(Ti,M)_2AlC/Al_2O_3复合材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元层状化合物Ti_2AlC因其具有多种优良的性能而受到了越来越多的关注。它结合了陶瓷与金属共同的优点:良好的导电、导热性能,低的密度,良好的可加工性能,高的抗热震性能和抗高温氧化性能等。然而,由于其相对低的硬度和强度,在很大程度上限制了其广泛应用。这一缺陷主要是因为其结构中Al原子层与Ti6C八面体层所形成的化学键键强较弱所致。复合化和固溶强化是目前改善Ti_2AlC材料综合性能的两种有效措施。
     目前,制备Ti_2AlC基固溶体或者复合材料的方法多为直接混合法,所合成的产物存在晶粒粗大、分散性差等缺点而导致该材料的性能难以进一步提高。本研究在Ti-Al-C体系中分别引入金属氧化物V_2O_5与Nb_2O_5,利用Al与V_2O_5和Nb_2O_5之间的铝热反应原位生成第二相Al_2O_3,同时还原出的金属单质V或者Nb替代Ti_2AlC中的Ti,从而形成(Ti,V)2AlC/Al_2O_3和(Ti,Nb)2AlC/Al_2O_3复合材料。为了对比试验,本文利用Ti粉,Al粉以及碳黑为原料,采用热压烧结工艺制备了单相Ti_2AlC材料。借助X射线衍射(XRD)、扫描电镜(SEM)以及能谱分析(EDS)等系统研究了不同体系合成(Ti,M)2AlC/Al_2O_3(M=V或者Nb)复合材料的原位反应过程和显微结构;结合力学性能研究了V_2O_5与Nb_2O_5的加入量对产物结构与性能的影响,并探讨了该复合材料的断裂方式与增强、增韧机理。主要结论如下:
     合成单相Ti_2AlC材料的结果表明:当Ti:Al:C的摩尔比为2:1.1:0.7时,在1350℃温度下合成了纯度较高的Ti_2AlC化合物,其相对密度达到99%,晶粒大小约为1μm。材料的维氏硬度(Hv)、弯曲强度(σb)与断裂韧性(KIC)分别为6.79GPa,271MPa和4.08MPa·m1/2。
     Ti-Al-C-V_2O_5合成(Ti,V)2AlC/Al_2O_3复合材料的研究表明:当热压温度为700℃时,Ti和Al首先发生反应形成一系列Ti-Al金属间化合物(Ti3Al、TiAl、TiAl3);当温度上升到900℃时,发生了Al与V_2O_5之间的铝热还原反应,生成了Al_2O_3相,并有TiC相形成;当温度为1100℃时,形成了(Ti,V)2AlC基体相;当温度上升到1350℃时,质相消失,形成了高纯度的(Ti,V)2AlC/Al_2O_3复合材料。由于原位反应过程中的放热反应,使该复合材料的合成温度较传统合成方法降低了200-300℃。随着产物中Al_2O_3含量的提高,基体晶粒尺寸逐渐变小,分布更加均匀,但当Al_2O_3含量超过10wt%时,第二相颗粒团聚比较严重。该复合材料的硬度和抗压强度随Al_2O_3含量的提高而增大,但其弯曲强度和断裂韧性出现峰值变化,当产物中Al2O3含量为10wt%时达到最大值434.36MPa和5.68MPa m1/2,与单相Ti2AlC相比分别提高了132%和166%。该材料力学性能的改善源自于固溶强化和第二相复合的综合效果。
     利用同样的制备工艺,以Nb_2O_5、Ti、Al和碳粉为原料成功制备了(Ti,Nb)_2AlC/Al_2O_3复合材料。其反应过程与微观结构与(Ti,M)_2AlC/Al_2O_3复合材料类似,当产物Al_2O_3质量百分比为5wt%(原料中Nb_2O_5为7.69wt%)时,其弯曲强度与断裂韧性相对单相Ti_2AlC来说,分别提高了57%与9%。但与(Ti,M)_2AlC/Al_2O_3复合材料相比较,其性能还有一定的差距,原因有待进一步研究。
The ternary layered compound Ti_2AlC possesses remarkable properties thatcombines many of the merits of both metals and ceramics, and has attractedincreasing attention due to its good electrical and thermal conductivity, lowdensity, ready machinability, excellent thermal shock resistance and hightemperature oxidation resistance. To date, unfortunately, its wide application isstill limited by its relatively low hardness and low strength, which originatedfrom the comparatively weak bonding between the Al layers and edge-sharedTi6C octahedral in the structure. At present, both composite strengthening andsolid-solution are effective approachs for improving fracture toughness andflexural strength of Ti_2AlC.
