不锈钢液中非金属夹杂物成分的动力学计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内外市场对不锈钢质量的要求在迅速提高,为满足用户的需求及提高自身产品的竞争力,提高不锈钢连铸坯的洁净度已成为各生产企业的一个重要课题,不锈钢冶炼过程中以夹杂物控制为中心的高洁净化也越来越引起人们的重视。
     以非金属夹杂物的热力学性质为理论依据控制其类型及形态是主要研究方向,并已取得了一定进展。根据热力学计算,认为炉渣-钢液-夹杂物三者之间达到完全平衡,而在实际冶炼过程中,由于传输和动力学条件的制约,不可能完全满足炉渣与钢液、钢液与夹杂物之间元素迁移所需的足够时间,则不可能达到上述三者的完全平衡,非金属夹杂物在钢液中的成分也就不能完全等同于炉渣的成分。结合前人对夹杂物的热力学研究成果,充分考虑到冶炼过程中的动力学条件,进行不锈钢液中非金属夹杂物成分的动力学计算具有重要的指导意义。
     本课题的目标是结合冶金热力学的平衡计算、运用冶金动力学的理论和研究方法,研究不锈钢液脱氧时夹杂物的动力学形成机制。本课题用相互作用系数法计算钢液组元的活度,用高阶亚正规溶液模型计算SiO_2-Al_2O_3-CaO-MgO渣系和MnO-SiO_2-Al_2O_3-CaO渣系组元的活度,并基于该溶液模型建立了钢液脱氧和氧化物夹杂控制的热力学模型,应用于不锈钢脱氧过程的渣-金平衡、钢液-氧化物夹杂平衡的计算,分析非金属夹杂物的动力学形成机制。
     本课题以计算机仿真为主要手段,运用冶金热力学和动力学的理论和研究方法,对不锈钢脱氧过程进行分析,建立不同脱氧条件下夹杂物形成的动力学计算模型,应用VB编制了该模型的计算软件,模型计算结果如下:
     (1)对430铁素体不锈钢铝脱氧时镁铝尖晶石的动力学形成机制研究表明:金属相传质是渣中MgO还原的速率控制环节。Mg在钢液边界层的扩散为钢液-夹杂物反应的速率控制环节。而对整个系统来说,Mg在渣-金界面钢液边界层的扩散是夹杂物生成过程的速率控制环节。
     (2)为了减少MgO·Al_2O_3尖晶石的形成,应提高炉渣中SiO_2的含量,降低炉渣碱度;
     (3)铁素体不锈钢用铝脱氧时,最终可形成MgO浓度达到饱和的镁铝尖晶石夹杂;
     (4)对316奥氏体不锈钢硅脱氧时硅酸盐类夹杂物的动力学形成机制的研究表明,钢液中Si氧化和渣中MnO还原的反应速率控制环节为渣相的传质,而渣中Al_2O_3和CaO还原的反应速率控制环节为金属相的传质。而对整个系统来说,渣-金反应是夹杂物(包括Al_2O_3、CaO)生成过程的速率控制环节;
     (5)奥氏体不锈钢用硅脱氧时,可认为最终夹杂物由CaO-SiO_2-Al_2O_3复合物组成,夹杂物内CaO含量可达45%,Al_2O_3为4%左右。
In recent years, the demands for the quality of stainless steel increase rapidly both in domestic and international market. In order to meet the needs of users and enhance the competitiveness of their products, the cleanliness improvement of stainless steel billet has become an important topic in each production enterprises, and the high purification which focus at the inclusions control in the stainless steel smelting process has attracted peoples' attention increasingly.
     The control of non-metallic inclusions' type and shape based on the thermodynamic properties as the theoretical basis are the main research directions, and some progresses have been made. According to thermodynamic calculation, it holds that the three of slag-molten steel-inclusion achieve complete balance. But in the actual refining process, because of the restraint of transmission and dynamics conditions, it can't fully meet the requirement of sufficient time for elements to migrate between slag and molten steel, molten steel and inclusion, and the above-mentioned three can't achieve complete balance, as well as, the composition of non-metallic inclusions in molten steel can't be exactly the same as the composition of slag. Combing with previous thermodynamics research results on the non-metallic inclusion, taking the dynamics conditions into account fully in the process of refining, the dynamics calculation of non-metallic inclusions in the stainless melts is of great guiding significance.
