含Nb高锰钢的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应现代汽车减重、节能和安全舒适等特点,近年来新开发的含15~25%Mn、2~4%Si、2~4%Al的高锰钢显示出极高的延伸率(60~95%)和高的强度(600~1100MPa),在汽车制造业中有广泛的应用前景,其优良的力学性能来自于变形过程中的孪生诱发塑性效应(Twinning Induced Plasticity,TWIP效应)或马氏体相变诱发塑性(TransformationInduced Plasticity,TRIP效应)。尽管Mn、Si、Al对TWIP钢的显微组织及其性能的影响已有较多的研究,并且Nb对TWIP钢组织与性能的影响也有一定的研究,但是对TWIP效应和TRIP效应的机制尚未充分揭示。
     本文设计了不含铌和含铌的两种TWIP钢,通过力学性能测试,结合光学显微镜(OM)、X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等表征技术,探讨Nb元素对TWIP钢层错能和力学性能及显微组织的影响,并对TWIP钢中的TWIP效应机制、马氏体相变方式进行了较为系统的研究,主要结论如下:
     (1)计算Fe-Mn-Al-C合金的层错能,并分析加入合金元素Si或Nb对合金层错能的影响,其中Si元素的加入降低实验钢的层错能,而加入Nb元素可以提高钢的层错能。
     (2)对不含Nb和含Nb两种实验钢进行热轧实验,并进行固溶处理,获得热轧状态和固溶处理状态下的合金,分析比较固溶处理对实验钢力学性能和显微组织的影响。发现经过固溶处理后,两实验钢的抗拉强度和屈服强度均降低,而塑性升高。
     (3)随固溶处理温度的升高,不含Nb与含Nb实验钢的屈服强度和抗拉强度均降低。当固溶温度达到较高的1200℃时,含Nb实验钢塑性继续增加,而不含Nb实验钢由于组织粗化塑性略有降低。这主要是由于Nb使钢组织中的退火孪晶的数量和尺寸继续增加。
     经计算,Si元素可以降低合金的层错能,Nb元素的加入可以提高合金的层错能。实验结果表明,不含铌实验钢变形过程中主要发生TRIP效应,而含铌实验钢变形过程中主要发生TWIP效应,并且Nb元素有细化晶粒的作用,提高实验钢的屈服强度。随着固溶处理温度的升高,两种成分实验钢的抗拉强度降低。
Recently,in order to meet the automotive industry weight loss,energy efficiency and the requirements of safe and comfortable,the new high Manganese steels containing 15 to 25 mass%Mn and additions of silicon and aluminum of about 2 to 4 mass%and exhibiting the large elongation(60~95%) and high tensile strength(600~1100MPa) due to twinning induced plasticity(TWIP) effect or transformation induced plasticity(TRIP) effect via multiple martensitic transformations are developed.Although the effects of Mn,Si and Al on the microstructure and mechanical properties of TWIP steel had been investigated,the effect of Nb on those of TWIP steel are also investigated,and the mechanism of TWIP or TRIP effect are not revealed sufficiently.
     Two kinds of high manganese steels are introduced in this paper.The two kinds of steel with or without addition of Nb were designed,and the effects of Nb on stacking fault probability(SFP,reverse proportional to stacking fault energy)and mechanical properties were studied by means of tensile tests and characterization through optical microscope(OM), X-ray diffraction(XRD),scanning electron microscope(SEM) and transmission electron microscope(TEM).And the mechanisms of TWIP effect and the approaches of martensitic transformation were systematically investigated,and the main contents are described as follows:
     (1) Calculated the stacking fault energy of the Fe-Mn-Al-C alloy and analyzed the influences of the element Si and Nb.Addition the element of Si reduce the fault energy of experient steel,while the Nb reprove it.
     (2) Hot-rolled the two kinds of steels,and solution heat treatment with the temperature of the 1050℃.Access to study the microstructure and mechanical properties of the state of hot-rolling and solution heat treatment,analysis the effects of solution heat treatment on the properties of experimental steel.Decreased the two experiment steel yield and tensile strength by solution treatment.
     (3) With reproveing the solution treatment temperature,both the yield strength and the tensile strength of the two kings of steels are decreased.When the solution temperature treatment measure up 1200℃,the plasticity of the steel with Nb continue to increase,while the plastic of the steel without Nb slightly lower because the grain structures coarsen.The Nb element continue to increase the number of annealing twins and size was the main reason.
     The results show that the addition of Nb remarkably increases SFE,while the addition of Si decreases SFE.The non-Nb steel during deformation occurs mainly TRIP effect,while the other steel during deformation occurs mainly TWIP effect.And the element of Nb have the role of grain refinement to improve the yield strength of the steel.As the rise of the solution heat treatment temperature,the tensile strength of the both two alloys decrease.
引文
1.郑玉春.我国钢铁工业所面临形势分析[J],冶金信息导报刊,2004,(1):4-8.
    2.张寿荣.我国钢铁工业发展的潜在危机[J],冶金经济与管理,2004,(1):14-19.