     Until now, the most common way to fabricate the Ti_2AlC based compositesis to mix the raw materials, and then hot pressing. However,the synthesizedproducts have defects, such as coarse grains and poor dispersion, which limitfurther increasing the properties. In this work, in-situ hot-pressing method withexothermic reaction of Al-V_2O_5or Al-Nb_2O_5in Ti-Al-C system, has been used tofabricate (Ti,V)_2AlC/Al_2O_3and (Ti,Nb)_2AlC/Al_2O_3composites, in which theAl_2O_3enforcing phase was in-situ formed by thermite reaction of Al-V_2O_5orAl-Nb_2O_5, at the same time, the in-situ formed M (V or Nb) atom substituted Tito form (Ti,M)_2AlC matrix phase. For comparison, fully dense Ti_2AlCmonolithic phase was also synthesized by hot pressing method using Ti, Al andC as starting materials. The reaction mechanisms and microstructures of the(Ti,M)_2AlC/Al_2O_3(M=V or Nb) composites were investigated in details by X-raydiffraction (XRD), scanning electron microscopy (SEM) and energy dispersiveanalysis (EDS). The effects of V_2O_5and Nb_2O_5addition on the microstructuresand properties were also studied. Furthermore, the fracture models, strengtheningand toughening mechanisms were analyzed. The main results are shown as follows:
     The results of the synthesis for Ti_2AlC compound show that the fully denseTi2AlC ceramic was synthesized at1350℃using the molar ratio of Ti:Al:C as2:1.1:0.7. The as fabricated Ti2AlC possesses a relative density of99%and agrain size of about1μm. The Vickers hardness (Hv), flexural strength (σb) andfracture toughness (KIC) are6.79GPa,271MPa and4.08MPa·m1/2, respectively.
     The synthesis process of (Ti,V)_2AlC/Al_2O_3composite with the rawmaterials of Ti-Al-C-V2O5is as follows: When the hot pressing temperature was700℃, series of Ti-Al intermetallics (Ti3Al、TiAl、TiAl3) were formed byreaction of Ti and Al. When the temperature increased to900℃, Al_2O_3and Vwere formed by the thermite reaction between Al and V2O5, at the same time,TiC was also formed.(Ti,V)2AlC phase was formed as the temperature increasedto1100℃. Finally, when the temperature was increased to1350℃, high purity(Ti,V)2AlC/Al_2O_3composite was successfully synthesized, which was decreasedby200-300℃compared with the traditional synthesis methods. The grain sizeof the matrix was deceased by increasing the Al_2O_3content, and the more Al_2O_3distribution, the more uniform in the matrix. The Vickers hardness (Hv) andcompressive strength increased with the increasing of Al_2O_3content. But asAl_2O_3content was further increased over10wt%, the Al_2O_3particles becameagglomerate seriously. The flexural strength (σb) and fracture toughness (KIC)were obtained the maximum values of434.36MPa and5.68MPa m1/2at10wt%Al_2O_3content, which were increased by132%and166%, respectively,compared with those of the monolithic Ti2AlC. This improvement results from acomprehensive effect of solid solution and the second phase strengthening.
