核阀密封面无钴铁基合金及激光涂层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阀门是核电站正常安全运行必不可少的重要控制部件,核电阀门密封面堆焊层的质量是影响阀门性能的重要因素之一。目前核阀密封面堆焊材料一般均为含钴合金。然而,钴基合金不仅价格昂贵,特别是在核环境下工作时,钴基合金磨损和腐蚀碎片中的Co-59受激发将形成Co-60同位素,这会延长核辐射的半衰期,因此今后第三代核级阀门的密封面都要求采用无钴材料。
     本文设计了一种可应用于核电阀门密封面堆焊层的新型无钴铁基合金。以铁为主体,添加C、Ni、Cr、B、Si、W、V、Mo、Mn等合金元素,制备成新的合金粉末,并将其命名为CL-1。
     堆焊层性能与质量不仅取决于堆焊材料,而且在很大程度上还取决于堆焊方法与工艺。本文采用光内送粉激光熔覆新工艺在不锈钢基体上熔覆CL-1涂层。对环形中空光和常用的实心高斯光比较发现,中空光在透光率、光束能量分布以及熔池对流形态方面具有诸多优势,获得的熔层质量更高、组织性能更好。
     显微硬度测试发现激光熔覆层显微硬度是基体的1.6-1.8倍;通过SEM结构组织分析表明:熔覆层上呈现组织依次为窄胞状晶区、粗大树枝晶区、细小树枝晶和等轴晶区这样一个变化趋势;通过涂层XRD物相分析发现主要为Fe63Mo37,Fe2Si,Fe0.4Mn3.6C,Fe2SiV,Ni2Si以及Fe7.79Mn2.20Si6等相。同时,熔覆层中含有许多细小的各种碳化物,如Fe3C、Fe5C2、Mn5C2等,这些碳化物本身具有较高的硬度。由于它们的存在,会在熔覆层中生成大量的位错和层错等结构,使得硬度增加,同时它们本身也会起到弥散强化作用。XRD分析还发现通过基体元素的扩散,合金元素渗入会引起固溶强化和第二相强化;EDS能谱分析发现在激光熔覆的过程中发生了元素扩散,熔覆层与基体实现了良好的冶金结合。通过热腐蚀试验发现,CL-1无钴铁基合金激光涂层的耐热腐蚀性能优于Noremo02铁基合金熔覆层,接近Stellite6钴基合金熔覆层的耐热腐蚀性能。对激光熔覆层耐高温摩擦磨损试验结果进行比较,发现CL-1无钴铁基合金粉末在高温性能方面介于两者之间,稍优于Noremo02,接近Stellite6钴基合金。
     综合各项测试结果可知,CL-1无钴铁基合金粉末各项性能都接近Stellite6钴基合金粉末,在一定程度上,可以取代Stellite6钴基合金粉末成为核电阀门密封面堆焊层材料。
Nuclear valves are necessary and important control components for normal safe operation of nuclear power station. The quality of nuclear power valve sealing surface surfacing is an important factor of safety security of nuclear power. The current nuclear valve sealing surface surfacing material is generally cobalt alloy. However, Co-based alloy is not only expensive, but also particularly when working in a nuclear environment, wear and corrosion debris of cobalt-based alloy is stimulated from Co-59 to isotope Co-60 which have long half-life of nuclear radiation. So the nuclear valve sealing surfaces of the third-generation need Co-free materials.
     A new Co-free Fe-based alloy powder is designed to be applied in the valve sealing surface overlaying, in which the Iron as the main body, C, Ni, Cr, B, Si, W, V, Mo, Mn and other alloy elements are added. And the new alloy powder is named CL-1.
     Surfacing layer not only depends on performance and quality surfacing materials, but also to a large extent also depends on the welding methods and process. In this paper, the internal laser feeding technology is applied and the powder is cladded on stainless steel substrate. Circular hollow light compared with the commonly used solid Gaussian shows that the beam energy distribution of hollow light and weld pool convection patterns has many advantages, such as the higher quality melting layer, better organizational performance.
