B_4C粉末的合成及B_4C基复相陶瓷的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硼(B_4C)具有密度小、硬度高、强度高、耐磨损、耐高温、化学稳定性好以及中子吸收能力强等特点,被国内外广泛应用于轻质防弹材料、耐磨和自润滑材料、高级耐火材料、特种耐腐蚀材料、切割研磨材料以及原子反应堆屏蔽材料等诸多领域。但是传统电弧炉冶炼工艺制备的B_4C容易发生包晶分解,并且B_4C本身极高的共价键比例使其在烧结时晶界移动阻力很大,难以烧结致密,又由于其较低的断裂韧性,大大限制了其在更多领域的应用。
     本论文以H_3BO_3和炭黑为原料,采用碳热还原法在碳管电阻炉中制备B_4C粉体,并对其粒度、总碳含量以及晶相进行了测试和分析,结果表明:当H_3BO_3和炭黑摩尔比为5.2:7、在合成温度为1800℃、合成时间为40min条件下制备的B_4C粉末纯度较高,总碳含量为21.5%,初始粒度为d50=36.19μm;以钢球为球磨介质、在转速为300r/min的全方位行星球磨机上粉碎1h后其d50达到2.49μm,在80℃的浓度为30%的H_2SO_4溶液中酸洗后,球磨引入的Fe等质被基本去除。
     为克服热压烧结B_4C产品的成本高、产量小等缺点,本课题以制备的B_4C粉末为主要原料,通过添加炭黑、 SiC和TiC等烧结助剂,在常压烧结条件下制备了B_4C基复相陶瓷,并对其致密度、力学性能和微观结构进行了测试和分析。结果表明:当以重量比为2:1的水溶性酚醛树脂和环糊精为组合粘结剂,其添加量为粉料的9wt%、粉料中水分含量为1.2wt%、模压压力为150MPa·cm~(-2)、保压时间为10s时制备的生坯密度最大且表观性能良好,密度为1.73g·cm~(-3);通过正交试验优化得到的最佳配方为:2wt%C-12wt%SiC-7wt%TiC-79wt%B_4C,在最高烧成温度为2100℃、保温1.5h的最佳无压烧结工艺下,其断裂韧性、抗弯强度、维氏硬度和相对密度分别达到3.72MPa m1/2、515.7MPa、32.3GPa和96.26%。
     论文最后结合BSE测试结果和EDS分析结果对B-Si-Ti-C系统的固溶机理和增韧机理进行了分析,结果显示,在一定条件下,SiC与B_4C发生了一定的固溶,TiC与B_4C发生原位反应生成了有利于增强B_4C基体韧性的TiB2,而C的主要作用则是去除B_4C基体表面的氧,提高了其表面能,所以此四元系统固溶性较好;实验中涉及的增韧机理主要是热膨胀系数失配引起的裂纹偏转和第二相粒子加入对裂纹扩展的阻碍作用。
Boron carbide (B_4C) ceramic, due to its low density, high hardness, highstrength, abrasion resistance, resistance to high temperature, excellent abilityof corrosion and excellent ability of absorbing neutron, has been widely usedin light bulletproof materials, sharpener materials, lubricate materials,high-grade refractory materials, special corrosion resistant materials andradiation protection materials. However, the B_4C which is prepared by electricarc furnace was easy to peritectic decomposing, the widespread use of boroncarbide was also limited due to the relatively low strength and fracturetoughness as well as poor sinterability caused by strong covalent bond andlow self-diffusion coefficient.
     The H_3BO_3and carbon black were used as raw material, B_4C powder wasprepared by carbothermal reduction method in carbon tube furnace, and itsparticle size, and crystal phase were tested and analyzed. The results showthat B_4C powder with high purity can be got when the mol ratio of H_3BO_3andcarbon black is5.2:7, the synthesis temperature is1800℃and thesynthesistime is40min, its total carbon is21.5%, the initial particle size isd50=36.19μm. The median diameter could reach2.49μm after be crushed incomprehensive planet ball mill for1h, the Fe in powder could be removed asit was washed in H_2SO_4with the concentration of30%,80℃.
