Co-Pr-Pt三元系合金相图及其磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用X射线衍射,差热分析,扫描电镜和磁性测量等方法测定了CO-Pt-Pr三元合金相图,研究了R_3Pt_4系列化合物的热稳定性及Tb-Dy-Pr-Co-Fe-C合金的结构和磁性。
     CO-Pt-Pr三元合金相图在900℃和500℃的等温截面的研究结果表明:
     CO-Pt-Pr三元合金相图900℃的等温截面(Pr≤70at.%)由15个单相区,24个两相区和10个三相区组成。15个单相区:α(α-(Co)),β(Co_(17)Pr_2),γ(Co_5Pr),δ(Co_(19)Pr_5),ε(Co_7Pr_2),ζ(Co_3Pr),η(Co_2Pr),θ(Pr_7Pt_3),ι(Pr_3Pt_2),κ(PrPt),λ(Pr_3Pt_4),μ(PrPt_2),ν(PrPt_5),ξ(Pt),ο(α-(Co,Pt))。24个两相区:α+β,β+γ,γ+δ,δ+ε,ε+ζ,ζ+η,θ+ι,ι+κ,κ+λ,λ+μ,μ+ν,ν+ξ,η+θ,η+ι,η+κ,κ+ζ,κ+ε,κ+δ,κ+γ,κ+β,κ+α,α+μ,μ+ο,ο+ν。10个三相区:η+θ+ι,ι+η+κ,κ+η+ζ,κ+ζ+ε,κ+ε+δ,κ+δ+γ,κ+γ+β,κ+β+α,κ+α+μ,ο+ν+μ。
     Co-Pt-Pr三元合金相图500℃的等温截面由20个单相区,37个两相区和18个三相区组成。20个单相区:α(α-(Co)),β(Co_(17)Pr_2),γ(Co_5Pr),δ(Co_(19)Pr_5),ε(Co_7Pr_2),ζ(Co_3Pr),η(Co_2Pr),ψ(Co_3Pr_4),ω(CoPr_3),π(Pr),θ(Pr_7Pt_3),ι(Pr_3Pt_2),κ(PrPt),μ(PtPr_2),ν(PrPt_5),ξ(Pt),φ(CoPt_3),ρ(CoPt),λ(α_1-(Pt,Co)),ο(ε-(Co,Pt))。37个两相区:α+β,β+γ,γ+δ,δ+ε,ε+ζ,ζ+η,η+ψ,ψ+ω,ω+π,π+θ,θ+ι,ι+κ,κ+μ,μ+ν,ν+ξ,ξ+φ,φ+ρ,ρ+λ,λ+ο,α+ο,ω+θ,ψ+θ,η+θ,η+ι,η+κ,κ+ξ,κ+ε,κ+δ,κ+γ,κ+β,κ+α,α+μ,μ+ο,λ+μ,λ+ν,ν+ρ,ν+φ。18个三相区:π+θ+ω,ω+θ+ψ,η+θ+ψ,η+θ+ι,ι+η+κ,κ+η+ζ,κ+ζ+ε,κ+ε+δ,κ+δ+γ,κ+γ+β,κ+β+α,κ+α+μ,α+ο+μ,λ+ο+μ,ν+μ+λ,ν+λ+ρ,ρ+ν+φ,ξ+ν+φ。
     R_3Pt_4 (R=Y,La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Ho,Er)稀土系列化合物的研究表明:在900℃时,R_3Pt_4稳定存在,而在900℃以下,R_3Pt_4发生共析分解:R_3Pt_4→RPt_2+RPt。而对于Pr_3Pt_4,在900℃,加入1at.%Co时,Pr_3Pt_4完全分解为PrPt_2和RPt两相。
     用电弧熔炼顶铸法和退火处理,制备了系列合金:A为Tb_(0.2)Pr_(0.8)(Fe_(0.4)Co_(0.6))_(1.93-x)C_x(X=0.02,0.04,0.06,0.08)和B为(Tb_(1-z)Dy_z)_(0.2)Pr_(0.8)(Fe_(0.4)Co_(0.6))_(1.88)C_(0.05)(z=0.2,0.4,0.6,0.8,1),XRD分析表明,合金A和B均具有单一的立方Laves相结构。对于A合金,立方Laves相的点阵常数a随着碳含量的增加而增大。磁性测量表明,A合金的磁化强度和居里温度均随着C的增加而增大(0≤C≤0.02),然后随着C的进一步增加磁化强度和居里温度均逐渐减小;合金的磁晶各向异性随着C的增加急剧减小;合金的磁致伸缩系数随着碳含量的增加先增大,在x=0.06,磁场强度为14.5kOe时,达到最大值(λ_a=616ppm),然后逐渐减小。对于Tb_(0.2)Pr_(0.8)(Fe_(0.4)Co_(0.6))_(1.87)C_(0.06)粘结样品,相同模压压力不同粘结剂配比的棒状样品,合金的磁致伸缩系数随着粘接剂含量的增加先增大,在年结剂的含量为6%,磁场强度为14.5kOe时,磁致伸缩系数达到最大(λ_a=575ppm),当粘结剂进一步增加时,样品的磁致伸缩系数减小;而粘结样品的密度则是随着粘结剂含量的增加而减少的。相同粘结剂配比不同模压压力的棒状样品,样品的随着模压压力的增加而增大,在外加压应力为300MPa,磁场强度为14kOe时,达到最大值(λ_a=585ppm),然后随着压力的增大逐渐减小;而样品的密度随着模压压力的增加而增大。对于B合金,随着Dy含量的增加,其点阵常数基本保持不变,有效降低了磁晶各向异性,大大改善了其在低场下(H<5kOe时)的磁致伸缩性能,并在z=0.6,磁场强度为1kOe时,A合金的磁致伸缩性能比Tb_(0.2)Pr_(0.8)(Fe_(0.4)Co_(0.6)_(1.87)C_(0.06)合金增加一倍。
The phase diagram of Co-Pt-Pr ternary system, the structure and magnetic prop-erties of the Tb-Dy-Pr-Co-Fe-C alloys and thermal stabality of the series of R_3Pt_4 alloy compounds were investigated by X-ray diffraction(XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and magnetic measurement techniques in this paper.
