晶粒抑制剂对SPS烧结的WC基硬质合金的组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强化牙轮钻头、地质取芯钻头等常用的井下钻具最有效的材料是各种类型的碳化钨材料,因此,开发出高硬度、高韧性、高强度的硬质合金势在必行。本文分析了先进商用套磨铣工具材料的组织和性能,在此基础上设计了针对WC基硬质合金的晶粒抑制剂,通过高能球磨+SPS烧结技术制备出了性能优异的硬质合金。采用EDS、SEM、EPMA和XRD等分析方法研究了不同晶粒抑制剂对硬质合金组织的影响;通过致密度测定、硬度测试和三点弯曲试验评价了这些硬质合金的性能;最后探讨了这些抑制剂的作用机理。
     试验结果表明,先进的商用WC基硬质合金中添加的抑制剂包括TaC、TiC和Cr_3C_2等相;因为晶粒抑制剂的作用,商用硬质合金具有较小的平均晶粒尺寸,因而具有较高的硬度,但是大量的晶粒抑制剂会导致棱角块状相的析出以及大量孔隙的形成,所以其韧性不高。
     采用高能球磨技术,使原始粉末得到细化和活化,并在这一过程中通过扩散反应机制合成了少量纳米级WC粉末,其晶粒度为20~30nm。
     稀土元素Y能够明显减少硬质合金组织的孔隙,使组织均匀致密,密度得到明显提高;虽然稀土元素Y对合金硬度的影响不大,但是能够提高塑性相α-Co的含量,明显改善合金的抗弯性能;TaC/Cr_3C_2和VC/Cr_3C_2这两种抑制剂组合能够明显细化晶粒,对硬度有所改善,但是组织中仍有孔隙;同时添加碳化物抑制剂TaC/Cr_3C_2和稀土抑制剂Y不仅能细化晶粒,组织也十分致密,晶粒一般呈短棒状,尺寸在1μm左右,而且硬度和抗弯强度都较高。其中,硬质合金B_2的组织和综合性能最佳:相对密度为99.40%,硬度为91.7 HRA,抗弯强度为2847 MPa。这些性能均超过了添加普通碳化物抑制剂(VC/ Cr_3C_2)的硬质合金和先进商用硬质合金。
All types of tungsten carbide reinforced materials have been proved to be the most effective materials to strengthen the cone bit, geological core bit and various kinds of downhole fishing tools etc. This suggests a need for the development of cemented carbides with high hardness,high toughness and high intensity. This paper analyzes the microstructure and the properties of advanced commercial milling tools materials, on that basis, new inhibitors combination are developed. High quality cemented carbides are prepared through high-energy ball grinding + SPS technique, so that their microstructure and the properties can exceed those of commercial cemented carbides. It is studied that how these inhibitors to influence the microstructure of cemented carbide by means of EDS, SEM, EPMA, XRD and so on. The properties of cemented carbides are evaluated through the density test, hardness test and 3-point bending test. Finally, action mechanism of these inhibitors combination is discussed.
     The experimental results show that, advanced commercial WC based cemented carbides include inhibitors TaC、TiC and Cr_3C_2; Because the addition of a small amount of inhibitors will promotes fine grain size, the hardness of commercial cemented carbides are high; however, a lot of grain inhibitors will lead to the precipitation of edges massive phase and the formation of a great deal of pores, so their toughness are not very high.
     Green powders get refining and activation by way of high energy ball grinding technology. And in this process,a small number of nano-WC powders are synthesized mainly through diffusion reaction mechanism, the crystallite size is 20~30nm.
     Rare earth elements Y could dramatically reduce pores of microstructure of cemented carbide, make the microstructure uniform and compact, and density gets increased obviously. Rare earth elements Y exerts a little influence on the hardness of alloy,but it enhances the bending capacity of alloy significantly. These two kinds of inhibitors combination TaC/Cr3C2 and VC/Cr3C2 can fine grains obviously and increase the hardness,but there are still pores in the microstructure; Adding carbide inhibitors (TaC/Cr3C2) and rare earth inhibitors (Y) to alloy at the same time, which can not only fine grain size but also make the microstructure dense; the grain is like a long rod commonly, grain size is about 1μm, and the hardness and bending strength of this kind of alloy are higher. Particularly, the microstructure and comprehensive properties of cemented carbide-B2 with combinations of inhibitors ( 0.6 wt % Cr3C2– 4.8 wt %TaC– 0.4 wt %Y ) is the best, its relative density is 99.40%, its hardness is 91.7 HRA, its bending strength is 2847MPa, all of which exceed those of cemented carbide with ordinary carbide inhibitors(VC/ Cr3C2)and advanced commercial milling tools materials.