     The paper's goal is to research the dynamics formation mechanism of non-metallic inclusions in stainless steel metis under different deoxidation conditions by combing the balance calculation of metallurgical thermodynamics and using the dynamics theory and research methods. The paper used the interaction coefficient method to calculate the activity of elements in molten steel and the high-level sub-regular solution model to calculate the activity of the elements in the SiO_2-Al_2O_3-CaO-MgO slag and MnO-SiO_2-Al_2O_3-CaO slag, based on which the paper established the thermodynamic model of the deoxidization of molten steel. The paper analyzed the dynamics formation mechanism of non-inclusions by using the thermodynamic model to calculate the balance between slag and metal, metal and oxides inclusion in the deoxidation process of stainless steel.
     The paper used computer simulation as the main measure and applied the theory and research methods of metallurgical thermodynamics and dynamics, analysed the deoxidation process of stainless steel, established the dynamics calculation model of the formation of non-metallic inclusions under different deoxidization conditions, and programmed the calculation software of the model by using VB Language Programming Design. The model calculation results are as follows:
     (1) From the study of dynamics formation mechanism of MgO·Al_2O_3 spinel in 430 ferritic stainless steel deoxidized by aluminum, it shows that mass transfer on the metal phase is the rate-determining step for the reduction of MgO in the slag. Mg diffusion in the boundary layer of molten steel is rate-determining step for the metal-inclusions reaction. And for the whole system, Mg diffusion in the boundary at the slag-metal interface is rate-determining step.
     (2) In order to reduce the formation of MgO·Al_2O_3 spinel, it should increase the content of SiO_2 in the slag and low the basicity of slag.
     (3) When ferritic stainless steel is deoxidized by aluminum, it could form the MgO·Al_2O_3 spinel inclusion which is saturated by MgO in the end.
     (4) From the study of dynamics formation mechanism of silicate-type inclusions in 316 austenite stainless steel deoxidized by silicon, it shows that mass transfer on the slag phase is the rate-determining step for the oxidization of silicon in the molten steel and the reduction of MnO in the slag, and mass transfer on the metal phase is the rate-determining step for the reduction of Al_2O_3 and CaO in the slag. And for the whole system, the slag-metal reaction is rate-determining step for the inclusions formation, including that of Al_2O_3 and CaO.
     (5) When the austenite stainless steel is deoxidized by silicon, it can be conferred that the final inclusion is composed of CaO-SiO_2-Al_2O_3 complex, and CaO concentration can reach 45%, Al_2O_3 concentration is about 4%.
引文
1.范光伟,王贵平,李志斌.0Cr18Ni9不锈钢中非金属夹杂物来源[J],北京科技大学学报,2007,29(8):776-780.
    2.李阳,姜周华,刘杨,等.用含钡合金对不锈钢脱氧、脱硫及还原脱磷[J],钢铁研究学报,2006,18(8):14-18.
    3.Ikeda T.Some thermochemical discussions on the oxidizing refining of steel[J].ISIJ International,1981,21(3):433-438.
    4.Todoroki H,K Mizuno.Effect of silica in slag on inclusion compositions in 304 stainless steel deoxidized with aluminum[J],ISIJ International,2004,44(8):1350-1357.
    5.韩刚,甘永年.熔渣吸收TiO_2夹杂物的研究[J],钢铁钒钛,1990,11(4):14-20.
    6.Sudesh T L,Wijesinghe L,Daniel J B.Real time pit initiation studies on stainless steels:the effect of sulphide inclusions[J],Corrosion Science,2007,49(4):1755-1764.
    7.郭艳永,柳向春,蔡开科,等.BOF-RH-CC工艺生产无取向硅钢过程中夹杂物行为的研究[J],钢铁,2005,40(4):24-27.
    8.Mapelli P,Nolli P.Formation mechanism of non-metallic inclusions in different stainless steel grades[J],ISIJ International,2003,43(8):1191-1199.
    9.Kim J W,Kim S,Kim D,et al.Formation mechanism of Ca-Si-Al-Mg-Ti-O inclusions in type 304 stainless steel[J],ISIJ International,1996,36(S):140-143.