     The solid state phase equilibria in the Co-Pt-Pr ternary system at 900, and 500,were investigated followed.
     The 900, isothermal section of Co-Pt-Pr system (Pr≤70at.%) consists of 15single-phase regionsα(α-(Co)),β(Co_(17)Pr_2),γ(Co_5Pr),δ(Co_(19)Pr_5),ε(Co_7Pr_2),ζ(Co_3Pr),η(Co_2Pr),θ(Pr_7Pt_3),ι(Pr_3Pt_2),κ(PrPt),λ(Pr_3Pt_4),μ(PrPt_2),ν(PrPt_5),ξ(Pt),ο(α-(Co,Pt)), 24 two-phase regionsα+β,β+γ,γ+δ,δ+ε,ε+ζ,ζ+η,θ+ι,ι+κ,κ+λ,λ+μ,μ+ν,ν+ξ,η+θ,η+ι,η+κ,κ+ζ,κ+ε,κ+δ,κ+γ,κ+β,κ+α,α+μ,μ+ο,ο+νand 10 three-phaseregions (η+θ+ι,ι+η+κ,κ+η+ζ,κ+ζ+ε,κ+ε+δ,κ+δ+γ,κ+γ+β,κ+β+α,κ+α+μ,ο+ν+μ).
     The 500, isothermal section of Co-Pt-Pr system consists of 20 single-phase regions,37 two-phase regions and 18 three-phase regions. 20 single-phase regions:α(α-(Co)),β(Co_(17)Pr_2),γ(Co_5Pr),δ(Co_(19)Pr_5),ε(Co_7Pr_2),ζ(Co_3Pr),η(Co_2Pr),ψ(Co_3Pr_4),ω(CoPr_3),π(Pr),θ(Pr_7Pt_3),ι(Pr_3Pt_2),κ(PrPt),μ(PtPr_2),ν(PrPt_5),ξ(Pt),φ(CoPt_3),ρ(CoPt),λ(α_1-(Pt,Co)),ο(ε-(Co,Pt)); 35 two-phase regions : :α+β,β+γ,γ+δ,δ+ε,ε+ζ,ζ+η,η+ψ,ψ+ω,ω+π,π+θ,θ+ι,ι+κ,κ+μ,μ+ν,ν+ξ,ξ+φ,φ+ρ,ρ+λ,λ+ο,α+ο,ω+θ,ψ+θ,η+θ,η+ι,η+κ,κ+ζ,κ+ε,κ+δ,κ+γ,κ+β,κ+α,α+μ,μ+ο,λ+μ,λ+ν,ν+ρ,ν+φ; 18 three-phase regions:π+θ+ω,ω+θ+ψ,η+θ+ψ,η+θ+ι,ι+η+κ,κ+η+ζ,κ+ζ+ε,κ+ε+δ,κ+δ+γ,κ+γ+β,κ+β+α,κ+α+μ,α+ο+μ,λ+ο+μ,ν+μ+λ,ν+λ+ρ,ρ+ν+φ,ξ+ν+φ.
     In the research of the thermal stability of R_3Pt_4 (R=Y,La,Ce,Pr,Nd,Sm,Gd,Tb,Dy, Ho, Er)series compounds, it was found that the R_3Pt_4 compounds are stable exist, and under 900,, the R_3Pt_4 compounds existence of a eutectoid decomposition reaction: R_3Pt_4→RPt+RPt_2. The Pr_3Pt_4 compound have completely decomposed to the PrPt and PrPt_2 phases when 1at%Co is added to it at 900,.
     Series of alloys A:Tb_(0.2)Pr_(0.8)(Fe_(0.4)Co_(0.6))_(1.93-x)C_x(x=0,0.02,0.04,0.06,0.08) and B: (Tb_(1-z)Dy_z)_(0.2)Pr_(0.8)(Fe_(0.4)Co_(0.6))_(1.88)C_(0.05) (z=0.2, 0.4, 0.6, 0.8, 1) were prepared by arcmelting,top casting method and subsequent annealing, and the XRD analysis shows that a single cubic Laves phase forms both in the alloys A and B. For the A alloys, the lattice parameter, a, of the Laves phase in it increase with increasing the carbon content.Magnetic measurements indicate that the curie temperature, and the intensity of magnetization,μ, both increase with increasing the carbon content (0≤C≤0.02), and then both decrease gradually; and magnetic anisotropy constants also decrease strong with