     Micro-hardness test shows that hardness of laser cladding layer is 1.6-1.8 times the matrix; through the structural organization of SEM analysis shows that: cladding layer followed by an organization presents a narrow cellular crystal, coarse dendrite area, small branches crystal and equiaxed grain zone. Such a trend; by XRD phase analysis of coating was found mainly Fe63Mo37, Fe2Si, Fe0.4Mn3.6C, Fe2SiV, Ni2Si and Fe7.79Mn2.20Si6 other phase. Meanwhile, the cladding layer contains many of the small variety of carbides, such as Fe3C, Fe5C2, Mn5C2 Such carbide itself has a higher hardness.Same time, because their existence, generation a large number of dislocations and stacking faults and other structures in the cladding layer, while they themselves will play a dispersion strengthening effect.XRD analysis also found that the diffusion through the matrix elements, alloying elements may cause infiltration of solid solution strengthening and the second phase strengthening; EDS spectrum analysis found that the process of laser cladding elements occurred in the proliferation of cladding layer and the substrate to achieve a good metallurgical bonding. Found through the hot corrosion test, CL-1 Fe-based Co-free alloy powder laser cladding of corrosion resistant than Noremo02 Fe-based alloy cladding layer, close to Stellite6 Co-based heat-resistant alloy cladding corrosion.
     High temperature friction and wear test results show that CL-1 Co-free Fe-based alloy powder at high temperature performance in between, better than Noremo02, close to Stellite6 Co-based alloy.
     Synthesis of the test results suggest that the performance of CL-1 Co-free Fe-based alloy powder is close to Stellite6 Co-based alloy powder. To a certain extent, it can replace Stellite6 Co-based alloy powder into nuclear power valve sealing surface weld overlay material.
引文
[1]秦武,李志鹏,靳卫华等,核阀的使用现状和发展[J],GM通用机械,2008(1):41-48
    [2]张云龙,核电站用阀门[J],阀门,2004(1): 22-28
    [3] Dan Donahue, David Hammerer , and Ed O,Donnell . The US nuclear industry enters a new phase[J]. Power, Jan. / Feb. 2001.
    [4]彭士禄为促进我国核电事业的发展而努力.核动力工程,1989,10:(1)1-6.
    [5] GB 16702-1996:压水堆核电厂核岛机械设备设计规范[M].
    [6]黄国栋,张悦仁应用激光熔覆技术提高核阀零件质量[J].中国机械工程1993, 4(2):22-24.
    [7]柳襄怀.我国材料表面处理技术的发展及前景[J].材料导报,2000,14(1):10
    [8]祝柏林,胡木林,陈俐等,激光熔覆层开裂问题的研究现状[J] .金属热处理,2000 (7) :1-4.
    [9] SONGWL ,ZHU B D ,XIE Ch Sh et al . Cracking susceptibility of a laser clad layer as related to the melting properties of the cladding alloy [J] . Surface and Coatings Technology ,1999 ,115 (2) :270-272.
    [10]李春彦,张松,康煜平等.综述激光熔覆材料的若干问题[J].激光杂志,2002 , 22(3) : 5-9.
    [11]张三川,姚建铨,梁二军.激光熔覆进展与熔覆合金设计[J].激光技术,2002,26(3):204-207.
    [12] NAGARATHNAM K, KOMVOPOULOS K. Microstrctural and micro hardness characteristics of laser sysnthesized Fe-Cr-W-C coatings [J] .Metallurgical and Materials Trans,1995,A26(8):2131-2139.
    [13]谭文,刘文今,贾俊红.激光熔覆Fe-C-Si-B的研究[J].金属热处理,2000 (1) : 13-17.
    [14]陈俐,谢长生,胡木林等.激光熔覆用铁基合金工艺性研究[J].焊接技术, 2001,30(3):2- 4.
    [15]贾俊红,钟敏霖,刘文今等,Ti对Fe-C合金表面激光熔覆复合材料层组织和性能的影响[J] .应用激光,2000 ,20 (4) :145-148.
    [16]赵海云.铁基激光熔覆合金设计及微观组织与性能研究[D].北京:中国科学院力学研究所,2001. 35-73.
    [17] ZHANGQ M,HE J J ,LIU WJ et al .Microstructures and properties of (2.4 %Zr + 1.2 %Ti + 15 %WC) / FeCSiB layers produced by laser cladding [A] .Lasers in Materials Processing and Manufacturing [C]. Shanghai :The International Society for Optical Engineering ,2002. 253-258. [18 ]赵海云,武晓雷,陈光南,铁基抗高温磨损激光熔覆涂层强韧设计和研究之激光熔覆合金成分、微观结构强韧化设计及涂层制备[J],应用激光,1999,19(5):209-213
    [19]刘月龙,斯松华,激光熔覆铁基合金涂层研究进展[J],安徽工业大学报,2005, 22(4):348-351
    [20] Bania P J.A new high temperature titanium alloy [A]. 6 th World Conference onTitanium [C]. France, 1988: 825-830.
