA) steel: a TEM study[J], Materials Science and Engineering A, 2002, 323 (1-2): 285-292.
    [29] Pereloma E. V, Crawford B. R, Hodgson P. D. Strain-induced precipitation behaviour in hot rolled strip steel[J], Materials Science and Engineering A, 2001, 299 (1-2): 27-37.
    [30] Pandit Ashwin, Murugaiyan A, Podder A. Saha, Haldar A, Bhattacharjee D, Chandra S, Ray R. K. Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels[J], Scripta Materialia, 2005, 53 (11): 1309-1314.
    [31] Ooi S. W., Fourlaris G., Tanner D. A., Robinson. J. S. Precipitation in vanadium bearing ultralow carbon strip steels[J], Materials Science and Technology, 2006, 22 (5): 525-536.
    [32] Atsuki Okamoto, Mizui Naomitsu. Recrystallization Texture Control in Ultra-low Carbon Ti-added Sheet Steels Containing Mn and P[J], ISIJ of Janpan, 1990, 76 (3): 422-429.
    [33]朱学刚关小军周家娟潘伟. Ti处理的ELC-BH钢板的析出物研究[J],钢铁, 2002, 37 (7): 50-53.
    [34] Sylvie Dionne, Elhachmi Essadiqi, Greg McMahon, Pierre Martin, Galvani. Calude. A Study of Recrystallization and Phosphorus Segregation During Annealing of a Rephosphorized Interstitial Free (IF) Steel[C]. 41ST MWSP CONF. PROC., ISS. 1999. 235-243.
    [35] Saitoh H., Ushioda K. Influences of Phosphorus on the Solubility of Carbon in Ferrite and on Snoek Peak[J], Materials Transaction, JIM 1993, 34: 13-19.
    [36] Ramos A. S., Sandim H. R. Z., Hashimoto T. M. FeNbP in ultra-low carbon Nb-added steel containing high P[J], Materials Characterization, 2000, 45 (3): 171-174.
    [37] Jayanta S. REGE, Mingjian HUA, Cdlixto I. GARCIA, DEARDO NTHONY J. The Segregation Behavior of Phosphorus in Ti and Ti+Nb Stabilized Interstitial-Free Steels[J], ISIJ International, 2000, 40 (2): 191-199.
    [38] OI K., LUX C., PURDY G. R. A Study of the Influence of Mn and Ni on the Kinetics of the Proeutectoid Ferrite Reaction in Steels[J], Acta Materialia, 2000, 48: 2147-2155.
    [39] Zhang Jicheng, Fu Renyu, Zhang Mei, Liu Rendong, Wei Xicheng, Li Lin. Bake hardening behavior of TRIP and DP steels[J], Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15 (2): 132-137.
    [40] Soenen B, De A. K, Vandeputte S, De Cooman B. C. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels[J], Acta Materialia, 2004, 52 (12): 3483-3492.
    [41]雍岐龙.《钢铁结构材料中的第二相》[M]. 2006.
    [42] Chen Ji-ping, Kang Yong-lin, Hao Ying-min, Liu Guang-ming, Xiong Ai-ming. Experimental study on Ti+Nb bearing ultra-low carbon bake hardening sheet steel hot-rolled in the ferrite region[J], International Journal of Minerals, Metallurgy and Materials, 2009, 16 (5): 540-548.
    [43] Ooi S. W., Fourlaris G. A comparative study of precipitation effects in Ti only and Ti-V Ultra Low Carbon (ULC) strip steels[J], Materials Characterization, 2006, 56 (3): 214-226.
    [44] He C. S., Zhang Y. D., Wang Y. N., Zhao X., Zuo L., Esling. C. Texture and microstructure development in cold-rolled interstitial free(IF) steel sheet during electric field annealing[J], Scripta Materialia, 2003, 48: 737-742.
    [45] Xie C. L., Nakamachi. E. Investigations of the formability of BCC steel sheets by using crystalline plasticity finite element analysis[J], Materials and Design, 2002, 23: 59-68.
    [46] Wagner F., Bozzolo N., Landuyt O. Van, Grosdidier. T. Evolution of recrystallisation texture and microstructure in low alloyed titanium sheets[J], Acta Materialia, 2002, 50: 1245-1259.
    [47] Rika YODA, Ichiro TSUKATANI, Tsuyoshi INOUE, SAITO Tadashi. Effect of Chemical Composition on Recrystallization Behavior and r-value in Ti-added Ultra Low Carbon Sheet Steel[J], ISIJ International, 1994, 34 (1): 70-76.
    [48] Satoh S. Development of Bake-Hardening High-Strength Cold-Rolled Sheet Steels for Automobile Exposed Panels[C]. Kawasaki Steel Technical Report. 1992. 31-38.