     The (Ti,Nb)_2AlC/Al_2O_3composites were also successfully synthesized fromelemental powder mixtures of Nb2O5, Ti, Al and carbon by using the samesynthesis technique. The reaction path and microstructure were similar to thoseof the (Ti,V)2AlC/Al_2O_3composite. Compared with the monolithic Ti_2AlC, theflexural strength and fracture toughness were enhanced by57%and9%,respectively, when the Al_2O_3was5wt%(7.69wt%Nb2O5). However, incomparison with the (Ti,V)2AlC/Al_2O_3composites, the mechanical properties of(Ti,Nb)2AlC/Al_2O_3composites are still lower, and the reason would be furtherinvestigated in detail.
引文
[1]吴建鹏,朱建锋,曹玉泉.金属间化合物的研究现状与发展[J].热加工工艺,2004,5(2):41-43.
    [2]杨楠如等.无机非金属材料测试方法[M].武汉理工大学出版社,2008,6.
    [3]尹衍升,张景德.氧化铝陶瓷及其复合材料[M].化学工业年出版社,2001,7.
    [4]张清纯.陶瓷材料的力学性能[M].北京:科学出版社.1989:274-309.
    [5]机械工业部仪器仪表工业局.刚玉晶体制造[M].北京:机械工业出版社,1985,6.
    [6]孙立群,杨永生.浅析α-Al2O3的制备技术现状[J].铝镁通讯,2001,1(5):25-27.
    [7]张国军,金宗哲,岳雪梅.材料的原位合成技术[J].材料导报,1997,11(1):1-4.
    [8]王作山,张景林.纳米α-Al2O3的制备及其对HMX热感度的影响[J].应用基础与工程科学学报,2005,13(4):396-405.
    [9] W. Jeitschko, H. Nowotny, F. Benesosky. Kohlenstoffhaltige Ternare Verbindungen(H-Phase)[J]. Monatashefte Chemistry,1963,94:672-677.
    [10] J.Y. Wang, Y.C. Zhou. Ab initio elastic stiffness of nano-laminate (MxM2-x)AlC)(M=Ti,V, Nb and Cr) solid solution[J]. Journal of Physics: Condensed Matter,2004,16:2819-2827.
    [11] Y.W. Bao and Y.C. Zhou, Mechanical properties of Ti3SiC2in bending at hightemperature[J]. Acta Metallurgica,2004,17(4):465-470.
    [12]梅炳初,严明,朱教群.Ti-Al-TiC系统的反应合成与相形成过程[J].材料科学与工程学报,2004,22(5):717-719.
    [13] M.W. Barsoum, Brodk in D, El-Raghy T. Layer Machinable Ceramics for HighTemperature Applications[J]. Scripta Materialia,1997,36(5):535-541.
    [14] M.W. Barsoum. Oxidation of Tin+1AlXnwhere n=1-3and X is C, N, Part II:Experimental Results[J]. Journal of the Electrochemical Society,2001,148(8):551-562.
    [15] M.W. Barsoum. The Mn+1AXnPhases: A New Class of Solids; ThermodynamicallyStable Nanolaminates[J]. Progress in Solid State Chemistry,2000,28:201-206.
    [16] M.W. Barsoum, M. Ali, T. El-Raghy. Processing and characterization of Ti2AlC, Ti2AlNand Ti2AlC(0.5)N(0.5)[J]. Metallurgical and Materials Transactions A: Physical Metallurgyand Materials Science,2000,31A(7):1857-1865.
    [17] M. Radovic, M.W. Barsoum, A. Ganguly, T. Zhen, P. Finkel, S.R. Kalidindi, E.Lara-Curzio. On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2,Ti3Si0.5Al0.5C2and Ti2AlC in the300~1573K temperature range[J]. Acta Materrial,2006,54:2757-2767.
    [18] J.C. Schuster, H. Nowotny. Investigations of the Ternary Systems (Zr, Hf, Nb, Ta)-Al-Cand Studies on Complex Carbides[J]. Zeitschrift fur MetaIlkunde,1980,71:341-346.