    3.王利,朱晓东,张丕军.汽车轻量化与先进的高强度钢板[J],宝钢技术,2003,(5):53-60.
    4.Powers,Willian F.Automotive materials in the 21~(st) century[J],Advanced Materials&Processes,2000,5,38-41.
    5.Take hide SENUMA,Physical Metallurgy of Modern High Strength Steel Sheets[J],ISIJ International,2001,41,520-532.
    6.Mi Z L,Tang D,Yan L.High Strength and High Plasticity TWIP Steel for Modern Vehicle[J],J Mater Sci Technol,2005,21(4):451-455.
    7.周廷栋.超高锰钢ZGMn_(18)Cr_2组织及性能研究[D],成都四川大学.2003.
    8.赵学胜.球磨机衬板新材料的研究[J],中国矿业,2000(7):30-32.
    9.Jost H P.Tribology education and research[R],Jost ReP.DePartment of Edueation and Science,HMAO,London,1966.
    10.Grassel O,Frommeyer G,Dercler C,et al.Phase Transformation and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steel[J],J Phys Iv Frannce,1997,C5(3):178.
    11.Grassel O,R(u|¨)ger L,Frommeyer G,et al.High Strength Fe-Mn-(Al,Si)TRIP/TWIP Steels Development-Properties-Applcation[J],International Journal of Plasticity,2006,16(3):1391.
    12.Grassel O,Frommeyer G.Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J],Materials Science and Technology,1998,14(12),1213-1217.
    13.Spitzer K H.Direct strip casting(DSC)-An option for the production of HSD~(?) steel grades,1~(st)international conference for super-high strengh steel[C],Roma,Italy,2005,10.
    14.Scott C,Allain S,Faral M,et al.The development of a new Fe-Mn-C austenitic steel for automotive application[J],La Revue de Metallurgie-CIT,2006,(6):293-302.
    15.刘国勋,金属学原理[M],冶金工业出版社,1980.
    16.Grassel O,Frommeyer G.,Derder C,et al.Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP steels[J],J Phys IV France,1997,5,383-388.
    17.Frommeyer G,Brvx U,Neumann P.Supra-Ductile and High-Strength Manganese TRIP/TWIP Steels for High-Energy Absorption Purposes[J],ISIJ International,2003,43(3):438-446.
    18.米振莉,唐荻,江海涛,等.Fe-28Mn-3Si-3AlTWIP钢变形过程中的孪晶观察[J],钢铁,2007,42(12):75-76.
    19.Yang P,Xie Q,Meng L,et al.Dependence of deformation twinning on grain orientation in a high manganese steel[J],Scripta Material,2006,55:629-631.
    20.Grassel O,Kruger L.High Strength Fe-Mn-(Al,Si)TRIP/TWIP Steels Developmrent Properties Application[J],International Journal of Plasticity,2000,16:1394-1409.
    21.米振莉,唐荻,严铃.高强度高塑性TWIP钢的开发研究[J],钢铁,2005,40(1):58-60.
    22.Liu S K,Zhang J.Influnence of the Si and Mn Concentrations on the Kinetics of the Bainte Transformation in Fe-C-Si-Mn Alloy[J],Metall Trans,1990,21A(4):1517-1525.
    23.殷瑞钰.钢的质量现代进展,特殊钢[M],北京:冶金工业出版社,1995.
    24.陈希杰.高锰钢[M],北京:机械工业出版社,1989.
    25.黄宝旭,王晓东,戎咏华,等.TWIP钢研究的现状与展望[J],热处理,2005,20(4):4.
    26.Vercammen S,Blanpin B,Cooman B C De,et al.Cold Rolling Behavior of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel:the Importance of Deformation Twinning[J],Acta Materialia,2004,52(5):2002.
    27.Hamada A S,Karjalainen L P,Somani M C.The Influence of Aluminum on Hot Deformation Behavior and Tensile Propertie of High-Mn Twip Steels[J],Materials Science and Engineering,2007,467A(2):114.
    28.DeArdo A J.铌在钢中物理冶金基本原理.铌·科学与技术[M],北京:冶金工业出版社,2003.
    29.Senuma T.Present Status of Future Prospects for Precipitation Research in the Steel Industry[J],ISIJ International,2002,42(1):1-12.
    30.Jiang Bohong,Qi Xuan,Zhou Weiming,et al.Effect of nitrogen on shape memory effect in Fe-Mn-Si alloys[J],Scripta Materialia,1996,34(9),1437-1441.
    31.Ullakko K,Jakovenko P T,Gavriljuk V G.High-strength shape memory steels alloyed with nitrogen,Scripta Materialia,1996,35,473-478.
    32.Yakubtsov I A,Ariapour A,Perovic D D.Effect of nitrogen on stacking fault energy of fcc iron-based alloys[J],Acta Mater,1999,47,1271-1279.