     In view of the B_4C products which were sintered by hot pressing have thedefect of high-cost and low-yield, in this study, B_4C-based ceramics wereprepared by pressureless sintering with B_4C we got as main raw material, C,TiC, and SiC as sintering aids. And the relative density, mechanical propertiesand microstructure of B_4C-based ceramics were tested and analyzed, theparameters of compression molding were also investigated, water solublephenolic resin and cyclodextrin were selected as binder with the weight ratioof2:1, the green body with density of1.73g·cm-3could be got when theaddition of binder is9wt%, kept10s with the pressure of150MPa·cm-2, andthe moisture content was1.2wt%. The results showed that the best formula is2wt%C-12wt%SiC-7wt%TiC-79wt%B_4C, the relative density, fracturetoughness, bending strength and vickers hardness of the sample could reach96.26%,3.72MPa m1/2,515.7MPa and32.3GPa respectively when it wassintered at the best sintering process of2100℃for1.5h.
     The solid solubility mechanism and toughening mechanism of the samplewere analysed through the results of BSE and EDS, the results show that someextent solid solution occurred between SiC and B_4C,, in-situ reaction wasoccurred between TiC and B_4C, the product is TiB2, which could enhance thetoughness of the B_4C, the main role of C is to remove the oxygen on the B_4Csurface, and the surface energy of B_4C could be increased, so the solidsolubility of the system is good; In this process, main toughening mechanicalsrefer to crack deflection resulting from unsuitable expanding coefficient andinhibiting crack diffusion for addition of second phase.
引文
[1] Thevenot F.A review on boron carbide[J].Key Engineering Materials,1991,56/57:58-88.
    [2][澳]斯温MV.材料科学与技术丛书(11卷)—陶瓷的结构与性能[M].北京:科学出版社,1998.
    [3]李世波,等.碳硼化合物的晶体结构[J].哈尔滨建筑大学学报,1998,31(4):61-66.
    [4]徐甲强等编著.材料合成化学[M].哈尔滨:哈尔滨工业大学出版社,2001.8
    [5] Elliott,R,P.(1965),Constitution of Binary Alloys, First Supplement. NewYork: McGraw-Hill.
    [6] Prochazka S, Grellner W. The influence of carbon on the microstructureand mechanical properties of B4C. J Less-Common Met,1981,82:37-471.
    [7] G.D. With.Note on the Temperature Dependence of the Hardness of BoronCarbide [J]. J. Lesscommet.1983,95:133.
    [8] Y G. Tkachenko. Oxidation Behavior of Boron Carbide [J]. J. Nucl.Mat..1990,176-177:370-378.
    [9] Deng Jianxin, Erosion wear of boron carbide ceramic nozzles by abrasiveair-jet[J]. Materials Science and Engineering A.2005(1-2):227-233.
    [10]吴祯干,顾明元,张国定.碳化硼的氧化特性研究[J].材料工程,1997,5(2):30-34.
    [11]黄培云.粉末冶金原理(第二版)[M].北京:冶金工业出版社.1997:377-380.
    [12]关振铎,张中太,焦金生编著.无机材料物理性能[M].北京:清华大学出版社.1992:83-84.
    [13]曹仲文.碳化硼材料在核反应堆中的应用与发展[J].辽宁化工,2006,35(7):399-400.
    [14]王零森,吴芳,尹邦跃.快中子堆用碳化硼材料的成分和性能设计[J].粉末冶金材料科学与工程,19994(2):105-109.
    [15] D. Gosset, B. Provot. Boron carbide as a potential inert matrix: anevaluation[J], Progress in Nuclear Energy,2001,38(3-4):263-266.
    [16]郑学家.新型含硼材料[M].北京:化学工业出版社.2010:41-43.
    [17]吴芳,吕军.碳化硼陶瓷的制备及应用[J].五邑大学学报.2002,16(1):45-47.
    [18]裴立宅,肖汉宁,祝宝军,谭伟.碳化硼粉末及其复相陶瓷的研究现状与进展[J].稀有金属与硬质合金,2004,32(4):46-50.
    [19]蔺雷亭,张继红.碳化硼陶瓷专用粉末的制备.中国粉体技术,2000,6:122-123.
    [20]张兆森等.高B4C相含量碳化硼粉制备及其气流粉碎研究.非金属矿,2001,24(4):47-49.
    [21]张化宇,韩杰才,陈贵清等. MgO-B4C自蔓延高温合成的反应机理[J].材料科学与工艺,1999,6:69-72.