引文
[1]青藤.浅谈硬质合金[J].有色金属再生与利用, 2003, (6): 33-34
    [2]陈立兰.浅析当前硬质合金及其工具技术的发展[J].世界有色金属, 1999, (11): 29-30
    [3] Prakash L J. Application of Fine Grained Tungsten Carbide Based Cemented Carbides[J]. International Journal of Refractory Metal and Hard Materials. 1995, 13 (5): 257-264
    [4]贾佐诚,陈飞雄,吴诚.硬质合金新进展[J].粉末冶金工业, 2010, 20 (3): 52-56
    [5]缪绪樟,周晓,郭明.大口径金刚石复合体取芯钻头的研制及应用[J].水利水电技术, 2008, 93 (4): 34-45
    [6]张波,张伟,张占阳.硬质合金群钻钻尖的试验研究[J].工具技术, 2008, 42 (10): 73-75
    [7]黄志强,范永涛,李琴,等.冲旋钻头的现状及发展趋势[J].石油矿场机械, 2009, 38 (2): 92-96
    [8]张建兵,李小强,龙雁,等.高性能WC合金的研究进展[J].材料导报, 2005, 19 (10): 68-72
    [9]段毅鸿,白佳声,章文宝,等.硬质合金材料的应用与发展[J].机械工师, 2001, (1):17-18
    [10]黄河.牙轮钻滚轮式稳杆器研制[J].矿山机械, 2010, 38 (3): 119-120
    [11]吕瑞典,陈渝,骆发前.镶嵌硬质合金块稳定器的失效分析[J].天然气工业, 2003, 23 (5): 61-63
    [12]董合健,吕宗高,龚伟民,等. ND-S114型套管内割刀的研究与应用[J].石油机械, 1999, 27 (3): 34-35
    [13]周建华,卢伟民.国内外硬质合金生产现状及近期发展动向分析[J].稀有金属与硬质合金, 2006, 34 (1): 36-41
    [14]余立新,胡惠勇.世界硬质合金材料技术新进展[J].硬质合金, 2006, 23 (1): 52-57
    [15]李梦.超细WC基硬质合金的研究进展[J].航空制造技术, 2009, (5): 68-70
    [16] Upadhyaya A, Satathy D, Wagner G. Advances in sintering of hard metals[J]. Materials and Design, 2001, (6): 499
    [17]白佳声,章文宝.硬质合金材料的性能特点及其发展应用前景[J].上海金属, 2001, 23 (6): 10-13
    [18]陈立宝,贺跃辉,邓意达.镍钴粉末生产现状及发展趋势[J].粉末冶金技术, 2004,22 (3): 173-177
    [19]黄伯云.我国有色金属材料现状及发展战略[J].江苏科技信息, 2005, (8): 3-5
    [20]张立,吴厚平.国内外硬质合金产业状况[J].硬质合金, 2009, 26 (2): 122-126
    [21]张忠健,李仁琼.中国硬质合金工业的发展与技术进步[J].中国钨业, 2009, 24 (5): 75-80
    [22]周菊秋,张忠健.中国硬质合金工业现状、技术创新和发展方向[J].中国钨业, 2009, 24 (5): 67-74
    [23]徐志花,马淳安,甘永平.超细碳化钨及其复合粉末的制备[J].化学通报, 2003, (8): 544-548
    [24]张武装,高海燕,黄伯云.纳米WC-Co复合粉的研究[J].硬质合金, 2002, 19 (2): 91-95
    [25]毛昌辉.高能机械研磨纳米结构WC-Co复合粉末的研究[J].稀有金属,1999,23 (3): 185
    [26]李爱国,熊益民,徐丽莉.机械合金化技术在超细硬质材料中的应用进展[J].金属热处理, 2006, (10): 1-3
    [27] Butler B G, Lu J, Fang Z Z, et al. Production of nanometric tungsten carbide powders by planetary milling [J]. International Journal of Powder Metallurgy. 2007, 43 (1): 35-43
    [28]马运柱,黄伯云,范景莲,等.纳米级(晶)钨基合金复合粉末的制备[J].粉末冶金材料科学与工程, 2004, (3): 204-211
    [29] Spriggs G E. History of fine grained hardmetal [J]. International Journal of Refractory Metals and Hard Materials. 1995, 13 (5): 241-255
    [30]缪曙霞,殷声,李建勇,等.自蔓燃高温合成法(SHS)制备碳化钨[J].中国有色金属学报, 1994, 4 (2): 79-82
    [31]赵海锋,朱丽慧,马学鸣.纳米WC硬质合金制备新工艺[J].材料科学与工程, 2003, 21 (1): 130-133
    [32] Yao Z G, Jacob S, Sudardhan T S. Nanosized WC-Co holds promise for the future[J]. Metal powder report, 1998, 53 (7): 26
    [33] Walter L, Dreyer K. Functionnally graded hardmetals [J]. Journal of Alloys and Compounds, 2002, 338 (1-2): 194
    [34] Frykholm R, Andren H O. Develpoment of the microstructure duringgradient sintering ofa cemented carbide [J]. Materials Chemistry and Physics, 2001, 67 (3): 203
    [35]刘继胜.微波烧结工作原理及工业应用研究[J].机电产品开发与创新, 2007, 20 (2):20-23
    [36]邓华,隋锦.真空热压烧结工艺及设备在超硬材料制品生产中的应用[J].金刚石与磨料磨具工程, 2004, (3): 62-65
