生物燃料烟雾与慢性阻塞性肺疾病关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:慢性阻塞性肺疾病(COPD)是一种具有气流受限特征的可以预防和治疗的疾病,气流受限不完全可逆、呈进行性发展,与肺部对香烟烟雾等有害气体或有害颗粒的异常炎症反应有关。它是一种全球性患病率较高的疾病,而且呈上升趋势。有针对性的干预能降低COPD的患病率。全球疾病负担评估表明,使用生物燃料造成的空气污染是一项威胁全球公共卫生的重要问题,是发展中国家农村地区最大的死亡负担,它可造成每年200万以上的死亡和4%的全球疾病负担。生物燃料烟雾是发展中国家室内空气污染的主要来源,越来越多的证据表明,在发展中国家,使用生物燃料取暖和做饭与COPD密切相关,是广大发展中国家COPD的一个重要危险因素。然而,在各种人群中,生物燃料烟雾暴露与COPD的相关程度,生物燃料烟雾暴露量与COPD的危险度关系以及生物燃料烟雾暴露与香烟烟雾暴露的相互影响尚不清楚。
     COPD是一种全身性疾病,对全身各个系统都产生影响。但是,COPD的临床研究却受到了很多因素的限制。首先临床上要获得COPD病人全身各个系统标本相当困难,只有血标本的获取相对容易;其次,外周血中一些指标的变化不一定与肺部及其他系统的改变相平行。因此,许多学者致力于COPD动物模型的建立。现已有多种方法可复制出COPD动物模型,但是尚没有建立生物燃料烟雾暴露的COPD动物模型,因此对生物燃料烟雾暴露所致COPD的研究尚少。
     COPD是一种全身性的疾病,存在多系统的氧化应激,但是生物燃料烟雾暴露所致COPD的全身氧化应激状况如何,生物燃料烟雾和香烟烟雾暴露所致全身氧化应激有何异同尚不清楚。
     研究目的:本课题分三部分:第一部分采用循证医学的方法研究生物燃料烟雾暴露与COPD的关系,以明确生物燃料导致COPD的危险度,以及种族、性别及吸烟对生物燃料烟雾导致COPD的危险度的影响。第二部分观察生物燃料烟雾对大鼠肺脏病理组织学的影响,并与香烟烟雾对大鼠肺脏病理组织学改变相比较。第三部分比较生物燃料烟雾暴露和香烟烟雾暴露大鼠全身氧化应激状况的异同,以进一步探讨COPD的发病机制。
     第一部分:生物燃料烟雾暴露与慢性阻塞性肺疾病的循证医学研究
     方法:我们通过电子检索Medline,Embase,LILACS数据库,并且查阅相关文献的参考文献,共鉴定出15个流行病学研究(4个病例-对照研究和11个横断面研究)符合纳入的研究标准。用标准化的数据提取方案来提取资料并进行统计学分析。结果:和不暴露者相比,生物燃料烟雾暴露者发展为COPD的OR值为2.44(95%CI为1.90-3.33)。对于不同性别、不同种族、不同吸烟状态,生物燃料烟雾暴露是COPD的危险因素(女性OR: 2.73, 95% CI: 2.28-3.28;男性OR4.30, 95% CI: 1.85-10.01;亚洲人:OR: 2.31, 95% CI: 1.41-3.78;非亚洲人OR: 2.56, 95% CI: 1.71-3.83;吸烟者OR=4.39, 95%CI:1.40-4.66,不吸烟者OR=2.55, 95%CI: 2.06-3.15)。生物燃料烟雾暴露者发展为慢性支气管炎的OR值为2.56(95%CI为1.71-3.83),发展为通过肺功能诊断的COPD的OR值为2.65(95% CI: 1.75-4.03)。生物燃料烟雾暴露量越大,发展为COPD的危险性越大。小结:生物燃料烟雾暴露是COPD的危险因素,吸烟和生物燃料烟雾暴露存在协同作用。生物燃料烟雾暴露量越大,发展为COPD的危险性越大。
     第二部分:生物燃料烟雾暴露对大鼠肺脏病理组织学的影响