    10.Todoroki H,Mizuno K.Variation of inclusion composition in 304 stainless steel deoxidized with Aluminum[J],Iron Steelmaker,2003,30(3):60-67.
    11.#12
    12.Okuyama G,Yamaguchi K,Takeuchi S,et al.Effect of slag composition on the kinetics of formation of Al_2O_3-MgO inclusions in aluminum killed ferritic stainless steel[J],ISIJ International,2000,40(2):121-128.
    13.Cha W Y,Kim D S,Lee Y D,et al.A thermodynamic study on the inclusion formation in ferritic stainless steel melt[J],ISIJ International,2004,44(7):1134-1139.
    14.Hojo M,Nakao R,Umezaki T,et al.Oxide inclusion control in ladle and tundish for producing clean stainless steel[J],ISIJ International,1996,36(S):128-131.
    15.季志雷,施荣华.不锈钢连铸坯热连轧严重裂边的成因研究[J],宝钢技术,2002,(1):20-26.
    16.张文茹,刘春来,田欣.00Cr12Ti连铸坯的组织及夹杂物研究[J],山西冶金,2002,(2):48-49.
    17.Hiraki S,Kanazawa T,Kumakura S,et al.Influence of tundish operation on the quality of hot coils during high speed continuous casting[J],Iron and Steelmaker,1999,26(3):47-52.
    18.Rastogi R,Cramb A W.Inclusion formation and agglomeration in aluminum killed steels [A],84th Steelmaking Conference Proceedings[C],ISS,Warrendale,Baltimore,Maryland, USA,2001(84):789-829.
    19.Zheng H G,Chen W Q.Formation of CaO·TiO_2-MgO·Al_2O_3 dual phase inclusion in Ti stabilized stainless steel[J],Metallurgy,2006,13(1):16-20.
    20.郑宏光,陈伟庆,李志恩,等.304和321不锈钢连铸水口结瘤的不同机理[J],北京科技大学学报,2004,26(6):596-599.
    21.唐恺.多元亚正规熔体模型SELR-SReM4.1研究及其在冶金过程分析中的应用[D],上海:上海大学,1997.
    22.张晓兵.四元系冶金熔体组元活度解析的高阶亚正规溶液模型及其在钢铁冶金过程的热力学预测中的应用[D],上海:上海大学,1996.
    23.王海川,董元篪.金属熔体热力学模型的研究进展[J],安徽工业大学学报,2001,18(1):1-4.
    24.聂铁苗,马鸿文.材料科学研究中常用的热力学模型评述[J],陶瓷学报,2005,26(2):123-128.
    25.耿太.材料热力学计算及其在合金制备中的应用[D],河北:河北工业大学,2005.
    26.Wagner C.Thermodynamics of Alloys[M],Massachusetts,Addison-Wesley,1952,51-53.
    27.Lupis C H P.On the use of polynomials for thermodynamic of dilute metallic solutions[J],Acta Metallurgic,1968,16(11):1365-1375.
    28.Pelton A D,Bale C W.A modified interaction parameter cormalism for non-dilute solutions[J],Metallurgical Transactions A,1984,17(6):1211-1215.
    29.Janke D,Ma Z T.Oxygen and nitrogen reactions in Fe-X and Fe-Cr-Ni-X melts[J],Steel Research,1999,70(10):395-402.
    30.Hildebrand J H,Scott R L.The solubility of nonelectrolytes[M],New York,Reinhold Publishing Corporation,1950,46-122.
    31.Hardy H K.A "sub-regular" solution model and its application to some binary alloy systems[J],Acta Metallurgica,1953,1(2):202-209.
    32.Lupis C H P,Elliot J F.Prediction of enthalpy and entrop interaction with "central atom"model[J],Acta Metallurgica,1967,15(2):265-276.
    33.Pelton A D,Flengas S N.An analytical method of calculation thermodynamic data in ternary systems[J],Canadian Journal of Chemistry,1969,47(12):2283-2292.
    34.Pelton A D.An analytical solution of Gibbs-Duhem in multicomponent systems[J],Canadian Journal of Chemistry,1970,48(5):752-763.