    [22] Oyama T,et al.Gas-phase synthesis of crystalline B4C encapsulated ingraphitic particles by pulsed-laser irradiation.Carbon,1999,37:433.
    [23] Sinha A, Mahata T, Sharma B P. Carbontherrmal route for preparation ofboron carbide powder from boric acid-citric acid gel precursor [J].Journal of Nuclear Materials,2002,301:165-169.
    [24] Ikuo Yanase, Riichi Ogawara, Hidehiko Kobayashi, Synthesis of boroncarbide powder from polyvinyl borate precursor [J]. Materials Letters,2008:1-3.
    [25]谢洪勇.机械化学法制备碳化硼及其晶体结构研究[J].上海第二工业大学学报,2006,23(2),122-124.
    [26]周仲敏, B-C-N和B-C化合物的溶剂热合成[D].燕山大学,2005.
    [27]张红萍等.超声波法合成三烷基硼及其裂解制备碳化硼[J].中南大学学报(自然科学版),2005,36(3):448~451.
    [28]唐立丹,等.碳化硼陶瓷低温烧结技术的研究现状[J].辽宁工学院学报,2004,24(4):49-52.
    [29]白克武,等.热压工艺对碳化硼显微结构和力学性能的影响[J].西安交通大学学报,1994,28(7):73-78.
    [30]尹邦跃,王零森.热压烧结B4C陶瓷的物理性能研究[J].原子能科学技术,2004,38(5):429-431.
    [31]尹邦跃,王零森.热压烧结B4C陶瓷的力学性能研究[J].原子能科学技术,2004,38(6):522-524.
    [32] R.W.卡恩, P.哈森, E.J.克雷默.郭景坤等译.材料科学与技术丛书(第11卷).北京:科学出版社.1998:156-233.
    [33]陈刚,章嵩,王传斌等.放电等离子烧结碳化硼陶瓷的工艺研究[J].人工晶体学报,2009,38:146-149.
    [34] Grabchuk, B.L., Kislyi, P.S.(1976), Sov. Power Metall. Met. Ceram.15,675.
    [35]王零森,等.用掺碳活化烧结技术制取碳化硼材料[J].中国有色金属学报,2002,12(6):1210-1213.
    [36]王零森,等.碳化硼烧结动力学和烧结机制[J].中南工业大学学报,1999,30(5):505-508.
    [37]李文辉,李文新.原料粉末对碳化硼烧结性能的影响[J].哈尔滨理工大学学报,2002.7(5):87-89
    [38]唐军等,原位生成TiB2颗粒增韧B4C陶瓷的研究[J],粉末冶金技术,1996,14(3):168.
    [39] Karl A. Mechanical properties of injection molded B4C-C ceramics [J].Journal of Solid State Chemistry,1997,133(1):68.
    [40]尹邦跃,王零森,方寅初,纯B4C和掺碳B4C的烧结机制[J],硅酸盐学报,2001,29(1):68-71.
    [41]李平,杨建峰,王永兰等.热压B4C-C陶瓷复合材料的组织与性能[J].稀有金属材料与工程,1999,28(3):151-154.
    [42] Kalandadze G I, et al. Sintering of boron and boron carbide [J]. Journal ofSolid State Chemistry,2000,154(8):194.
    [43] Moghevsky P, et al. Reactive formation of coatings at boron carbideinterface with Ti and Cr powders [J]. Journal of the European CeramicSociety,1995,15(6):527.
    [44] Halverson D C.et al.Processing of boron carbide-aluminum composites [J]Am Ceram Soc,1989,72(5):775.
    [45]李青,华文君,崔岩,等.无压浸渗法制备B4C/Al复合材料研究[J].材料工程,2003,4:17.
    [46] Lange R G. Sintering kinetics of pure and doped boron carbide [J].Materials Science Research,1980,13:311.
    [47] Turov, Yu V. Structure formation in sintering of powder iron-boroncarbide composite [J]. Soviet Powder Metallurgy and Metal Ceramics,1990,28(8):68.
    [48]王零森等,成型剂对碳化硼压坯密度和烧结密度的影响[J],中南工业大学学报,2002,33(4):377.
    [49] Radev D D. Raman-spectroscopy study of metal-containing boroncarbide-based ceramics[J]. Solid State Sciences,2002,4:37.