increasing the carbon content. And the magnetostriction of alloys initially increase with increasing the carbon content, reaching a maximum value of 616 ppm at 14.5 kOe and x=0.06, then decrease gradually with increasing the carbon content.For the epoxy /Tb_(0.2)Pr_(0.8)(Fe_(0.4)Co_(0.6))_(1.87)C_(0.06) bonded samples, the magnetostriction of the columnar samples initially increase with increasing up to x=6%, then decrease with further increasingbonder contents with the same compaction pressure , large magnetostriction of 575 ppm at 14.5 kOe. And the density decrease with increasing bonder contents. The magnetostriction of the columnar samples increase with increasing compaction pressurewith the same bonder contents, reaching a maximum value (λ_a=585ppm) with the compaction pressure of 300 MPa at 14.5 kOe. And the density increase with increasing the compaction pressure. For alloy B, with the increase of Dy content, the lattice constantsremain unchanged; the magnetocrystalline anisotropy reduced effectively; the magnetostrictive performance greatly improved in the low-field (H<5kOe) and when the magnetic field strength is lkOe at z = 0.6, the performance magnetostrictive of A alloy doubled than Tb_(0.2)Pr_(0.8)(Fe_(0.4)Co_(0.6))_(1.87)C_(0.06) alloy.
引文
[1] 王博文.超磁致伸缩材料制备与器件设计.[M].北京:冶金工业出版社,2003.
    [2] 钟文定.铁磁学. [M].北京:科学出版社,1987.
    [3] 张文毓.稀土磁致伸缩材料的应用.[J].金属功能材料,2004, 11(4):42-46.
    [4] 李扩社,徐静,杨红川等.稀土超磁致伸缩材料发展概况.[J].稀土,2004, 25(4):51-56.
    [5] 王槐仁,张友纯,李张明.稀土超磁致伸缩材料及在地球物理领域的应用.[J].物探装备,2003,13(2):73-77.
    [6] 朱厚卿.稀土超磁致伸缩材料的应用.[J].应用声学,1997, 17(5):3-10.
    [7] 胡明哲,李强,李银祥,张一玲.磁致伸缩材料的特性及应用研究(Ⅰ).[J].稀有金属材料与工程,2000, 29(6):366-369.
    [8] 李梅,吕银芳,陈平等.超磁致伸缩材料及其应用.[J].现代电子技术,2005, 18: 114-115.
    [9] 宛德福,马兴隆.磁性物理学.[M].北京:电子工业出版社,1999.
    [10] 刘增民,林后植,章思俊,等.铁磁材料.[M].北京:电子工业出版社,1993.
    [11] Goodfriend M J, Shoop K M1[J]1J Intell Mater Syst Struct,1992,3:2451.
    [12] Nakano I, Tsuchiya T, Amitani Y, et allProc Int Conf on Giant Magnetostrictive Materials and Their Applications [C] lTokyo:1992. 771.
    [13] 李碚等.功能材料,1998,10(增刊):3561.
    [14] Wu C H, Yang C P et al. Magn. Magn.Mater.,1997,166 :249.
    [15] A.P.Guimaraes,K.S.P.Bunbury.Mossbauer studies of R(FeCo)_2 Laves phase.[J]. J.Phys.F:Metals Phys.,1973,:3885-892.
    [16] G.Longworth,I.RHarris.Mossbauer effect study of the pseudo-binary system Ce(Fe_(1-x)Co_x)2.[J].J.Less-common Met.,1975,41:175-185.