    33.Petrov Y N,Yakubtsov I A.Thermodynamic calculation of stacking fault energy for multicomponent alloys with fcc lattice based on iron[J],Phys Met Metallogr,1986,62(2),34-38.
    34.Steven W,Haynes A.G..Structure and Properties of Carbide Free Bainite[J],J.Iron Steel Inst.1956,183,349-359.
    35.刘云旭,金属热处理原理[M],机械工业出版社,1981.
    36.Owen W S.The effect of silicon on the kinetics of tempering,Trans.ASM,1954,46,812-829
    [42]W.C.Leslie,G.C.Rauch,Precipitation of carbides in low-carbon Fe-Al-C alloys[J],Metall.Trans.A,1978,9A,343-349.
    37.Vasiakos A N,Ohlert J,Giasla K,et al.Low-alloy TRIP steels:a correlation between mechanical properties and the retained austenite stability[J],Steel research,2002,73,249-252.
    38.Sato K,Ichinose M,Hirotsu Y,et al.Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys[J],ISIJ Int,1989,29,868-877.
    39.Vercammen S,Blanpain B,De Cooman B C,et al.Cold rolling behaviour of an austenitic Fe-30Mn-3Al-3Si TWIP-steel:The importance of deformation twinning[J],Acta Materialia,2004,52,2005-2012.
    40.Schramm R E,Reed R P.Stacking fault energies of seven commercial austenitic stainless steels[J],Metall Trans,1975,6A,1345-1351.
    41.Lu L,Shen Y F,Chen X H,et al.Ultrahigh strength and high electrical conductivity in copper[J],Science,2004,5669(304):422-426.
    42.胡赓祥,蔡珣,戎咏华主编,材料科学基础(第二版)[D],上海交通大学出版社,2006.
    43.Zackay V F,Parker E R,Fahr D,et al.The Enhancement of Ductility on High-Strength Steels[J],Trans ASM,1967,60:252.
    44.Tomota Y,Strum M et al.Microstructural dependence fo Fe-high Mn tensile behavior[J],Metall.TransA,1986,17,537-547.
    45.景财年,王作成.TRIP-相变诱发塑性钢的研究进展[J],特殊钢,2004,25(4):1-5.
    46.近藤裕计.防止Al_2O_3堵塞的浸入式水口[J],现代冶金,2004.
    47.Hirth J P,Lothe J.Theory of Dislocation[M],2nd Ed.By John Wiley and Sons Inc.,1982:306-317.
    48.余永宁,毛卫民.材料的结构[D],北京:冶金工业出版社,2001.
    49.杨廷清,马世良,秦熊浦等.高锰无磁钢的组织形态[J],金属学报,1989,25(6):A394.
    50.石霖.合金热力学[M],北京:机械工业出版社,1992:312-348.
    51.Dewit R and Howard R E.Relation of Stacking Fault Energy to Segregation at Stacking Faults and to the Occurrence of Phase Boundaries in fcc Binary Alloys[J],Acta metal,1965,13:655-661.
    52.Olson G B and Cohen M.A General Mechanism of Martensitic Nucleation[J],Metall Trans,1976,7A:1897-1923.
    53.Dai Q X,Wang A D,Cheng X N,et al.Stacking-fault Energy of Cryogenic Austenitic Steels[J],Chinese Physics,2002,11(6):596-600.
    54.Adler P H,Olson G B,Owen W S[J].Metall Trans,1986,17A:1727.
    55.Stepakoff G L,Kaufman L[J].Acta Metall,1968,16:13.
    56.Breedis J F,Kaufman L[J].Metall Trans,1971,2:2359.
    57.Ishida K,Nishizawa T[J].Trans JIM,1974,15:225.
    58.Eriesson T[J].Acta Metall,1966,14:1073.
    59.Hirth J P[J].Metall Trans,1970,1:2367.
    60.田兴,张彦生.材料科学进展[M],1991,5:48.
    61.Aerts E,Delavignette P,Siems R et al[J],J ApplPhys,1962,33:3087.
    62.田兴.Si含量对Fe-Mn-Si合金层错能的影响[J],材料科学进展,1993,7(3):215-218.
    63.董斌,马晓莉,彭会芬,陈翠欣.高锰合金钢的SME、TRIP、TWIP效应[J],钢铁研究学报,2009,21(3):1-7.
    64.Dini G,Najafizadeh A,Monir-Vaghefi S M,Ebnonnasir A.Predicting of mechanical properties of Fe-Mn-(Al,Si)TRIP/TWIP steels using nural network modeling[J],Comp Materials Science,2009,45(4):959-965.
    65.马广清,于文馨,翟启杰等.水韧处理工艺对合金高锰钢组织和性能的影响[J],铸造,2004,53(4):308-309.
    66.王建华,任立军,高锰钢加工硬化机理研究[J],煤矿机械,2003,(1):50-55.
    67.米振莉,唐狄,代永娟,王海全等.退火温度对25Mn-3Si-3Al-TWIP钢组织和力学性能的影响[J],北京科技大学学报,2007,29:117-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700