    35.Karakaya I,Thompson W T.Introduction of boundary conditions in the Pelton-Flengas Gibbs-Duhem integration for ternary solutions[J],Canadian Journal of Chemistry,1985,63(10):2808-2809.
    36.王之昌.三元系热力学性质的解析计算法[J],中国科学A辑,1986,29(8):862-873.
    37.蒋国昌,张晓兵,徐匡迪.C-Fe-X(X=Mn,Si,Cr,Ni)熔体中组元活度的解析[J],金属学报,1992,28(6):240-245.
    38.唐恺,徐建伦,丁伟中,等.Fe-Si-C合金熔体的活度解析计算[J],华东冶金学院学报,1997,14(3):190-195.
    39.向洪涛,张晓兵,蒋国昌.C-Fe-P、C-Fe-Co熔体热力学性质研究[J],钢铁研究,1995,73(4):3-6.
    40.Zhang X B,Jiang G C,Tang K,et al.A sub-regular solution model used to predict the component activities of quaternary systems[J],Calphad,1997,21(3):301-309.
    41.Zhang X B,Jiang G C,Xu K D.Prediction of component activities of quaternary systems [J],Calphad,1997,21(3):311-320.
    42.Zhang X B,Roelofs H,Lemgen S,et al.Application of thermodynamic model for inclusion control in steelmaking to improve the machinability of low carbon free cutting steels[J],Steel Research International,2004,75(5):314-321.
    43.唐恺,徐建伦,丁伟中,等.C-Mn-Si-Fe系四元合金熔体的热力学研究[A],第八届国际铁合金大会[C],1998,226-232.
    44.徐匡迪,蒋国昌,张晓兵,等.SELF-SReM4模型的新发展及其在C-Mn-Si-Fe系中的应用[J],金属学报,1998,34(5):459-466.
    45.Chou K C.A new solution model for predicting ternary thermodynamic properties[J],Calphad,1987,11(3):293.
    46.Gokcen N A,Baten M R.Thermodynamic properties of S-Fe-Co-Ni and Fe-Co-Ni systems [J].Metallurgical Transations A,1985,16(5):907-911.
    47.Darken L S.Thermodynamics of binary metallic solutions[J],Transactions of the Metallugical Society of AIME,1967,239(1):80-89.
    48.Darken L S.Thermodynamics of ternary metallic solutions[J],Transactions of the Metallugical Society of AIME,1967,239(1):90-96.
    49.Chou K C,Wang J J.Calculating activities from the phase diagram involving an intermediate compound using its entropy of formation[J],Metallurgical Transations A,1987,18(2):323-326.
    50.Jiang G C,Xu K D,Wei S K.Some advances on the theoretical research of slag[J],ISIJ International,1993,33(1):20-25.
    51.黄希祜.钢铁冶金原理[M],北京:冶金工业出版社,2006,78-82,176-179.
    52.李文超.冶金与材料物理化学[M],北京:冶金工业出版社,2001,150-153.
    53.Ohta H,Suito H.Activities of SiO_2 and Al_2O_3 and activity coefficients of Fe_tO and MnO in CaO-SiO_2-Al_2O_3-MgO slags[J],Metallurgical and Materials Transactions B,1998,29(1):119-129.
    54.#12
    55.#12
    56.#12
    57.#12
    58.#12
    59.Ban-Ya S.Mathematical expression of slag-metal reactions in steelmaking process by quadratic formalism based on the regular solution model[J],ISIJ International,1993,33(1):2-11.
    60.Hun W W,Jung W G.Effect of slag composition on reoxidation of aluminum killed steel [J],ISIJ International,1996,36(S):136-139
    61.Nagabayashi R,Hino M,Ban-Ya S.Mathematical expression of phosphorus distribution in steelmaking process by quadratic formalism[J],ISIJ International,1989,29(2):140-147.
    62.Park J K,Song H S,Min D J.Reduction behavior of EAF slags containing Cr_2O_3 using aluminum at 1793K[J],ISIJ International,2004,44(5):790-794.
    63.Srikanth S,Jacob K T.Extension of Darken's quadratic formalism to dilute multicomponent solutions[J],ISIJ International,1989,29(2):171-174.