    [49] Berbenni S, Favier V, Lemoine X, Berveiller M. A micromechanical approach to model the bake hardening effect for low carbon steels[J], Scripta Materialia, 2004, 51 (4): 303-308.
    [50]葛庭燧,张立德等.《内耗与超声衰减》[M]. 1989年6月.
    [51]田莳,李秀臣,刘正堂.《金属物理性能》[M]. 1994年5月.
    [52] Ruiz D, Rivera-Tovar J. L, Segers D, Vandenberghe R. E, Houbaert Y. Aging phenomena in high-Si steels studied by internal friction[J], Materials Science and Engineering: A, 2006, 442 (1-2): 462-465.
    [53] Guan X. S, Nishizawa Y, Okamura K, Numakura H, Koiwa M. Interaction betweensubstitutional and interstitial solute atoms in [alpha] iron studied by isothermal mechanical spectroscopy[J], Materials Science and Engineering A, 2004, 370 (1-2): 73-77.
    [54] Saitoh Hajime, Yoshinaga Naoki, Ushioda Kohsaku. Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron[J], Acta Materialia, 2004, 52 (5): 1255-1261.
    [55] Wen Yiting, Su Quanmin, Manfred Wuttig. Interstitial Analysis of Ultra Low Carbon and Interstitial Free Steels[C]. 39TH MWSP CONF. PROC., ISS. 1998. 271-280.
    [56] Wen Yiting, Su Quanmin, Manfred Wuttig. Interstitials in LC, ULC and IF Steels and their Analysis[C]. 40TH MWSP CONF. PROC., ISS. 1998. 833-888.
    [57] John G. Speer, Matlock. David K. Recent Developments in Low-Carbon Sheet Steel[J], Steel, 2002, 19-24.
    [58] WALEED AL-SHALFAN, JOHN G. SPEER, KIP FINDLEY, MATLOCK. DAVID K. Effect of Annealing Time on Solute Carbon in Ultralow Carbon Ti-V and Ti-Nb Steels[J], METALLURGICAL AND MATERIALS TRANSACTIONS A, 2006, 37A ( ): 206-216.
    [59] WALEED AL-SHALFAN, JOHN G. SPEER, DAVID K. MATLOCK, SUDOOK KIM, LEDBETTER HASSELL. Internal-Friction Measurements of Ultra-Low Carbon Sheet[J], 42ND MWSP CONF. PROC, 2000, 741-753.
    [60] Krupic V., Gladman T., Mitchell P. Vanadium in Interstisial-Free Steels[C]. 37TH MWSP CONF. PROC. ISS. 1996. 907-914.
    [61] Foley R. P., Fine M. E., Bhat S. K. Bake Hardening Steels: Toward Improved Formability and Strength[C]. 39TH MWSP CONF. PROC., ISS. 1998. 653-666.
    [62] Jeong Yong-Soo, Matsubae-Yokoyama Kazuyo, Kubo Hironari, Pak Jong-Jin, Nagasaka Tetsuya. Substance flow analysis of phosphorus and manganese correlated with South Korean steel industry[J], Resources, Conservation and Recycling, 2009, 53 (9): 479-489.
    [1] Panitz J.A. Imaging atom-probe mass spectroscopy [J]. Prog. Surf. Sci. 1978, 8:219-262.
    [2] Cerezo A., Smith G.D.W., The Position-sensitive Atom Probe: Reconstruction of the Atomic Chemistry of Solids in 3-Dimensions[J].Microchemica Acta. 1991,2:401-404.
    [3] Cerezo A., Godfrey T.J., Smith G.D.W.. Application of a Position-sensitive Detector to Atom Probe Microanalysis [J]. Rev. Sci. Instrum. 1988, 59:862-866.
    [4] Cerezo A., Godfrey T.J., Sijbrandij S.J., Smith G.D.W., Warren P.J.. Performance of an Energy-compensated Three-Dimensional Atom Probe [J]. Rev. Sci. Instrum. 1998, 69:49-58.
    [5] Blavette D., Deconihout B., Chambrel S., Bostel A..Three-dimensional imaging of chemical order with the tomographic atom-probe [J]. Ultramicroscopy. 1998,70:115-124.
    [6] Deconihout B., Bostel A., Bas P., Chambrel S., Letellier L., Danoix F., Blavette D.. Investigation of some selected metallurgical problems with the tomographic atom probe[J]. Appl. Surf. Sci. 1994, 76/77:145-154.
    [7] Blavette D., Deconihout B., Bostel A., Sarrau J.M., Bouet M., Menand A.. The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale [J]. Rev. Sci. Instrum. 1993, 64:2911-2919.
    [8] Hono K.. Atom Probe Microanalysis and Nanoscale Microstructures in Metallic Materials[J]. Acta. Metall,1999,47:3127-2145.