     方法:30只雌性SD大鼠,随机分为正常对照组、生物燃料烟雾暴露组、香烟烟雾暴露组,每组10只。每组动物每天置于烟室内两次,每次45min,分别向烟室内充新鲜空气,生物燃料烟雾和香烟烟雾,共100天。熏烟时同时测量烟室中O2、SO2、CO和NO的浓度。100天后,处死动物,HE染色检查大鼠肺脏病理组织学。ELISA法检测血浆IL-8含量,同时进行全血细胞计数和分类,肺泡灌洗液中白细胞计数和分类,右心室重量/室间隔+左心室重量。结果:生物燃料烟雾暴露大鼠熏烟期间箱内O2、CO、SO2和NO的浓度分别为(20.31±0.21)%、(981.72±429.59) mg/m3、(3.44±3.36) mg/m3和(2.59±1.71) mg/m3,香烟烟雾暴露大鼠熏烟期间箱内O2、CO、SO2和NO的浓度分别为(20.28±0.15)%、(745.56±683.24) mg/m3、(12.64±11.44) mg/m3和(3.37±0.52) mg/m3。病理切片HE染色镜下见对照大鼠小气道黏膜上皮完整,纤毛未见黏连脱落,管壁规整未见增厚,未见炎性细胞浸润,管腔内未见炎性渗出物,肺泡腔未见病理性扩大。生物燃料烟雾暴露和香烟烟雾暴露大鼠肺脏病理组织学无明显区别,都可见小气道上皮呈锯齿状增生增厚,支气管壁增厚,见炎性细胞浸润。管腔内见大量炎性渗出物,管壁结缔组织增生,可见淋巴小结。肺泡结构紊乱,肺泡壁断裂,肺泡腔扩大,部分融合成肺大疱。生物燃料烟雾暴露组和香烟烟雾暴露组支气管炎症评分分别为32.66±13.84和32.25±12.51,高于对照组11.11±9.84;平均肺泡间隔分别为130.62±33.64μm、119.03±26.20μm高于对照组89.84±17.34um;而平均肺泡数低于对照组,分别为169.21±76.33个/mm2、173.86±68.33个/mm2和280.26±103.95个/mm2。生物燃料组、香烟烟雾暴露组大鼠血浆中IL-8的浓度分别为240.79±161.28 pg/ml、188.14±20.85 pg/ml高于对照组107.91±35.84 pg/ml。生物燃料烟雾组、香烟烟雾暴露组大鼠BALF白细胞计数及中性白细胞比例高于对照组。而生物燃料烟雾暴露组大鼠全血白细胞和红细胞计数以及血红蛋白含量高于对照组和吸烟组。生物燃料组、香烟烟雾暴露可使大鼠体重减轻,右心室重量/左心室+室间隔重量增加。小结:生物燃料烟雾暴露和香烟烟雾一样都可使大鼠产生慢性支气管炎和肺气肿, BALF中白细胞计数及中性分类增高,血浆IL-8增加,同时,两种烟雾所致大鼠肺脏病理组织学无明显差异。生物燃料烟雾暴露可使大鼠全血白细胞和红细胞计数以及血红蛋白含量上升。
     第三部分:生物燃料烟雾和香烟烟雾暴露大鼠全身氧化应激状况比较的研究
     方法:使用试剂盒测定血浆T-SOD活力;肺脏、心脏总抗氧化能力;血浆、肺脏、心脏、肝脏MDA和GSH含量;血浆、肺脏和心脏iNOS活力,心脏和肺脏GST活力等氧化/抗氧化指标。应用荧光定量PCR的方法检测肺组织GCLC-mRNA、GSTM1-mRNA、GSTP-mRNA和SLPI-mRNA以及心脏组织GCLC-mRNA、GSTM1-mRNA和GSTP- mRNA的表达。免疫组化分析肺脏组织GCLC的表达。Western Blot检测肺组织γ-GCSc(GCLC)蛋白表达。
     结果:香烟烟雾暴露和生物燃料烟雾暴露大鼠血浆中T-SOD活力分别为(218.65±65.60)u/ml,(223.91±56.86) u/ml,低于对照组(283.11±41.71) u/ml。香烟烟雾暴露组大鼠肺和心脏的总抗氧化能力低于对照组和生物燃料暴露组;生物燃料暴露组大鼠肺和心脏的总抗氧化能力与对照组无区别。生物燃料烟雾暴露组肺脏MDA的浓度高于对照组,而吸烟组肺脏MDA的浓度低于对照组;生物燃料烟雾暴露组和吸烟组心脏MDA的浓度低于对照组;血浆和肝组织中MDA浓度三组无明显差异。生物燃料烟雾暴露组血浆iNOS活力低于吸烟组和对照组,肺脏iNOS活力与对照组和吸烟组无明显差异,心脏iNOS活力高于对照组和吸烟组。生物燃料组、吸烟组和对照组血浆、肺脏、心脏、肝脏组织匀浆中GSH浓度没有明显的差异。在肺脏组织中,香烟组GST酶的活力为(28.43±8.80) RFU/min/ mgpro,生物燃料组GST酶的活力为(15.44±11.34) RFU/min/ mgpro,对照组GST酶的活力为(20.54±10.12) RFU/min/ mgpro。心脏组织中香烟组GST酶的活力为(4.35±1.94) RFU/min/mgpro,低于生物燃料组(6.27±1.31)RFU/min/mgpro和对照组(6.76±1.26) RFU/min/ mgpro。吸烟组大鼠肺组织GCLC-mRNA的表达高于对照组和生物燃料组,GSTP1-mRNA的表达低于对照组和生物燃料烟雾暴露组,差异具有统计学意义。肺脏GSTM1mRNA和SLPImRNA的表达三组间没有差别。生物燃料组大鼠心脏GSTM1-mRNA的表达高于对照组,差异具有统计学意义。