    [19] S. Dubois, G.P. Bei, C. Tromas, V. Gauthier-Brunter, P. Gadaud. Synthesis,microstructure, and mechanical properties of Ti3Sn(1-x)AlxC2MAX phase solidsolutions[J]. International Journal Applied Ceramics Technology,2010,7:719-729.
    [20] P. Finkel, B. Seaman, K. Harrell, J. Palma, J.D. Hettinger, S.E. Lofland, A. Ganguly,M.W. Barsoum, Z. Sun, S. Li, R. Ahuja. Electronic, thermal, and elastic properties ofTi3Si1-xGexC2solid solutions[J]. Physical Review B: Condensed Matter,2004,70:085104.1-085104.6.
    [21] Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi. MWCNTs/AZ31surface compositesfabricated by friction stir processing[J]. Materials Science and Engineering,2006, A419:344-348.
    [22] S.L. Kampe, L.C hristodoulou and C.R. Feng. The Effect of Matrix Structure andReinforcement Shape on the Creep Deformation of Near-γ Titanium AluminidesComposites[J]. Acta Metallurgica, Mater,1998,46(8):2881-2894.
    [23] L. Chaput, G. Hug, P. Pécheur, et al. Thermopower of the312MAX Phases Ti3AlC2, Ti3GeC2, and Ti3AlC2[J]. Physical Review B,2007,75:35-39.
    [24] T. Choh, T. Mohri and M. Kobashi. Fabrication of Intermetallic Compound MatrixComposite by Spontaneous Infiltration and Subsequent in situ Reaction Process[J].Journal of Materials Process and Technology,1997,6(3):379-383.
    [25] K. Ishikawa, Y. Miyamoto, M. Kon, et al. Non-decay type fast-setting calcium phosphatecement composite with sodium alginate[J]. Biomaterials,1995,16(7):527-532.
    [26] H.H.K. Xu, J.B. Quium, S. Takagi, et al. Strong and macroporous Calcium phosphateCement: Effects of porosity and fiber reinforcement on mechanical properties[J].Biomedical material,2001,57:457-466.
    [27] N.V. Tzenov, M.W. Barsoum. Synthesis and Characterization of Ti3AlC2[J]. AmericanCeramic Society,2000,83(4):825-832.
    [28] W.B Zhou, B.C. Mei, J.Q. Zhu, X.L. Hong. Synthesis of Ternary Layer Ti2AlCCeramics[J]. Advanced Ceramics,2003,2:10-12.
    [29] X.H. Wang, Y.C. Zhou. Solid-liquid reaction synthesis of layered machinable Ti3AlC2ceramic[J]. Materials Chemistry,2002,12:455-460.
    [30] A. Shahram, C.Y. Ni, M.W. Barsoum. Processing, microstructural characterization andmechanical properties of a Ti2AlC/nanocrystalline Mg-matrix composite[J]. CompositesScience and Technology,2009,69:414-420.
    [31] J.C. Schuster, H. Nowotny, C. Vaccaro. The Ternary Systems: Cr-Al-C, V-Al-C and theBehavior of H-Phases (M2AlC)[J]. Solid State Chemistry,1980,32(9):213-219.
    [32] Y. Mutoh, S.J. Zhu, T. Hansson, S. Kurai, et al. Effect of microstructure on fatigue crackgrowth in TiAl intermetallics at elevated temperature[J]. Materials Science andEngineering,323(2002):62-69.
    [33] G. Hug and E. Fries. Full-potential electronic structure of Ti2AlC and Ti2AlN[J]. PhysicsReview B,2002,65:113104-113107.
    [34] I. Salama, T. El-Raghy, M.W. Barsoum. Synthesis and Mechanical Properties of Nb2AlCand (Ti,Nb)2AlC[J]. Alloys Compound,2002,347:271-278.