    [9] Thomson R.C., Miller M.K.. Atom Probe Characterization of High Temperature Materials[J]. Mater. Sci. Tech. 2000,16:1199-1206.
    [10] Guo Z., Sha W., Vaumousse D.. Microstructural Evolution in a PH13-8 Stainless Steel afterAgeing [J]. Acta. Metall. 2003, 51:101-116.
    [11] Pereloma E. V., Shekhter A., Miller M. K., Ringer S.P. Ageing Behaviour of an Fe-20Ni-1.8 Mn-1.6Ti-0.59Al (wt.%) Maraging Alloy: Clustering, Precipitation and Hardening[J]. Acta. Mater. 2004, 52:5589-5602.
    [12] Ping D.H., Ohnuma M., Hirakawa Y., Kadoya, Y., Hono K.. Microstructural Evolution in 13Cr-8Ni-2.5Mo-2Al Martensitic Precipitation-hardened Stainless Steel [J]. Mater. Sci. Eng A. 2005, 394:285-295.
    [13] Erlacha S.D., Leitnerb H., Bischofb M., Clemensb H., Danoixc F., Lemarchandc D., Sillerd I..Comparison of NiAl Precipitation in a Medium Carbon Secondary Hardening Steel and C-free PH13-8 Maraging Steel [J]. Mater. Sci. Eng A. 2006,429:96-106.
    [14] Grennan-Heaven N., Cerezo A., Godfrey T. J., Smith G. D. W. Optimisation of a scanning atom probe with improved mass resolution using post deceleration[J]. Ultramicroscopy. 2007, 107: 705-712.
    [15] Rachbauer R., Stergar E., Massl S., Moser M., Mayrhofer P. H. Three-dimensional atom probe investigations of Ti-Al-N thin films[J]. Scripta Mater. 2009, 61: 725-728.
    [16] Takahashi J., Tarui T., Kawakami K. Three-dimensional atom probe analysis of heavily drawn steel wires by probing perpendicular to the pearlitic lamellae[J]. Ultramicroscopy.2009, 109: 193-199.
    [17] Takahashi J., Kawakami K., Otsuka H., Fujii H. Atom probe analysis of titanium hydride precipitates[J]. Ultramicroscopy. 2009, 109: 568-573.
    [18]刘庆冬,刘文庆,王泽民,周邦新. Nb-V微合金钢中碳化物析出的三维原子探针表征[J],金属学报, 2008, 44 (7): 786-790
    [19]黄文长,冯继军. EBSD分析技术及其在材料科学研究中的应用[J].汽车工艺与材料, 2004, (01): 18-20.
    [20]王春芳,时捷,王毛球等. EBSD分析技术及其在钢铁材料研究中的应用[J].钢铁研究学报, 2007, (04): 6-11.
    [21]张小立,庄传晶,吉玲康等. EBSD及其在钢铁研究领域中的应用[J].材料导报, 2006, (11): 96-99.
    [1] Wolfgang Bleck, Wolfgang Muschenborn, Lutzmeyer. Recrystallization and Mechancial Properties of Microalloyed Cold-rolled Steel [J].Steel Researc. 1998, 59 (8): pp.344-351.
    [2]雍岐龙.《钢铁结构材料中的第二相》[M]. 2006.
    [3] Mitchell P, Gladman T. Vanadium in interstitial free steels[C]. Iron & Steel Soc of AIME, 1997, 37-48.
    [1] Fukuya Koji, Nishioka Hiromasa, Fujii Katsuhiko, Miura Terumitsu, Torimaru Tadahiko. An EBSD examination of SUS316 stainless steel irradiated to 73 dpa and deformed at 593 K[J], Journal of Nuclear Materials, In Press, Corrected Proof.
    [2] Gazder Azdiar A., Cao Wenquan, Davies Christopher H. J., Pereloma Elena V. An EBSD investigation of interstitial-free steel subjected to equal channel angular extrusion[J], Materials Science and Engineering: A, 2008, 497 (1-2): 341-352.
    [3] Sandim H. R. Z., Renzetti R. A., Padilha A. F., Raabe D., Klimenkov M., Lindau R., Moslang A. Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel[J], Materials Science and Engineering: A, 2010, 527 (15): 3602-3608.
    [4] Sanchez-Hanton J. J., Thomson R. C. Characterization of isothermally aged Grade 91 (9Cr-1Mo-Nb-V) steel by electron backscatter diffraction[J], Materials Science and Engineering: A, 2007, 460-461: 261-267.
    [5] Storojeva L., Ponge D., Kaspar R., Raabe D. Development of microstructure and texture of medium carbon steel during heavy warm deformation[J], Acta Materialia, 2004, 52 (8): 2209-2220.