    [17] M.G.Luijpen,P.C.M.Gubbens,A.M.van der Kraan.Mossbauer effect study of Y(Fe, Co)_2.[J].Physica B&C,1977,86-88:141-142.
    [18] H.Q.Guo,H.Y.Gong,H.Y.Yang,Y.F.Li,L.Y.Yang,B.G.Sshen,R.Q.Li.Effect of Co substi- tution for Fe on magnetic and magnetostrictive properties in Sm_(0.88)Dy_(0.12)(Fe_(1-x)Co_x)_2 compounds.[J]Phys.Rev.B,1966,54:4107-4110.
    [19] A.E.Clark,J.P.Teter,O.D.McMasters.Magnetostrictive properties of Tb_(0.3)Dy_(0.7)(Fe_(1-x) Co_x)_(1.9) and Tb_(0.3)Dy_(0.7)(Fe_(1-x)Ni_x)_(1.9).[J].IEEE Trans.Magn.,1987,23:3526-3528.
    [20] C.B.Jiang,T.Y.Ma,H.B.Xu.A Knid of wide operating temperature range giant magne- tostrictive alloys.[J]J.Alloys Compd.,2008,449:156-160.
    [21] W.Mei,T.Okane,T.Umeda.Phase diagram and inhomogeneity of (TbDy)Fe(T)(T=Mn, Co,Al,Ti)systems.[J].J.Alloys Compd.1997,248:132-138.
    [22] Mohan Ch V. Structural magnetic magnetostriction and magnetomechanical studies on Ho_(0.85)Tb_(0.15)Fe_(2-x)Al_x.[J].Alloys Comp., 1996,236(1-2):184-188.
    [23] W.J.Ren,Z.D.Zhang,X.G.Zhao,X.P.Song,W.Liu,D.Y.Geng.Structure and magnetostriction of Tb_(1-x)Pr_xFe_(1.93)B_(0.15) alloys.[J].J.Magn.Magn.Mater.,2004,369:281-285.
    [24] H.Y.Liu,Y.X.Li,F.B.Meng,Z.M.Lu,X.W.Xu,M.Zhang,J.P.Qu.Structure and magnetostriction of melt-spun Pr_(0.3)Tb_(0.7)Fe_2B_x alloys.[J].J.Alloys Compd.2008,inpress.
    [25] L.Wu,W.S.Zhan,X.C.Chen,X.S.Chen.The effects of boron on Tb_(0.27)Dy_(0.73)Fe_2 compound.[J].J.Magn.Magn.Mater.,1995,139(1):335-338.
    [26] W.J.Ren,Z.D.Zhang,A.S.Markosyan,X.G.Zhao,X.M.Jin,X.P.Song. The beneficial effect of the boron substitution on the magnetostrictive compound Tb_(0.7)Pr_(0.3)Fe_2.[J].J.Phys. D:Phys,2001,34:3024-3027.
    [27] J.J.Liu,W.J.Ren,J.Li,Z.D.Zhang.High Pr-content (Tb_(0.2)Pr_(0.8))(Fe_(0.4)Co_(0.6))_(1.93-x)B_x magnetostrictive alloys [J].Appl.Phys.Lett.,2005,87(8):082506.
    [28] Wu L, Zhan W S et al. Magn. Magn. Mater., 1995, 139 : 335. [29] Ren WJ, Zhang ZD et al . Appl. Phys. Lett., 2003, 82 : 2664. [30] Li Y F, Shen B G, Zhan WS et al. Alloys Comp., 1995, 288 :37.
    [31] Wang B W, Hao YM, Busbridge S C et al. Structure and magnetostriction of Sm_(1-x)Pr_xFe_2 and Sm_(0.9)Pr_(0.1)(Fe_(1-y)B_y)_2 alloys.[J].Magn. Magn. Mater., 2002, 246(1-2) : 270-274.
    [32] Tang C C, Zhan W S, Li Y X et al. Phys. :Condens. Matter.,1997, 9 : 9651.
    [33] Li Y X, Tang C C, Wu G H et al. Appl. Phys., 1998, 83,7753.
    [34] Li Y X, Wu G H et al. IEEE transaction on Magnetics., 2001,37 : 2696.