    [35] H. Mabuehi, K. Harada, H. Tsuda, Y. Nakayama. Fabrication of Ti2AlC/TiAl CompositesUsing Combustion Reaction Process[J]. ISIJ International,1991,31(10):1272-1278.
    [36] B.C. Mei, J.S. Lin, Yoshinari Miyamoto, et al. Microstructures and MechanicalProperties of TiAl/Ti2AlC Composites Prepared by Pulsed Electric current Sintering[J].ISIJ Intermational,2000,40(Supp lement):77-81.
    [37] J. Mukerji, S.k. Biswas. Synthesis, properties and oxidation of alumina titaniumnitride-composites[J]. American Ceramic Society,1990,73(1):142-145.
    [38] Y.C. Zhou, X.H. Wang Deformation of Polycrystalline Ti2AlC Under Compression[J].Materials Research Innovations,2001,5(2):87-93.
    [39] Y.M. Luo, W. Pan, S.Q. Li, R.G. Wang, J.Q. Li. Fabrication of Al2O3-Ti3SiC2compositesand mechanical properties evaluation[J]. Materials Letters,2003,57:2509-2514.
    [40] J.X. Chen, M.Y. Liu, Y.W. Bao, Y.C. Zhou. Failure-mode dependence of thestrengthening effect in Ti3AlC2/10vol.%Al2O3composite[J]. International Journal ofMaterials Research,2006,97:1115-1118.
    [41] C.L. Yeh, C.W. Kuo, Y.C. Chu. Formation of Ti3AlC2/Al2O3and Ti2AlC/Al2O3composites by combustion synthesis in Ti-Al-C-TiO2systems[J]. Journal of AlloysCompound,2010,494:132-136.
    [42] Y.C. Zhou, Z.M. Sun. Electronic structure and Bonding Properties: LayeredMachinable Ti2AlC and Ti2AlN[J]. Ceramics Physical Review B,2000,61(19):1257-1257.
    [43] J.X. Chen, Y.C. Zhou. Strengthening of Ti3AlC2by incorporation of Al2O3[J]. ScriptaMaterials,2004,50:897-901.
    [44] Y.C. Zhou, J.X. Chen, J.Y. Wang. Strengthening of Ti3AlC2by incorporation of Si toform Ti3Al1-xSixC2solid solutions[J]. Acta Materials,2006,54:1317-1322.
    [45] F.L. Meng, Y.C. Zhou, J.Y. Wang. Strengthening of Ti2AlC by substituting Ti with V[J].Scripta Materials,2005,53:1369-1372.
    [46] H.J. Wang, Z.H. Lin, Y. Miyamoto. Effect of Al2O3on mechanical properties ofTi3SiC2/Al2O3composite[J]. Ceramics International,2002,28:931-934.
    [47] D.B. Lee, S.W. Park. High-Temperature Oxidation of Ti3AlC2between173and1473Kin Air[J]. Materials Science and Engineering A,2006,434:147-154.
    [48] B.B. Liu, F. Wang, J.G. Zhu, Y.L. Li, Z.B. Yang. Synthesis of Al2O3/Ti2AlC Compositeby in-situ Hot-pressing Method[J]. Materials Science and Engineering,2009,4:636-638.
    [49] H. Ntiwolny. Struktuehemie Hunger Verbindungender Ubergangsmetallemitdenelementen C,51, Ge, Sn[J]. Progress Solid State Chemisty, H. Reiss, Ed.,1970,2,27.
    [50] M. LoPacinski, J. Puszynski, J. Lis. Synthesis of Ternary Titanium Aluminum CarbidesUsing Self-Propagating High-temperature Synthesis Technique[J]. Journal of AmericanCeramics Society,2001,84(12):3051-3053.
    [51] Y. KhoPtiar, I. Gotman. Ti2AlC Ternary Carbide Synthesized by Thermal Explosion[J].Materials Letters,2002,57(l):72-76.