    [6] Xue Q., Bingert J. F., Henrie B. L., Gray Iii G. T. EBSD characterization of dynamic shear band regions in pre-shocked and as-received 304 stainless steels[J], Materials Science and Engineering: A, 2008, 473 (1-2): 279-289.
    [7] Lu Z., Faulkner R. G., Riddle N., Martino F. D., Yang K. Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels[J], Journal of Nuclear Materials, 2009, 386-388: 445-448.
    [8] Novillo E., Hernandez D., Gutierrez I., Lopez B. Analysis of ferrite grain growth mechanisms during [gamma]-[alpha] transformation in a niobium alloyed steel using EBSD[J], Materials Science and Engineering A, 2004, 385 (1-2): 83-90.
    [9] Renzetti R. A., Sandim H. R. Z., Sandim M. J. R., Santos A. D., Moslang A., Raabe D. Annealing effects on microstructure and coercive field of ferritic-martensitic ODS Eurofer steel[J], Materials Science and Engineering: A, 2010, 528 (3): 1442-1447.
    [10] Oudin A., Hodgson P. D., Barnett M. R. EBSD analysis of a Ti-IF steel subjected to hottorsion in the ferritic region[J], Materials Science and Engineering: A, 2008, 486 (1-2): 72-79.
    [11] Choi Shi-Hoon, Jin Young-Sool. Evaluation of stored energy in cold-rolled steels from EBSD data[J], Materials Science and Engineering A, 2004, 371 (1-2): 149-159.
    [12] Eghbali B. Effect of strain rate on the microstructural development through continuous dynamic recrystallization in a microalloyed steel[J], Materials Science and Engineering: A, 2010, 527 (15): 3402-3406.
    [13] Kolahi A., Akbarzadeh A., Barnett M. R. Electron back scattered diffraction (EBSD) characterization of warm rolled and accumulative roll bonding (ARB) processed ferrite[J], Journal of Materials Processing Technology, 2009, 209 (3): 1436-1444.
    [14] Sengupta J., Shin H. J., Thomas B. G., Kim S. H. Micrograph evidence of meniscus solidification and sub-surface microstructure evolution in continuous-cast ultralow-carbon steels[J], Acta Materialia, 2006, 54 (4): 1165-1173.
    [15] Zisman A. A., Van Boxel S., Seefeldt M., Van Houtte P. Gradient matrix method to image crystal curvature by processing of EBSD data and trial recognition of low-angle boundaries in IF steel[J], Materials Science and Engineering: A, 2008, 474 (1-2): 165-172.
    [16] Chandrasekaran Dilip, Nygards Mikael. A study of the surface deformation behaviour at grain boundaries in an ultra-low-carbon steel[J], Acta Materialia, 2003, 51 (18): 5375-5384.
    [17] Guo Aimin, Misra R. D. K., Liu Jibin, Chen Ling, He Xinlai, Jansto S. J. An analysis of the microstructure of the heat-affected zone of an ultra-low carbon and niobium-bearing acicular ferrite steel using EBSD and its relationship to mechanical properties[J], Materials Science and Engineering: A, 2010, 527 (23): 6440-6448.
    [18] Kim S. I., Choi S. H., Lee Y. Influence of phosphorous and boron on dynamic recrystallization and microstructures of hot-rolled interstitial free steel[J], Materials Science and Engineering: A, 2005, 406 (1-2): 125-133.
    [19]崔德理.冶金工艺对无间隙原子钢板织构及深冲性能影响的研究[D].[博士论文].北京:北京科技大学, 1992. 1-100.
    [20]杨弟.超深冲无间隙原子(IF)钢的研究[D]. [博士论文].北京:北京科技大学, 1991. 1-90.
    [21] Matsudo Y, et al. Proceedings of the 6th International Conference on Texture of Material [C]. Xi An, China: Chinese Metal Society, 1996.
    [22] Jonas J J, T Urabe. IF-IFS (Proceedings). Tokyo, Japan: The Iron & Steel Institute of Japan,1981.
    [23] Lee D N. Proceedings of the 11th International Conference on Texture of Material [C]. Xi An, China: Chinese Metal Society, 1996.
    [24] Dillamore I L, Katoh H. A comparison of the observed and predicted deformation textures in cubic metals [J]. Metal Science, 1974, (8): 27.
    [1] Das S., Chatterjee S., Tarafder S. Effect of microstructures on deformation behaviour of high-strength low-alloy steel[J], Journal of Materials Science, 2009, 44 (4): 1094-1100.
    [2] Kamada Yasuhiro, Takahashi Seiki, Kikuchi Hiroaki, Kobayashi Satoru, Ara Katsuyuki, Echigoya Junichi, Tozawa Yusuke, Watanabe Kenta. Effect of pre-deformation on the precipitation process and magnetic properties of Fe–Cu model alloys[J], Journal of Materials Science, 2009, 44 (4): 949-953.