吸烟组心脏GSTM1-mRNA的表达高于对照组,差异无统计学意义。心脏GSTP-mRNA和GCLC-mRNA的表达三组间无差别。免疫组化显示对照组支气管上皮和肺泡上皮GCLC呈弱阳性表达。生物燃料组和香烟组大鼠支气管上皮和肺泡上皮GCLC表达增强,且均为胞浆表达;而且肺间质纤维化越明显的地方,GCLC的表达越强。免疫组化定量分析和Western-blot分析显示香烟组和生物燃料组肺脏γ-GCSc蛋白的表达强于对照组。小结:本研究显示,香烟烟雾和生物燃料烟雾暴露都可导致大鼠出现全身性氧化应激。两种烟雾刺激所引起的全身氧化应激是不同的。香烟烟雾暴露使大鼠血浆SOD活力降低,心脏和肺脏的总抗氧化力下降,心脏GST活力下降。肺组织中GCLC-mRNA表达增加,GSTP-mRNA表达下降,心肌组织中GSTM1-mRNA表达增强。肺组织GCLC蛋白表达增强,在肺纤维化越明显的部位GCLC表达越高。生物燃料烟雾暴露使大鼠血浆SOD和INOS活力降低,心脏INOS活力增强;肺脏MDA水平升高,心脏MDA降低;肺脏GST活力下降。心肌组织中GSTM1-mRNA表达增强。肺组织GCLC蛋白表达增强,在肺纤维化越明显的部位GCLC表达越高。
     结论:生物燃料烟雾暴露是COPD的危险因素,吸烟和生物燃料烟雾暴露存在协同作用。生物燃料烟雾暴露量越大,发展为COPD的危险性越大。生物燃料烟雾和香烟烟雾暴露一样可使大鼠产生慢性支气管炎和肺气肿,两种原因所致肺气肿病理组织学上无明显区别。香烟烟雾和生物燃料烟雾暴露可导致机体出现全身性的氧化抗氧化失衡,导致全身的氧化应激。两种烟雾刺激所引起的全身氧化应激存在一定的差异。
Background: Chronic obstructive pulmonary disease (COPD) is a preventable and treatable disease with some significant extrapulmonary effects that may contribute to the severity in individual patients. Its pulmonary component is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lung to noxious particles or gases. COPD is a global disease with a high and increasing prevalence. Evidence showed that some kind of intervention can reduce the prevalence of COPD. It has been estimated that indoor air pollution resulting from the combustion of solid fuels may be one of the leading contributors to the global burden of disease.Exposure to indoor air pollution may be responsible for nearly 2 million excess deaths in developing countries and for some 4% of the global burden of disease. There is increasing evidence for a possible association between COPD and the use of biomass fuels for cooking and heating in developing countries.However,the extent of the association between biomass smoke and COPD among different Population, the duration of biomass smoke on COPD and the relation between biomass smoke and cigarette smoke is not fully known.