    [35] Tang C C, Zhan W S, Li Y X et al. Phys. D: Appl. Phys.,1998, 31 : 2426.
    [36] Tang C C, Chen D F, Li Y X et al. Appl. Phys., 1997, 82 :4424.
    [37] Tang C C, Zhan WS, Chen D F et al. Phys. : Condens. Matter., 1998, 10 : 2797.
    [38] 主唐成春,吴光恒,李养贤等.物理学报,2001,50:132[Tang C C,WuGH,Li Y X et al.Acta Phys. Sin.,2001,50:132 (in Chinese)].
    [39] Tang C C, Li YX, Du J et al . Phys. : Condens. Matter. , 1999 ,11 : 5855.
    [40] A. E. Clark and H.S.Belson, AIP Conf. Proc. 1973,10:749.
    [41] A. E. Clark, in Ferromagnetic Materials, edited by E. P. Wohlfarth North-Holland, Amsterdam, 1980,1, p.531-589.
    [42] J.J. Liu, W.J. Ren, J. Lin, X.G. Zhao, W. Liu, and Z.D. Zhang, Appl. Phys. Lett. 2005,87:2056.
    [43] A.E.Clark, R.Abbundi, H.Tsavage, and O.D.McMasters. Magnetostriction of rare earth-Fe_2 lavens phase compounds.[J].Physica B&C, 1977,86-88, 73:74.
    [44] B.W.Wang, S.L.Tang, X.M.Jin, et al.[J].Appl.Phys.Lett.l996,69:3429.
    [45] Z.J.Guo, B.W.Wang, Z.D.Zhang, et al.[J]. Appl.Phys.Lett.l997,71:2836.
    [46] J. J. Liu, W. J. Ren, J. Li, X. G. Zhao, W. Liu, and Z. D. Zhang. High Pr-content (Tb_(0.2)Pr_(0.8))(Fe_(0.4)Co_(0.6))_(1.93-x)B_x magnetostrictive alloys.[J].J.Appl.Phys.,2005,87:082506.
    [47] C.H.Wu,W.Q.Ge,X.M.Jin,Y.C.Chuang,X.P.Zhong.Structure and magnetosriction of Dy_(0.9-x)Pr_xTb_(0.1)Fe_2 pseudobinary compounds.[J].J.Alloys Compd.,1993,191:169-191.
    [48] B.W.Wang,Z.D.Tang,X.M.Jin,L.Z.Cheng,K.Y.He.Microstructure and magnetostriction of(Dy_(0.7)Tb_(0.3))_(1-x)Pr_xFe_(1.85) and(Dy_(0.7)Tb_(0.3))_(0.7)Pr_(0.3)Fe_y alloy.[J].Applphys.Lett., 1996,69:3429-3431.
    [49] Z.J.Guo,B.W.Wang,Z.D.Zhang,X.G.Zhao,X.M.Jin,W.Liu,Q.F.Xiao.The structure, magnetostriction, and anisotropy compensation of (Tb_(1-x)Pr_x)(Fe_(0.4)Co_(0.6))_(1.9) alloys.[J].Appl.Phys.Lett,1997,71:2836-2838.
    [50] Z.J.Guo,S.C.Busbridge,B.W.Wang,Z.D.Zhang,X.G.Zhao.Structure and magnertic and magnetosttictive properties of(Tb_(0.7)Dy_(0.3))_(0.7)Pr_(0.3)(Fe_(1-x)Co_x)_(1.85)(0<x≤0.6.[J].IEEE Trans.Magn.,2001,37:3025-3027.
    [51] B.W.Wang,Y.C.Chuang,X.M.Jin,C.H.Wu,J.Y.Li.Structure and magnetostriction of R(Fe_(1-x)Ai_x)_2 (R=Dy_(0.65)Tb_(0.25)Pr_(0.1)) alloys.[J].J.Alloys Compd.,1996,237:58-60.
    [52] 顾正飞,赵家成,江民红,成钢.(Pr_(0.8)Tb_(0.2))(Fe_(0.4)Co_(0.6))_(1.88)C_(0.05)/树脂复合材料的制备与磁特性研究.[J].功能材料.2008.
    [53] M.C.Zhang,X.X.Gao,S.Z.Zhou,Z.H.Shi.High Performance giant magnetostrictive alloy with<110>crystal orientation.[J].J.Alloys Compd,2004,381:226-228.
    