    [3] T. Tanioku, Y. Hoboh, Atsuki Okamoto, Mizui Naomitsu. Development of a New Bake-Hardenable Galvannealed Sheet Steel for Automotive Exposed Panels[C]. 910293 SAE Technical Paper. SAE Technical Paper 910293. Society of Automotive Engineers, 1991. 303-308.
    [4] S. W. Ooi, G. Fourlaris, D. A. Tanner, Robinson. J. S. Precipitation in vanadium bearing ultralow carbon strip steels[J], Materials Science and Technology, 2006, 22 (5): 525-536.
    [5] Ooi S. W., Fourlaris G. A comparative study of precipitation effects in Ti only and Ti-V Ultra Low Carbon (ULC) strip steels[J], Materials Characterization, 2006, 56 (3): 214-226.
    [6] WALEED AL-SHALFAN, JOHN G. SPEER, KIP FINDLEY, MATLOCK. DAVID K. Effect of Annealing Time on Solute Carbon in Ultralow Carbon Ti-V and Ti-Nb Steels[J], METALLURGICAL AND MATERIALS TRANSACTIONS A, 2006, 37A: 206-216.
    [7] Miller M. K. Imaging Elusive Solute Atoms[J], Science, 1999, 286 (5448): 2285-2286.
    [8] Yamaguchi Y., Takahashi J., Kawakami K. The study of quantitativeness in atom probe analysis of alloying elements in steel[J], Ultramicroscopy, 2009, 109 (5): 541-544.
    [9] Blavette D., Déconihout B., Chambreland S., Bostel A. Three-dimensional imaging of chemical order with the tomographic atom-probe[J], Ultramicroscopy, 1998, 70 (3): 115-124.
    [10] Menand A., Cadel E., Pareige C., Blavette D. Three-dimensional atomic scale microscopy with the atom probe[J], Ultramicroscopy, 1999, 78 (1-4): 63-72.
    [11] Hono K. Atom probe microanalysis and nanoscale microstructures in metallic materials[J], Acta Materialia, 1999, 47 (11): 3127-3145.
    [12] Ping D. H., Hono K., Nie J. F. Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy[J], Scripta Materialia, 2003, 48 (8): 1017-1022.
    [13] Oh J. C., Ohkubo T., Mukai T., Hono K. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy[J], Scripta Materialia, 2005, 53 (6): 675-679.
    [14] Wilde J., Cerezo A., Smith G. D. W. Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron[J], Scripta Materialia, 2000, 43 (1): 39-48.
    [15] Caballero F. G., Miller M. K., Babu S. S., Garcia-Mateo C. Atomic scale observations of bainite transformation in a high carbon high silicon steel[J], Acta Materialia, 2007, 55 (1): 381-390.
    [16] Pereloma E. V., Timokhina I. B., Miller M. K., Hodgson P. D. Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels[J], Acta Materialia, 2007, 55 (8): 2587-2598.
    [17] Vaumousse D., Cerezo A., Warren P. J. A procedure for quantification of precipitate microstructures from three-dimensional atom probe data[J], Ultramicroscopy, 2003, 95: 215-221.
    [18] Wen Y. T., Su Q. M., Wuttig M. Interstitials in LC, ULC and IF Steels and their Analysis[C]. 40TH MWSP CONF PROC ISS, 1998,: 833-888
    [19] Wen Y. T., Su Q. M., Wuttig M. Interstitial Analysis of Ultra Low Carbon and Interstitial Free Steels[C]. 39TH MWSP CONF. PROC ISS XXXV, 1998,: 271-280
    [20] H. Saitoh, Ushioda K. Influences of Phosphorus on the Solubility of Carbon in Ferrite and on Snoek Peak[J], Materials Transaction, JIM 1993, 34: 13-19.
    [21] Atsuki Okamoto, Mizui Naomitsu. Recrystallization Texture Control in Ultra-low Carbon Ti-added Sheet Steels Containing Mn and P[J], ISIJ of Janpan, 1990, 76 (3): 422-429.
    [22] Medina S., Gómez M., Gómez P. Effects of V and Nb on static recrystallisation of austenite and precipitate size in microalloyed steels[J], Journal of Materials Science, 45 (20): 5553-5557.
    [23] Ghosh P., Ghosh C., Ray R. K., Bhattacharjee D. Precipitation behavior and texture formation at different stages of processing in an interstitial free high strength steel[J], Scripta Materialia, 2008, 59 (3): 276-278.