     Indoor air pollution is a major global public health threat requiring greatly increased efforts in the areas of research and policy-making.COPD is a system disease.However,the clinical research of COPD were restricted,because it is very differcult to obtain the sample of each system.We only can get the sample of blood.However,the vary of the biomarker in blood is not parallelled with lung and the other organs. So, several kinds of COPD animal model developed.However,there is no COPD animal model caused by biomass smoke.Exposure to biomass smoke is a risk factor for COPD.And COPD is a system disease with system oxidative stress, however there is no information about system oxidative stress caused by biomass smoke and about the difference of oxidative stress between biomass smoke and cigarette smoke.
     Objective: To get the information about the extent of the association between biomass smoke and COPD among different Population, the duration of biomass smoke on COPD and the relationship between biomass smoke and cigarette smoke. To compare the pathological morphology caused by biomass smoke and cigarette smoke.To compare the system oxidative stress caused by exposure to biomass smoke and cigarette smoke.
     Part I Risk of chronic obstructive pulmonary disease from exposure to biomass smoke: Result from meta-analysis
     Methods:We searched the Medline, Embase, LILACS and reviewed citations in relevant articles to identify 15 epidemiologic (11 cross-sectional and 4 case-control) studies that met inclusion criteria. Data were extracted and analyzed independently by two investigators using a standardized protocol.Results: Overall, people exposed to biomass smoke have odds ratio (OR) of 2.44 (95 percent confidence interval (95% CI) 1.9-3.33) for developing COPD, compared with those not exposed to biomass smoke. Biomass smoke exposure was consistently a risk factor for developing COPD in women (OR: 2.73, 95% CI: 2.28-3.28),in men (OR: 4.30, 95% CI: 1.85-10.01), in Asian population (OR: 2.31, 95% CI: 1.41-3.78) ,in Non-Asian population (OR: 2.56, 95% CI: 1.71-3.83),in the phenotype of chronic bronchitis (OR: 2.56, 95% CI: 1.77-3.70),in the phenotype of COPD (OR: 2.65, 95% CI: 1.75-4.03),and in cigarettes smoker (OR=4.39, 95%CI:1.40-4.66) and in cigarettes nonsmoker (OR=2.55, 95%CI: 2.06-3.15). Conclusions: Exposure to biomass smoke is a risk factor for COPD. There is interaction between cigarette and biomass smoke.
     Part II The influence of biomass smoke on rat lung pathological morphology
     Methods: Sprague Dawley Rat were divided into three groups: control group(C group) rats were exposed to fresh air; biomass smoke group(BS group) were exposed to biomass smoke; cigarette smoke(CS) group were exposed to cigarette smoke. All rats were exposed to the smoke/fresh air 45 minutes a time and twice a day for 100 days. During the exposure time, the concentration of O2、SO2、CO and NO were detected. On the end of day 100, animals were sacrificed. Lung tissues were obtained for histological detections using H&E staining. Sera were detected for il-8. BALF were obtained for cell analysis.