    [37]马垚,周张健,姚伟志,等.放电等离子烧结(SPS)制备金属材料研究进展[J].材料导报, 2008, 22 (7): 60-63
    [38]杨俊逸,李小强,郭亮,等.放电等离子烧结(SPS)技术与新材料研究[J].材料导报, 2006, (6): 94-97
    [39]王伟,栾道成,陈庚.超细硬质合金研究进展综述[J].西华大学学报(自然科学版), 2009, 28 (4): 100-103
    [40]谢宏,肖逸锋,贺跃辉,等.低压烧结对硬质合金组织和性能的影响[J].中国钨业, 2006, 21 (6): 27-30
    [41] Antonio M L, Roberto O, Giacomo C. Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC-TiB2 composites[J]. Materials Science and Engineering (A), 2006, 434 (25): 23-29
    [42]邹正光,李金莲,陈寒元.高能球磨在复合材料制备中的应用[J].桂林工学院学报, 2002, 22 (2): 174-178
    [43] He Q, Jia C C, Meng J. Influence of iron powder particle size on the microstructure and properties of Fe3Al intermetallics prepared by mechanical alloying and spark plasma sintering [J]. Materials Science and Engineering(A), 2006, 428 (25): 314-318
    [44]张梅琳,马俊,吴彩霞,等.高能球磨制备纳米WC/MgO粉末的工艺研究[J].佛山陶瓷, 2007, (10): 12-16
    [45]陈君平,施雨湘,张凡,等.高能球磨中的机械合金化机理[J].机械, 2004, 31 (3): 52-54
    [46]韩兵强,李楠.高能球磨法在纳米材料研究中的应用[J].耐火材料, 2002, 36 (4):240-242
    [47] Zhang D L. Processing of advanced materials using high-energy mechanical milling [J]. Progress in Materials Science, 2004, (49): 537-560
    [48] Schwarz R B, Petrich R R, Saw C K. The synthesis of amorphous Ni-Ti alloy powders bymechanical alloying [J]. Journal of Non-Crystalline Solids, 1985, (76): 281-302
    [49] Dymek S, Dollar M, Hwang S J, et al. Deformation mechanisms and ductility of mechanically alloyed NiAl [J]. Materials Science and Engineering (A), 1992, 152 (1-2): 160- 165
    [50]马明亮,董增祥,魏建宁,等.高能球磨在材料制备领域的工业化应用[J].热加工工艺, 2006, 35(6): 66-69
    [51]黄斌. SPS放电等离子烧结技术及其应用[J].世界有色金属, 2006, (1):15-19
    [52] Luo Y M, Pan M, Li S Q, et al. A novel functionally graded material in the Ti-Si-C system [J]. Materials Science and Engineering (A), 2003, 345(1-2): 99-105
    [53] Ozaki K, Kobayashi K, Nishio T, et al. SPS mechanism introduction [J]. Japan Powder Metallurgy, 2000, 47(3): 293-296
    [54]汪胜祥,郑勇,刘文俊. SPS烧结技术及其在陶瓷材料制备中的应用[J].硬质合金, 2003, 20 (4): 232-236
    [55]傅小明,吴晓东.超细硬质合金中添加抑制剂的研究进展[J].四川有色金属, 2004, (1): 22-26
    [56]曹顺华,林信平,李炯义,等.一种新型晶粒长大抑制剂对YG10硬质合金烧结行为的影响[J].中南大学学报(自然科学版), 2005, 36 (4): 533-538
    [57]吴其山.超细WC-Co硬质合金研究综述[J].中国钨业, 2005, 20 (6): 35-40
    [58]贺从训,汪有明,马福康.稀土在硬质合金中的应用研究[J].硬质合金, 1994, 11 (3): 129-133
    [59] Xiong J, Yang J G, Guo X H. Application of rare earth elements cemented carbide inserts, drawing dies and mining tools [J]. Materials Science and Engineering A, 1996, 209 (1-2): 287-93
    [60]邱智海. WC-Co硬质合金中的添加剂[J].硬质合金, 2004, 21(2): 121-124
    [61]唐琛,张崇才,盛智勇,等.超细WC-TiC-Co硬质合金粉体制备及其成型特性[J].西华大学学报, 2008, 27 (3): 58-60
    [62]方琴,张崇才,章雪,等.粉体粒度对钨钴钛硬质合金烧结特性的影响[J].西华大学学报, 2009, 28 (6): 105-108
    [63]文潮,李迅,孙德玉,等.纳米金刚石颗粒粒度的测量[J].西安交通大学学报, 2003, 37 (9): 984-985
    [64]崔忠圻.金属学与热处理[M].北京:机械工业出版社, 1999: 217-233
    [65]孙剑飞,张法明,沈军,等.高能球磨合成纳米WC-Co复合粉末的特性[J].稀有属, 2003, 27 (6): 665-670