    [21]温家伶,于有生,倪火炬等,铁基(Fe-Cr-Ni-B-Si-Re)激光熔覆合金粉末的研究[J].中国机械工程, 2002,13(20): 1789- 1791.
    [22]宋武林,周刚,曾大文等,铁基合金中Creq/Nieq对其激光熔覆层组织结构和开裂敏感性的影响[J].激光技术, 1999,23(3):142-145.
    [23] Li R, Ferreira M G S, Anjos M, et al. Localized Corrosion Performance of Laser Surface Cladded UNS S44700 Superferritic Stainless Steel on Mild Steel[J]. Surface and Coatings Technology, 1996,88: 96- 102.
    [24] Blenkinsop P A. Development in high temperature alloys [A]. 5 th World Conference on Titanium [C]. Munich, 1984: 2323-2332.
    [25] Xiaolei Wu. Rapidly Solidified Nonequilibrium Microstructure and Phase Transformation of Laser- synthesized Iron- based Alloy Coating[J]. Surface and Coatings Technology, 1999,115:153- 162.
    [26] Xiaolei Wu, Guangnan Chen. Nonequilibrium Microstructures and Their Evolution in A Fe- Cr-W- Ni- C Laser Clad Coating[J]. Materials Science and Engineering, 1999, A 270:183- 189.
    [27]袁斌,龚知本,沈书泊等,铝硅钛合金表面激光熔覆G312铁基合金的研究[J].激光杂志, 1999,20(2):33- 35.
    [28]张杰,周二华,朱蓓蒂,激光熔覆材料Fe-WC复合粉末热性能测试的特点及分析[J].新技术新工艺, 1997,(2):26- 27.
    [29]许伯藩,方军,史华忠等,TiC量对激光熔覆金属陶瓷涂层的影响[J].机械工程材料, 1998,22(1):20- 22.
    [30]余菊美,晁明举,梁二军等,TiO2对铁基合金激光熔覆层组织和性能的影响[J].应用激光, 2003,23(4):201- 204.
    [31]刘其斌,朱维东,陈江,高温合金激光熔覆涂层中裂纹防止方法的研究[J].贵州工业大学学报, 2000,29(5):56- 59.
    [32]苏州市科技计划项目任务书,项目名称:核电阀门密封面无钴合金及激光熔覆强化研究
    [33] Tetyukhin V, Levin I, et al. Heat resistant titanium alloys with enhanced, heat resistance,thermal stability [A]. 8thWorld Conference on Titanium[C]. Brimingham,UK:Cambridge University Press, 1996: 2430-2437.
    [34]王德权,胡毅钧,李杰.阀门用钴基合金及堆焊工艺[J]阀门.2004(2)
    [35]李胜,胡乾午,曾晓雁等,激光熔覆专用铁基合金粉末的研究进展[J],激光技术,2004,28(6):591-594
    [36]肖于德,谢允安,李松瑞耐热铝合金及其热稳强化相[J]铝加工,1994 ,17 (4) :24 - 32
    [37]陈民芳,由臣,铜铬硅及铜铬硅镍电极合金的实验研究[J].天津理工学院学报, 1998, 14(2):40-44.
    [38] Rdzawski Z, Stobrawa J. Thermomechanical Processing of Cu-Ni-Si-Cr-Mg Alloy [J]. Materials Science and Technology, 1993, 9 (2) : 142 -148.
    [39] Robson J D, Pregnell P B. Predicting recrystallised voulme fraction in aluminium alloy 7050 hot rolled plate[J]. Mater. Sci. Tech , 2002 , 18 (6) :607 - 614
    [40] Keith E. K, David C D, David N S, Criteria for developing castable, creep resistant aluminum based alloys A review [J]. Z. Metallkd , 2006 , 97 (3) :246-255
    [41] Xiao Yude, Li Songrui, Li Wenxian, et al,Second phases of rapidly solidified AlFeCrZrVSi alloy and their thermal stabilites [J]. Journal of Central South University of Technology. 1998,5 (1) :23 - 26
    [42]杨胶溪,闫婷,刘华东等,激光熔覆WC-Ni基超硬梯度复合涂层的组织与性能[J].金属热处理,2009,(11).
    [43]张晓东,董世运,徐滨士等,45钢表面激光熔覆Ni35合金涂层的组织及性能[J].装甲兵工程学院学报,2009,(3).
    [44]蔡振兵,朱旻昊,刘军等,激光熔覆Ni60和Co-Cr-W合金层的高温磨损特性研究[J].润滑与密封,2006,(4).