    [54] W.J.Ren,Z.D.Zhang,D.Li,J.Li,X.G.Zhao,W.Liu. Spin configuration and magnetostrictive properties of Laves compounds Tb_xDy_(1-x)Pr_(0.3)(Fe_(0.9)B_(0.1))_(1.93) (0.10≤x≤0.28).[J].J.Appl.Phys.,2006,100:023940.
    
    [55] H. Okamoto:J.Phase Equilibria,2001.
    
    [56] A. Deryagin, A. Ulyanov, Magnetic Characteristics and Lattice Constants of Some Pseudobinary Intermetallic Compounds of Type, Physica Status Solidi, Sectio A: Applied Research, 1974,23:15-18.
    
    [57] A.V. Andreev, A.V. Deryagin and S.M. Zadvorkin, Magnetostriction anisotropy in the rare-earth compounds RCo_5 following spontaneous spin-flip transitions. Soviet Physics-jetp, Translated From Zhural Eksperimental' Noii Teoreticheskoi Fiziki,1983,58(3):566-569.
    
    [58] Y. Khan, The Crystal Structure of R_5Co_(19). Acta Crystallographica, Section B,1974,30B:1533-1537.
    
    [59] Blaettner H.E., Strnat K.J., Ray A.E.Magnetization and anisotropy of some R_2Co_7 phases at low temperature.[J]. rare earths in modern science and technology. rare earth research conference,(13TH-15TH conference),1978.
    
    [60] W. Ostertag, Rare Earth Cobalt Compounds with the AB_3 Structure, Transactions of the metallurgical society of aime,1967,239:690-694.
    
    [61] O.I. Kharcenko, O.S. Koshel and O.I. Bodak, Solutions of some ternary cubic laves phases. Metallofizika, Kiev (Akademiya Nauk Ukrainskoi ssr,Institut Metall of Iziki),1974,52:101-102.
    
    [62] H. Okamoto, J. Phase Equilibria 1992,13:675 - 676.
    
    [63] Y.C. Chuang, C.H. Wu, S.C. Chang, T.C. Li, Y.C. Wang,Effect of heat treatment on the microstructure and Coercivity of PrCo_5.[J]. Less-Common Metals 1986,125:25 - 32.
    
    [64] K.H.J. Buschow,Note on the stability of rare earth-cobalt compounds with CaCu5 structure.[J]. Less-Common Metals 1972,29(3):283-288.
    
    [65] Lueken H., Bronger W.CZusammenhnge zwischen Struktur und magnetischen Eigen-schaften bei LnPt_5-Phasen.[J].Zeitschrift fuer anorganische und allgemeine chemie,1973
    