    [24] Thermo-Calc AB. TCFE6, Thermo-Calc Software AB Steel Database[M], Version 6. Stockholm: Thermo-Calc AB; 2006
    [25] Calliari I., Brunelli K., Zanellato M., Ramous E., Bertelli R. Microstructural modification during isothermal ageing of a low nickel duplex stainless steel[J], Journal of Materials Science, 2009, 44 (14): 3764-3769.
    [26] Vasconcelos Igor, Tavares Sérgio, Reis F., Abreu Hamilton. Ageing effects onα′precipitation and resistance to corrosion of a novel Cr–Mo stainless steel with high Mo content[J], Journal of Materials Science, 2009, 44 (1): 293-299.
    [27] Sylvie Dionne, Elhachmi Essadiqi, Greg McMahon, Pierre Martin, Galvani. Calude. A Study of Recrystallization and Phosphorus Segregation During Annealing of a Rephosphorized Interstitial Free(IF) Steel[C]. 41ST MWSP CONF. PROC., ISS. 1999. 235-243.
    [1]张进修,熊小敏.内耗频谱仪的应用及内耗频率峰机理的探讨[J],金属学报, 2003, 39 (11): 1127-1132.
    [2] WALEED AL-SHALFAN, JOHN G. SPEER, KIP FINDLEY, MATLOCK. DAVID K. Effect of Annealing Time on Solute Carbon in Ultralow Carbon Ti-V and Ti-Nb Steels[J], METALLURGICAL AND MATERIALS TRANSACTIONS A, 2006, 37A: 206-216.
    [3] Ruiz D, Rivera-Tovar J. L, Segers D, Vandenberghe R. E, Houbaert Y. Aging phenomena in high-Si steels studied by internal friction[J], Materials Science and Engineering: A, 2006, 442 (1-2): 462-465.
    [4]戢景文,赵赠祺,贺礼端,耿殿奇.铁磷合金中的Snoek-Ke-Koster峰[J],物理学报, 1985, 34 (12): 1620-1626.
    [5] Zhang Zaoli, Lin Qingying, Yu Zongsen. Grain boundary segregation in ultra-low carbon steel[J], Materials Science and Engineering A, 2000, 291 (1-2): 22-26.
    [6] Wu J., Song S. H., Weng L. Q., Xi T. H., Yuan Z. X. An Auger electron spectroscopy study of phosphorus and molybdenum grain boundary segregation in a 2.25Cr1Mo steel[J], Materials Characterization, 2008, 59 (3): 261-265.
    [7] Wang Kai, Wang Minqing, Si Hong, Xu Tingdong. Critical time for non-equilibrium grain boundary segregation of phosphorus in 304L stainless steel[J], Materials Science and Engineering: A, 2008, 485 (1-2): 347-351.
    [8] Smith J. F., Southworth H. N. The influence of manganese on free surface segregation in a low alloy steel[J], Surface Technology, 1984, 21 (3): 205-221
    [9] Perhacova J, Grman D, Svoboda M, Patscheider J, Vyrostkova A, Janovec J. Janovec J. Microstructural aspects of phosphorus grain boundary segregation in low alloy steels[J], Mater Lett, 2001; 47: 44.
    [10] Pereloma E. V., Timokhina I. B., Miller M. K., Hodgson P. D. Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels[J], Acta Materialia, 2007, 55 (8): 2587-2598.
    [11]刘庆冬,褚于良,王泽民,刘文庆,周邦新. Nb-V微合金钢中渗碳体周围元素分布的三维原子探针表征[J],金属学报, 2008, 44 (11): 1281-1285.
    [12]郑磊,徐庭栋,邓群,司红.高温合金GH4169(Inconel 718)中磷晶界偏聚特性的实验研究[J],金属学报, 2007, 43 (8): 893-869.
    [13] Miller M. K. Imaging Elusive Solute Atoms[J], Science, 1999, 286 (5448): 2285-2286.
    [14] Craven A J, MacKenzie M, Cerezo A, Godfrey T, Clifton P H. Spectrum Imaging andThree Dimensional Atom Probe Studies of Fine Particles in a Vanadium Micro-alloyed Steel[J], Materials Science and Technology, 2008, 24 (6): 641-650.
    [15] Máthis K., Rauch E. F. Microstructural characterization of a fine-grained ultra low carbon steel[J], Materials Science and Engineering: A, 2007, 462 (1-2): 248-252.
    [16] Wert C Marx I. A new method for determining the heat of activation for relaxation processes[J], Acta Metallurgica, 1953, 1 (2): 113-115.
    [17] Weller M. The Snoek relaxation in bcc metals-From steel wire to meteorites[J], Materials Science and Engineering A, 2006, A 442 21-30.
    [18] Juan J S. in: Schaller R, Fantozzi T, Gremaud G. (Eds), Mechanical Spectroscopy Q-1 2001[M], Uetikon-Zuerich, Switzerland: Trans Tech Publications Ltd, 2001: 32-73.