    [50] L.S.Sigt, Processing and Mechanical properties of Boron Carbide Sinteredwith TiC [J]. Journal of the European Ceramic Society1998,18:1521-1529.
    [51] Deng J. Microstructure and mechanical properties of hot pressedB4C/(W,Ti)C ceramic composites [J]. Ceramics International.2002,28:425.
    [52]唐国宏,陈昌麒,张兴华. B4C-TiB2-W2B5复合材料的研究[J].航空学报,1994,6,15(6):761-764.
    [53] Hamid Reza Baharvandi, A.m.Hadian. A.Alizadeh. Processing andMechanical Properties of Boron Carbide-Titanium Diboride CeromicMatrix Composites. Appl Compos Master2006,B:191-198.
    [54] Suzuya Y. Mechanical and electrical properties of B4C-CrB2ceramicsfabricated by liquid phase sintering [J]. Ceramics International.2003,29(3):299.
    [55]谢丽初,尹邦跃.碳化硼-硼化钛复合陶瓷的制备[J],热加工工艺,2006,35(14):30-32.
    [56] L.Levin, N.Frage, M.P.Dariel, A novel approach for the preparation ofB4C-based cermets.[J] International Journal of Refractory Metals&Hardmaterials2000,18:131-135.
    [57] Hae-Won Kin, Young-Hag Koh, Hyoun-Ee Kim, Densification andMechanical Properties of B4C with Al2O3as a Sintering Aid, J.Am. Ceram.Soc.83[11]2000,28:63-65.
    [58]穆柏春,唐立丹,张辉.烧结助剂对碳化硼陶瓷性能的影响[J],中国陶瓷,2007,43(9)12-15.
    [59]李世波,张宝生,温广武, B4C-Al2O3复合材料的组织结构及力学性能[J],哈尔滨建筑大学学报,1999,32(5):74-78.
    [60] Hideaki Itoh, Kouji Sugiura, Hiroyasu Iwahara, Preparation of TiB2-B4Ccomposites by high pressure sintering[J]. Journal of Alloys andCompound,1996,232:186-191.
    [61]李爱菊,尹东升,甄玉花等.(SiC,TiB2)/B4C复合材料的烧结机理[J],复合材料学报,2004,21(4):129-133.
    [62] M.波恩.光学原理[M].北京:科学出版社,1981:843-881.
    [63]蔡祖光.陶瓷原料的球磨细碎机理[J].佛山陶瓷,2011,(10):10-13.
    [64] Levin L.A novel approach for the preparation of B4C-based cermets [J].International Journal of Refractory Metals and Hard Materials,2000,18:131-135.
    [65]曾毅,冯景伟,张叶方等.碳化硼涂层显微结构和性能研究[J].无机材料学报,2000,15(1):137-142.
    [66]俞康泰.陶瓷添加剂应用技术[M],北京:化学工业出版社,2006:154-163.
    [67] Lange FF. Powder Science and Technology for Increased Reliability [J].JAM Ceram Soc,1989,72(1):3-15.
    [68]刘小磐,赵修建,等.成型工艺对PBRBSC素坯及烧结体性能的影响[J].武汉理工大学学报,2003,25(3):20-22.
    [69]黄清伟,乔冠军等.生坯制备参数对反应烧结碳化硅显微组织与性能的影响[J].稀有金属材料与工程,2001,30(2):149-152.
    [70]杨净,硬质合金与硬质合金制品生产新工艺、生产配方优化设计及质量检测使用手册[M].北京:中国知识出版社,2005:144-190.
    [71]初小葵,含水率对氧化铝造粒料压制过程的影响[J],陶瓷,2003,3:28-29.
    [72]马岩,浅谈陶瓷灭弧罩冷压成型粉料含水率的成型工艺性能[J].1988,1:62-63.
    [73]张清纯,陶瓷材料的力学性能[M].北京:科学出版社,1987:90-99.
    [74]甄玉花.反应烧结法制备B4C基轻质复合材料的研究[D].山东大学,2004.
    [75] Telle R. The physics and chemistry of carbides, nitrides and borides[M].Dordrecht: Kluwer Academic Publishers,1990.
    [76]穆柏春等.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002:36-145.
    [77]丁硕,温广武,雷廷权.碳化硼材料研究进展[J].材料科学与工程,2003,11:103-104.
    [78]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994,22(3):258-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700