    [66] Leroux C., Cadeville M.C., Pierron Bohnes V., Inden G., Hinz F.omparative investigation of structural and transport properties of L1_0 NiPt and CoPt phases; the role of magnetism.[J].Journal of Physics F: metal Physics,1988.
    [67] Geisler A.H., Martin D.L. A New Superlattice in Co-Pt Alloys.[J].Journal of Applied Physics, New York,1952.
    [68] A.E. Ray, G.I. Hoffer, Proceedings of the Eighth Rare Earth Research Conference, Reno Nevada, April 1970.
    [69] A.E. Ray, A.T. Biermann, R.S. Harmer, J.E. Davison, Cobalt 1973,4:103 - 106.
    [70] A.E. Ray, Cobalt 1974,1:3 - 20.
    [71] T.B. Massalski, P.R. Subramanian, H. Okamoto, L. Kacprzak,Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, Ohio, 1990.
    [72] W.B. Pearson, Acta Crystallogr. 1976,B32:1654.
    [73] C.H.Wu,Y.C. Chuang, X.M. Jin, X.H. Guan, Z. Metallkd. 1992,83:32 - 34.
    [74] 任静.Fe-Pr-pt三元合金相图及其磁性能研究[D].桂林电子科技大学,2005:1-73.
    [75] 宁远涛.贵金属与稀土金属的相互作用:(Ⅳ)Pt-Re系[J].贵金属,21(4):43-48.
    [76] Ren Jing,Gu Zhengfei, J. Alloys Compd,2005,394:211-214.
    [77] Z.F.Gu, G.Cheng, J.Ren, J. Alloys Compd,2006,407:112-114.
    [78] 李树棠.晶体X射线衍射学基础.冶金工业出版社.1990.
    [79] 范雄.金属X射线学.北京:机械工业出版社.1998.5.
    [80] 余火昆.材料结构分析基础.北京:科学出版社.2000.9.
    [81] 周玉,武高辉.材料分析测试技术:材料X射线衍射与电子显微分析.黑龙江:哈尔滨工业大学出版社.1998.8.
    [82] 张国栋.材料研究与测试方法.北京:冶金工业出版社.2001.5.
    [83] 常铁军,祁欣.材料近代分析测试方法.黑龙江:哈尔滨工业大学出版社.1999.8.
    [84] 邱平善.材料近代分析测试方法实验指导.哈尔滨:哈尔滨工程大学出版社.2001.
    [85] (日)进藤等著,刘安生译.材料评价的分析电子显微方法.北京:冶金工业出版社.2001.
    [86] 李淑英.[D].河北工业大学硕士毕业论文.2002.
    [87] L.Sandlund, M.Fahlander, A.E.Clark,et al.Magnetostriction,clastic moduli, andcou-pling factors of composite Terfenol-D.[J].J.Appl.phys.1994,75:5656.
    [88] I.R. Harris, J. Less-Common Met. 1968,24:459 - 462.
    [89] I. R. Harris, W. E. Gardner, R. H. Taylor, J. Less-Common Met. 1973,31:151-158.
    [90] O. Kubaschewski, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1997, pp. 1572-1573.
    [91] A. Palenzona. Journal of the Less-common Metals. 1977,53:133-136.
    [92] Ren Jing, Gu Zhengfei, Cheng Gang, Zhou Huaiying. J.Alloys and Comp. 2004.
    [93] 梁基谢夫.金属二元系相图手册.[M].北京:化学工业出版社,2009.
    [94] Moffatt, Binary Alloy Phase Diagrams, 2nd Edition, ASM International, Materials Park, OH, 1997, pp3089-3090.
    [95] P.Villars, Pearson' s Handbook of Crystallographic Data for Intermetallic Phases, ASM, Materials Park, Ohio. 1997.
    [96] A.E.Dwight, R.A.Conner, Jr.J.W. Downey, Acta Cryst. 1965,18:835.
    [97] L.Sandlund and M.Fahlander, A.E.Clark, et al. Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D.[J].J.Appl.phys.,1994,75(10):5656-5658.
    [98] 蒋龙,周谦莉,张振涛,等粘结NdFeB磁体用粘结剂的研究.[J].金属功能材料,2000,7(3):16.
    [99] D.H. Wang, H.D. Liu, S.L. Tang, T. Tang, J.F. Wen, Y.W. Du, Low-field magnetic entropy change in Dy(Co_(1-x)Si_x)_2, Solid State Common. 2002, 121:199-202.
    [100] 姜寿亭,李卫.凝聚态磁性物理. [M].北京:科学出版社,2003.
    [101] S.H.Lim, S.R.Kim, S.Y.Kang, et al. Magnetostrictive properies of polymer-bonded Terfenol-D composites.[J].J.Magn.Magn.Meter. 1999,191:113.
    [102] 刘平,郭振辰,曹兴国等粘结稀土钕铁硼磁体模压成型工艺的研究.[J].稀土,1993,12(4):12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700