    [19] Bagramov R, Mari D, Benoit W. Internal friction in a martensitic high-carbon steel[J], Philosophical Magazine A, 2001, 81 (12): 2797-2808.
    [20] Tkalcec I., Mari D. Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects[J], Materials Science and Engineering A, 2004, 370 (1-2): 213-217.
    [21] Song X. L., Yuan Z. X., Jia J., Wang D., Fan L. X. Phosphorus segregation behavior at the grain boundary in a Ti-IF steel after annealing[J], Scripta Materialia, 2010, 63 (4): 446-448.
    [22] Zhao J. Z., De A. K., De Cooman B. C. Kinetics of Cottrell atmosphere formation during strain aging of ultra-low carbon steels[J], Materials Letters, 2000, 44 (6): 374-378.
    [23] A H Cottrell, Bilby B A. Dislocation Theory of Yielding and Strain Ageing of Iron[J], Proc. Phys. Soc. A, 1949, 62 49-62.
    [24] Cowan J. R., Evans H. E., Jones R. B., Bowen P. The grain-boundary segregation of phosphorus and carbon in an Fe-P-C alloy during cooling[J], Acta Materialia, 1998, 46 (18): 6565-6574.
    [25] Song S. H., Wu J., Weng L. Q., Yuan Z. X. Fractographic changes caused by phosphorus grain boundary segregation for a low alloy structural steel[J], Materials Science and Engineering: A, 2008, 497 (1-2): 524-527.
    [1] Weller M. The Snoek relaxation in bcc metals-From steel wire to meteorites[J], Materials Science and Engineering A, 2006, A 442: 21-30.
    [2] Saitoh H., K. Ushioda. Influences of Phosphorus on the Solubility of Carbon in Ferrite and on Snoek Peak[J], Materials Transaction, 1993, JIM 34: 13-19.
    [3] Waleed Al S, John G S, Kip F, David K M. Effect of Annealing Time on Solute Carbon in Ultralow Carbon Ti-V and Ti-Nb Steels[J], Metall Mater Trans A, 2006, 37A: 206-216.
    [4] Bagramov R., Mari D., Benoit W. Internal friction in a martensitic high-carbon steel[J], Philosophical Magazine A, 2001, 81(12): 2797-2808.
    [5] Tkalcec I., Mari. D. Mechanical Spectroscopy in Martensitic and Cold-Worked Carbon Steels[J], Defect and Diffusion Forum, 2002, 253: 203-205.
    [6] Tkalcec I., Mari D. Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects[J], Materials Science and Engineering A, 2004, 370 (1-2): 213-217.
    [7] Gremaud G., in: Schaller R., Fantozzi G., Gremaud G. (Eds.), Mechanical Spectroscopy Q-1 2001 with Applications to Materials Science[M], Trans Tech Publications, Uetikon-Zuerich, Switzerland, 2001, p. 178.
    [8] Cottrell A H, Bilby B. A. Dislocation Theory of Yielding and Strain Ageing of Iron[J], Proc. Phys. Soc. A, 1949, 62: 49-62.
    [1] Saitoh H., Ushioda K. Influences of Phosphorus on the Solubility of Carbon in Ferrite and on Snoek Peak [J]. Materials Transaction, JIM 1993, 34: 13-19.
    [2] Wang Hua, Shi Wen, He Yanlin, Fu Renyu, Li Lin. Study of Mn and P Solute Distributionsand Their Effect on the Tensile Behavior in Ultra Low Carbon Bake Hardening Steels [J]. Acta Metallurgica Sinica in Chinese, 2011, 47 (3): 263-268.
    [3] Soenen B., De A. K., Vandeputte S., De Cooman B. C. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels [J]. Acta Materialia, 2004, 52 (12): 3483-3492.
    [4] Storozheva L. M.,éscher K., Bode R., Hulka K., Burko D. A. Effect of Niobium and Coiling and Annealing Temperatures on the Microstructure, Mechanical Properties, and Bake Hardening of Ultralow-Carbon Steels for the Automotive Industry [J]. Metal Science and Heat Treatment, 2002, 44 (3): 102-107.
    [5] Vasilyev A. A., Lee H.-C., Kuzmin N. L. Nature of strain aging stages in bake hardening steel for automotive application [J]. Materials Science and Engineering: A, 2008, 485 (1-2): 282-289.
    [6] Zhao J., De A., Cooman B. De. Formation of the cottrell atmosphere during strain aging of bake-hardenable steels [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A, 2001, 32 (2): 417-423.
    [7] Blavette D., Duval P., Letellier L., Guttmann M. Atomic-scale APFIM and TEM investigation of grain boundary microchemistry in Astroloy nickel base superalloys [J]. Acta Materialia, 1996, 44 (12): 4995-5005.