    [45]钟翔山,钟礼耀,5Cr MnMo钢热锻模热处理裂纹分析及对策[J].工具技术,2005,(10).
    [46]洪权,张振祺,杨冠军等,Ti600合金的热机械加工工艺与组织性能[J].金属学报, 2002, 38 (增刊) : 135-137.
    [47]夏丹,徐滨士,吕耀辉等,微束等离子多层熔覆NiCrBSi的试验研究[J].材料科学与工艺,2009,(5). 1789- 1791.
    [48] Zhu K Y, Zhao YQ, Qu H L. Thermal stability of Ti-V-Cr burn-resistant alloys [J]. Journal of Materials Sci2ence, 2004, 39: 2387-2394.
    [49] Seagle S R, Bomberger H B. Creep resistant titanium alloys [A]. The Science Technology and Application of Titanium [C]. Lodon Pregamon Press, 1970: 1001-1008.
    [50]祝桂洪,陶瓷工艺实验[D],中国建筑工业出版社,1987:121-125
    [51]王金友,葛志明,周颜邦.航空用钛合金[M].上海:上海科学技术出版社, 1985: 238-250.
    [52] FentimanW P, Goosey R E, Hubbard R T J. The science technology and application of titanium [M]. Oxford: Pergaman Press,May, 1968: 987-999.
    [53] Kestler H, Muahrabi H, Remner H. Optimization of micro-structure and mechanical properties of the hot-forged titanium alloy IM I834 by heat treatment [A]. Titanium′95: Science and Technology [C]. 1995: 1171-1178.
    [54]蔡建明,郝孟一,李学明等.固溶处理对Ti260高温钛合金蠕变性能的影响[J].金属学报, 1999, 35 (增刊1) : 202-206.
    [55]罗月新,许嘉龙,陈克修.不同Si含量对耐热钛合金(7715C)性能及组织的影响[A].钛科学与工程:第七届全国钛及钛合金学术交流会文集[C].长沙:中南工业大学出版社, 1991: 358-364.
    [56]许嘉龙,毛彭令,庞克昌等. Si对BT9钛合金性能和结构的影响-最佳Si含量和对热稳定性的影响[A].钛科学与工程:第七届全国钛及钛合金学术交流会文集[C].长沙:中南工业大学出版社, 1991: 155-158.
    [57] Erdeman V J, Ross EW. The science technology and application of titanium [M]. Oxford: Pergamon Press, May, 1968: 829-837
    [58]卢斌,崔玉友,杨锐等. Si对Ti3Al基合金组织和性能影响[J].金属学报, 1999, 35 (增刊1) : 296-298.
    [59]于荣,贺连龙,郭建亭等. Ti-Al-W-Si合金中基体γ-TiAl与析出相Ti5Si3的取向关系与惯习面[J].金属学报, 1999, 35 (增刊1) : 317-319.
    [60] Gouma P I, Karadge M. In stiu2observation of carbide and silicide p recipitation in C + Si alloyedγ-TiAl [J]. Materi2als Letters, 2003, 57: 3581-3587.
    [61]殷为民,郭建亭,Lupinc V一种新型抗蠕变TiAl合金的显微组织分析[J].金属学报, 1999, 35 (1) : 37-40.
    [62]董飞,何国强,张贵田合金元素Si在钛合金中作用的研究进展[J],金属热处理,2007,32(11):5-10
    [63] Zhu K Y, Zhao YQ, Qu H L, Thermal stability of Ti-V-Cr burn-resistant alloys[J]. Journal of Materials Sci2ence, 2004, 39: 2387-2394.
    [64]雷家峰,李东,王中光,Ti255合金中高温蠕变行为[J].金属学报, 1999, 35 (9) : 184-186.
    [65] Winstone M R, Rawlings R D,West R F. The creep behavior of some silicon containing titanium alloys[J]. Journal of the Less-CommonMetals, 1975, 39: 205-217.
    [66] Wang K L, Zhang Q B, Sun M L, et al. Effect of laser surface cladding of ceria on the wear and corrosion of nickel-based alloys[J]. Surface and Coatings Technology, 1997, (96): 267-271.
    [67] Radu Iulian, Li DY, Llewellyn R. Tribological behavior of Stellite21 modified with trium[J]. Wear, 2004, (257): 1154-1166.
    [68]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社, 2006. 49-56.
    [69]赵高敏,王昆林,李传刚.稀土对Fe基合金激光熔覆层抗磨性能的影响[J].摩擦学学报, 2004, 24(4): 318-320.