    [66]唐振方,高勇,杨元政,等. WC粉体的高能球磨超细化[J].中国有色金属学报,2000, 10(1): 246-248
    [67]朱心昆,林秋实,陈铁力,等.机械合金化的研究进展[J].粉末冶金技术, 1999, 17(4): 291-296
    [68] Murty B S. Mechanical alloying—a novel synthesis route for amorphous phase [J]. Bull- etin of Material Science, 1993, 16 (1):l-17
    [69] Huang Y, Wu Y K, Ye H Q. Allotropic transformation of cobalt induced by ball milling[J]. Acta Materialia, 1996, 44 (3):1201-1209
    [70]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社, 1998: 12-13
    [71] Lu L, Lai M O, Zhang S. Diffusion in mechanical alloying [J]. Journal of Materials Processing Technology, 1997, 67 (2): 100-104
    [72] Wang S W, Chen L D. Effect of plasma activated sintering (PAS) parameters on densification of copper powder [J]. Materials Research Bulletin, 2000, 35 (4): 619-628
    [73] Zhang D M, Fu Z Y, Wang Y C. Heterogeneous of Non-conductive Materials Sintering by Pulse Electric Current [J]. Key Engineering Materials, 2002, 224 (2): 729-733
    [74] Handtrack D, Despang F, Sauer C. Fabrication of ultra-fine grained and dispersion - strengthened titanium materials by spark plasma sintering [J]. Materials Science and Engineering (A), 2006, 437 (15): 423-429
    [75] Wang Y C, Fu Z Y. Study of temperature field in spark plasma sintering [J]. Materials Science and Engineering (B), 2002, 90 (7): 34-37
    [76] Mamedov V. Spark plasma sintering as advanced PM sintering method [J]. Powder Metallurgy, 2002, 45 (4): 322-328
    [77] Wang G M, Campbell S J. Synthesis and structural evolution of tungsten carbide prepared by ball miling [J]. Journal of Materials Science, 1997, (32): 1461-46
    [78]邱友绪,李宁,张伟,等. WC-Co超细晶硬质合金晶粒长大抑制剂及其机理的研[J].硬质合金, 2006, 23 (4): 254-257
    [79]刘向中.非均匀结构YT5R稀土硬质合金综合性能的研究[J].硬质合金,2004,21 (2):86-88
    [80]刘寿荣. WC- Co硬质合金中TaC, Cr3C2添加剂的作用机理[J].稀有金属材料与工程, 1997, 26( 6) : 31-35
    [81]吴厚平,张立,王振波等.镧、铈在WC-Co合金中赋存状态的研究[J].中国稀土学报, 2009, 27 (5): 693-696
    [82]贺从训,汪有明,林晨光等.稀土元素对钨钴钛合金性能及组织结构的影响[J].中国稀土学报, 1994, 12 (3): 234-238
    [83] He C X, Wang Y M, Lin C G, et al. Effects of rare elements on properties and structure of WC-8Co cemented carbide[J]. Rare Metals, 1991, 10 (3): 1279-1283
    [84]束德林.工程材料力学性能[M].北京:机械工业出版社, 2006: 65-88
    [85] Zhang H B, Fang Z Z. Characterization of quasi-plastic deformation of WC–Co composite using hertzian indentation technique [J]. International Journal of Refractory Metals & Hard Materials, 2008, 26 (2): 106-114
    [86]刘书祯.超细晶硬质合金晶粒长大抑制剂的研究[J].稀有金属与硬质合金, 2007, 35 (4): 51-55
    [87] Allibert C H. Sintering features of cemented carbides WC-Co processed from fine powders [J]. International Journal of Refractory Metals & Hard Materials, 2001, 19 :53- 61.
    [88]范景莲,李志希,缪群等.超细/纳米硬质合金及晶粒长大抑制剂的研究[J].粉末冶金技术, 2004, 22 (5): 259-265
    [89]金永中,吴卫. VC抑制WC晶粒长大的研究评述[J].机械工程材料, 2005, 29 (1): 7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700