    [8] Menand A., Cadel E., Pareige C., Blavette D. Three-dimensional atomic scale microscopy with the atom probe [J]. Ultramicroscopy, 1999, 78 (1-4): 63-72.
    [9] Hono K. Atom probe microanalysis and nanoscale microstructures in metallic materials [J]. Acta Materialia, 1999, 47 (11): 3127-3145.
    [10] Wilde J., Cerezo A. and Smith G. D. W. Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron [J]. Scripta Materialia, 2000, 43 (1): 39-48.
    [11] Ping D. H., Hono K. and Nie J. F.. Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy [J]. Scripta Materialia, 2003, 48 (8): 1017-1022.
    [12] Oh J. C., Ohkubo T., Mukai T. and Hono K. TEM and 3DAP characterization of an age-hardened Mg-Ca-Zn alloy [J]. Scripta Materialia, 2005, 53 (6): 675-679.
    [13] Pereloma E. V., Timokhina I. B., Miller M. K. and Hodgson P. D. Three-dimensional atom probe analysis of solute distribution in thermomechanically processed TRIP steels [J]. ActaMaterialia, 2007, 55 (8): 2587-2598.
    [14] Caballero F. G., Miller M. K., Garcia-Mateo C., Capdevila C. and Babu S. S. Redistribution of alloying elements during tempering of a nanocrystalline steel [J]. Acta Materialia, 2008, 56 (2): 188-199.
    [15] Yamaguchi Y., Takahashi J. and Kawakami K.. The study of quantitativeness in atom probe analysis of alloying elements in steel [J]. Ultramicroscopy, 2009, 109 (5): 541-544.
    [16] Dionne Sylvie, Essadiqi Elhachmi, McMahon Greg, Martin Pierre and etc. A Study of Recrystallization and Phosphorus Segregation During Annealing of a Rephosphorized Interstitial Free(IF) Steel [C]. 1999. 235-243.
    [17] Cottrell A H and Bilby B. A.. Dislocation Theory of Yielding and Strain Ageing of Iron [J]. Proc. Phys. Soc. A, 1949, 62: 49-62
    [18] De A. K., Blauwe K. De, Vandeputte S. andDe Cooman B. C.. Effect of dislocation density on the low temperature aging behavior of an ultra low carbon bake hardening steel [J]. Journal of Alloys and Compounds, 2000, 310 (1-2): 405-410.
    [19] De A., De Cooman B. and Vandeputte S.. Kinetics of strain aging in bake hardening ultra low carbon steel—a comparison with low carbon steel [J]. journal of Materials Engineering and Performance, 2001, 10 (5): 567-575.
    [1] Hong M. H., Cho N. H., Kim S. I., Kwon O., Lim S. H., Moon W. J. Development of Cu-bearing bake-hardenable steel sheets for automotive exposed panels[J]. Met Mater Int, 2010, 16(6): 883-890.
    [2] Birol Y. Impact of pre-ageing on age hardening response of twin-belt cast AlMg1SiCu sheet[J]. J Mater Sci. 2010, 45(24): 6727-6731.
    [3] Menand A., Cadel E., Pareige C., Blavette D. Three-dimensional atomic scale microscopy with the atom probe[J]. Ultramicroscopy, 1999, 78(1-4): 63-72.
    [4] Hono K. Atom probe microanalysis and nanoscale microstructures in metallic materials[J]. Acta Mater, 1999, 47(11): 3127-3145.
    [5] Wilde J., Cerezo A., Smith G. D. W. Three-dimensional atomic-scale mapping of a cottrell atmosphere around a dislocation in iron[J]. Scripta Mater, 2000, 43(1): 39-48.
    [6] Caballero F. G., Miller M. K., Garcia-Mateo C., Capdevila C., Babu S. S. Redistribution of alloying elements during tempering of a nanocrystalline steel[J]. Acta Mater, 2008, 56(2): 188-199.
    [7] Yamaguchi Y., Takahashi J., Kawakami K. The study of quantitativeness in atom probe analysis of alloying elements in steel[J]. Ultramicroscopy, 2009, 109(5): 541-544.
    [8] Grennan-Heaven N., Cerezo A., Godfrey T. J., Smith G. D. W. Optimisation of a scanning atom probe with improved mass resolution using post deceleration[J]. Ultramicroscopy, 2007, 107(9): 705-712.
    [9]刘庆冬,刘文庆,王泽民,周邦新. Nb-V微合金钢中碳化物析出的三维原子探针表征[J],金属学报, 2008, 44(7): 786-790.
    [10] Zhao J. Z., De A. K., De Cooman B. C. Kinetics of Cottrell atmosphere formation during strain aging of ultra-low carbon steels[J]. Mater Lett, 2000, 44(6): 374-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700