    [52] Y.C. Zhou, Z.M. Sun. Temperature fluctuation/hot pressing, microstructure and Fracturebehaviour of Ti3SiC2ceramics[J]. Journal of Materials Science,2000,35(17):4343-4346.
    [53] N.F. Gao, Y. Miyamoto and D. Zhang. Dense Ti3SiC2prepared by reactive HIP[J].Journal of Materials Science,1999,34(18):4385-4392.
    [54]郭俊明,陈克新,周和平,郭小钧,葛振斌,宁晓山.碳含量对Ti-Al-C体系燃烧合成Ti2AlC粉体的影响,稀有金属材料工程,2002,31(增刊l):16-19.
    [55] M.W. Barsoum. Oxidation of Tin+1AlXnwhere n=1-3and X is C, N, Part II:Experimental Results[J]. Electrochemical Society,2001,148(8):551-562.
    [56] Z.M. Sun, R. Ahuja, and J.M. Schneider. Theoretical investigation of the solubility in(MxM'(2-x))AlC (M and M'=Ti, V, Cr)[J]. Physics Review B,2003,68:224112.
    [57] S. Gupta, M.W. Barsoum. Synthesis and Oxidation of V2AlC and (Ti0.5,V0.5)2AlC inAir[J] Journal of Electrochemical Society,2004,151(2): D24-D29.
    [58] J.Y. Wang and Y.C. Zhou. First-Principles Study of Equilibrium Properties andElectronic Structure of Ti3Si0.75Al0.25C2Solid Solution[J]. Journal of Physics: CondensedMatter,2003,15:5959-5968.
    [59] Y.C. Zhou, H.B. Zhang, M.Y. Liu, J.Y. Wang, Y.W. Bao. Preparation of TiC freeTi3SiC2with Improved Oxidation Resistance by Substitution of Si with Al[J]. MaterialsResearch Innovation,2004,8:97-102.
    [60] W. Jeitschko, H. Nowotny and F. Benesovsky. Ti2AlN eine Stickstoffhaltige H-Phase[J].Monatshefte fur Chemie,1963,94:1198.
    [61] M.A. Pietzka and J.C. Schuster. Phase Equilibria in the Quaternary System Ti-Al-C-N[J].Journal of the American Ceramic Society,1996,79:2321.
    [62] M.W. Barsoum, L. Farber, I. Levin, A.T. Procopio, T. El-Raghy and A. Burner. HRTEMof Ti4AlN3; or Ti3Al2N2Revisited[J]. Journal of the American Ceramic Society,1999,82:2545-2547.
    [63] A.T. Procopio, T. El-Raghy and M.W. Barsoum. Synthesis of Ti4AlN3and PhaseEquilibria in the Ti-Al-N System[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2000,31A:373-378.
    [64] C.J. Rawn, M.W. Barsoum, T. El-Raghy, A.T. Procopio, C.M. Hoffman and C. Hubbard.Structure of Ti4AlN3-x–a Layered Mn+1AXnNitride[J]. Materials Research Bulletin,2000,35:1785-1796.
    [65] J.Y. Wang, J.M. Wang, Y.C. Zhou, Z.J. Lin, and C.F. Hu. Ab initio study ofpolymorphism in layered ternary carbides M4AlC3(M=V, Nb and Ta)[J]. ScripaMaterials2008,55(12):1043-1046.
    [66] P. Wang, B.C. Mei, X.L. Hong, W.B. Zhou. Synthesis of Ti2AlC by hot pressing and itsmechanical and electrical properties[J]. Transactions Nonferrous Metall Society,2007,17:1001-1004.
    [67] D. L. Zhang, G. Adam, and A. G. Langdon. Phase and microstructural evolution duringheating of mechanically milled Al/V2O5composite powders, Material Science&Technology,2002,18(8):901-907.
    [68] Y.W. Bao, C.F, Hu and Y.C. Zhou. Damage tolerance of nanolayer-grained ceramic: aquantitative estimation[J]. Materials Science and Technology,2006,22(2):227-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700