    64.张晓兵,蒋国昌,徐匡迪.高阶亚正规溶液模型及其在MnO-SiO_2-Al_2O_3-CaO炉渣中组元活度的计算[J],金属学报,1997,33(10):1085-1092.
    65.张晓兵.钢液脱氧控制热力学模拟[A],2003中国钢铁年会[C],2003:189-192.
    66.张晓兵.钢液脱氧和氧化物夹杂控制的热力学模型[J],金属学报,2004,40(5):509-514.
    67.Gaye H,Lehman J.Thermodynamics of slag:use of a slag model to describe metallurgical reactions[J],Revue de Metallurgie,1989,86(4):237-244.
    68.Masson C R.Ionic equilibra in liquid silicates[J],Jouranl of the American Ceramic Soceity,1968,31(3):134-143.
    69.Andersson J O,Helander T,Hoghlund L,et al.Thermo-Calc & DICTRA,computational tools for materials science[J],Calphad,2002,26(2):273-312.
    70.何燕霖,李麟,叶平,等.Thermo-Calc和DICTRA软件系统在高性能钢研制中的应用[J],材料热处理学报,2003,24(4):73-77.
    71.沙维.Thermo Calc热力学计算系统及其在材料研究中的应用[J],材料科学与工程学报,1992,(2):40-44.
    72.Sum K,MoriI K.Oxidation rate of aluminum in molten iron by CaO-SiO_2-Al_2O_3-FeO-MnO[J],ISIJ International,1996,36(S):34-S37.
    73.Nakasuga T,Sum T,Nakashima K,et al.Reduction rate of Cr_2O_3 in a solid power state and in CaO-SiO_2-Al_2O_3-CaF_2 slags by Fe-C-Si melts[J],ISIJ International,2001,41(9):937-944.
    74.Gatellier C,Olette M.Kinetics of high temperature[J],Revue de Metallurgie,1979,76(6):377-386.
    75.Nadif M,Gatellier C.Review of metallurgie[J],Revue de Metallurgie,1986,83(6):377-394.
    76.Pelton A D,Blanded M.Thermodynamic analysis of ordered lliquid solutions by a modified quasichemical approach-application to silicate slags[J],Metallurgical Transactions B,1986,17(4):805-815.
    77.Li H J,Morris A E,Robertson D.Thermodynamic model for MnO-containing slags and gas-slag-metal equilibrium in ferromanganese smelting[J],Metallurgical and Materials Transactions B,1998,29(6):1181-1191.
    78.Wu P,Eriksson G,Pelton A D,et al.Prediction of the thermodynamic properties an phase diagrams of silicate systems-evaluation of the FeO-MgO-SiO_2 system[J],ISIJ International,1993,33(1):26-35.
    79.Kawai Y,Nakao R,Moti K.Dephosphorization of Liquid Iron by CaF_2-base Fluxes[J],Transactions ISIJ,1984,24:509-514.
    80.Kitamura S,Sato N,Okohira K.Dephosphorization and desulfurization of hot by CaO based fluxes containing Fe-oxide and Mn-oxide as oxidant[J],Transactions ISIJ,t988,28:364-371.
    81.Mori K,Kawai Y,Fukami Y.Rate of dephosphorization of liquid iron-carbon alloys by molten slags[J],Transactions ISIJ,1988,28:315-318.
    82.Mori K,Hiwasa S,Kawai Y.Rate of transfer of oxyen from slag to liquid iron[J],Journal of the Japan Institute of Metals,1980,44(11):1282-1287.
    83.Ito H,Hino M,Ban-Ya S.Thermodynamics for formation of spinel(MgO-Al_2O_3)-type non-metallic inclusion in liquid iron[J],CAMP-ISIJ,1995,8(1):75-80.
    84.小野 陽一.溶融铁および铁合金中の拡散[J],鐵と鋼,1977,63(8):1350-1361.
    85.Park H J,Kang Y B.Effect of ferrosilicon addition on the compodition of the inclusions in 16Cr-14Ni-Si stainless steel melts[J],Metallurgical and Materials Transactions B,2006,37(5):791-797.
    86.Mizuno K,Inoue H,Noda,et al.Effects of Al and Ca in ferrosilicon alloys for deoxidation on inclusion composition in type 304 stainless steel[J],Iron & Steelmaker,2001,28(8):93-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700