    [70]尚丽娟,才庆魁,刘常升等.用稀土改性钴基合金激光熔覆层[J].稀有金属,2002, 26(30): 173-178.
    [71]王玉林,沈德久,廖波.稀土在激光熔覆镍基自熔合金中的作用[J].应用激光, 2003, 23(3): 139-140.
    [72]石世宏,傅戈雁,王安军等激光加工成形制造光内送粉工艺与光内送粉喷头[P].中国,实用新型专利,200610116413.1 2008.03.26
    [73]左铁钏. 21世纪的先进制造:激光技术与工程[M] .北京:科学出版社,2007.
    [74]靳晓曙,杨洗陈,王云山等,激光三维直接制造和再制造新型同轴送粉喷嘴的研究[J]应用激光2008,28(4):266-270
    [75]肖军艳.环形激光光内送粉熔池特征与熔层性能.苏州:苏州大学硕士论文.2009,5
    [76]张正伟,杨武雄,陈铠等激光熔覆快速成形技术送粉喷嘴的研制[J],激光杂志,2007,28(1):79-80
    [77]杨洗陈激光制造中同轴粉末流动量和质量传输[J],中国激光,2008,35(11):1664-1679
    [78]张红军,钟敏霖,刘文今等,高汇聚温度显示激光快速制造同轴送粉喷嘴的研制[J]应用激光2004,24(6):380-404
    [79]刘喜明,关振中送粉式激光熔覆过程中透光率的理论推算、测试方法及其影响因素[J]中国激光, 1999,26(6):565-570
    [80]刘振侠,黄卫东,万柏涛送粉式激光熔覆数值模型基本问题研究[J]中国激光, 2003,30(6):567-570
    [81]黄永俊,曾晓雁金属粉末流中激光透光率的分析模型[J].热加工工艺,2008,37(11):83-87
    [82] Xinwei Wu , Beidi Zhu , Xiaoyan Zeng. Critical state of laser cladding with powder auto feeding. [J]. Surface and Coatings Technology , 1996 ,79 (2) :200-204
    [83]王永峰,薛春芳,田欣利等,送粉式激光熔覆能量有效利用率分析[J] .激光技术,2004,28(2):113-115
    [84]刘喜明,连建设,张庆茂,送粉激光熔覆界面特性及熔覆层稀释率[J].机械工程学报,2001,37(4):38-43.
    [85] Christine Maier, Peter Schaaf, Ulrich Gonser. Caleuation of the temperature protile for laser treatment of metallic samples [J].Mater& Sci. &Eng. 1992,A150(2) : 271-280
    [86]刘录录,孙荣禄激光熔覆技术及工业应用研究进展[J] .热加工工艺,2007,36(11) :58-61.
    [87]郭华锋,李志,周建忠等,激光熔覆成形Ni基合金层的研究[J] .热加工工艺,2008,37(11):77-80
    [88]关振中等,激光机工工艺手册[M],中国计量出版社,1998(1):242
    [89]周尧和,胡壮麒,乔万奇,凝固技术[M].北京:机械工业出版社,1998:155.
    [90]邱平善,王桂芳,郭立伟等,材料近代分析测试方法实验指导[D],哈尔滨工业大学出版社,2001(1)
    [91]常国威,王建中等,金属凝固过程中的晶体生长与控制[D],冶金工业出版社,2002(3)
    [92]武汉理工大学,无机非金属材料实验—力学性能实验,材料显微硬度的测定
    [93]廖目嶽、金文博译[美]V.E莱萨特、A.德贝利斯,硬度试验手册[D],计量出版社1987:84-108
    [94]傅戈雁,石世宏,激光熔覆甲胺泵进排液阀零件密封面[J].金属热处理,2000,11(1): 20-21.
    [95] Hoadley A F A ,Rappaz M. A thermal model of laser cladding by powder injection[J] . Metall. Trans.B ,1992 ,23B(10) :631-642.
    [96]陈浩,刘传云,潘春旭等,激光熔覆钴基合金的凝固组织特征及性能研究[J].金属热处理,2001,26(12):10-13
    [97]朱明,李美栓,周延春,Ti3Al基合金表面两种Cr1-xAlxN(x=0.18,0.47)涂层的热腐蚀性能[J].中国腐蚀与防护学报,2009,8(29):308-311
    [98]王新林,李必文,郑启光,核阀密封面激光熔覆层耐蚀性研究[J],中国表面工程,2003,6(63):10-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700