     Result: During the exposure time, the concentration of O2、SO2、CO and NO in the biomass smoke group were (20.31±0.21)%、(981.72±429.59) mg/m3、(3.44±3.36) mg/m3 and (2.59±1.71) mg/m3 respectively and the concentration of O2、SO2、CO and NO in the cigarette group were (20.28±0.15)%、(745.56±683.24) mg/m3、(12.64±11.44) mg/m3 and (3.37±0.52) mg/m3 respectively. The pathological morphology showed that airway epithelia were intact, ciliary arrangements were regular and the structures of alveoli were normal in C group; Characteristic pathological changes of bronchitis and emphysema were observed in BS group and CS group.The pathological score of airway abnormities was higher in CS group(32.66±13.84) and BS group(32.25±12.51) than that in C group (11.11±9.84). The MLI in BS group (130.62±33.64μm) and CS (119.03±26.20μm) were longer than that in C group( 89.84±17.34um ). The MAN in BS group(169.21±76.33/mm2) and CS group (173.86±68.33/mm2 )were smaller than that in C group (280.26±103.95/mm2 ).The serum concentration of IL-8 was higher in CS group(188.14±20.85 pg/ ml) and BS group (240.79±161.28 pg/ml) than that in C group(107.91±35.84 pg/ml).The total inflammatory cells count and the proportion of neutrophils of BALF in BS group and CS group was higher than in C group. The total white blood cell、red blood cell and Hemoglobin in BS group were higher than that in CS group and c group.Conclusion: Exposure to biomass smoke and cigarette smoke will lead to emphysema. The pathological morphology induced by biomass smoke and cigarette smoke were similar.
     PART III The study of system oxidative stress in the rat exposure to biomass smoke and cigarette smoke
     Method: The activities of superoxide dismutase (SOD) in sera, the total ability of antioxidant in lung tissue homogenate and in heart tissue homogenate,the levels of glutathione (GSH), malondialdehyde (MDA)in sera、lung tissue homogenate、heart tissue homogenate and liver homogenate, the activities of iNOS in in sera、lung tissue homogenate、heart tissue homogenate and the activities of GST in lung tissue homogenate and heart tissue homogenate were measured .The expressions of GCLC-mRNA、GSTM1-mRNA、GSTP-mRNA and SLPI-mRNA in the lung tissue and the GCLC-mRNA、GSTM1-mRNA and GSTP-mRNA in heart tissue were respectively measured with real-time-PCR methods. The expressions ofγ-GCSc(GCLC)protein were measured with immunohistochemisty and Western-blot. Result: The activities of serum superoxide dismutase (SOD) in BS group(223.91±56.86 u/ml) and CS group (218.65±65.60u/ml) were lower than that in C group(283.11±41.71 u/ml). The total ability of antioxidant in lung tissue homogenate and heart homogenate in CS group were lower than that in BS group and C group. The levels of MDA in heart tissue homogenate in BS and CS group were lower than that in C group. The levels of MDA in lung tissue homogenate in BS group were higher than that in C group and CS group. The levels of MDA in liver tissue homogenate and sera were similar in the three groups. The activities of iNOS in lung tissue homogenate in BS group were lower than that in CS group and C group. The activities of iNOS in heart tissue homogenate in BS group and CS group were lower than that in C group. There is no difference of activities of iNOS in sera in the three group. There is no difference of the levels of glutathione (GSH) in sera、lung tissue homogenate、heart tissue homogenate and liver homogenate between the three group. The activities of GST in lung tissue homogenate in CS group (28.43±8.80 RFU/min/ mgpro) were higher than that in BS group(15.44±11.34 RFU/min/ mgpro) and C group(20.54±10.12)RFU/min/ mgpro). The activities of GST in heart tissue homogenate in CS group (4.35±1.94) RFU/min/ mgpro were lower than that in BS group(6.27±1.31 RFU/min/mgpro) and C group(6.76±1.26RFU/min/mgpro).For lung,the expressions of GCLC-mRNA in CS group were stronger than that in BS group and C group. The expressions of GSTP1-mRNA in BS group were weaker than that in CS group and C group.For heart, The expressions of GSTM1-mRNA in BS group and CS group were stronger than that in C group;There is no difference of the expressions of GSTP-mRNA and GCLC-mRNA in BS、CS group and C group.
     The immunohistochemisty showed that a few GCLC were expressed in endochylema of alveolar and airway epithelial cells in control group.The GCLC were expressed in BS group and CS group were stronger than that in C group. The more the pulmonary fibrosis is, the stronger of the GCLC expressed. Western-blot analysis also showed that the GCLC were expressed stronger in CS group and BS group than in C group. Conclusion: Exposure to biomass smoke and cigarette smoke will lead to system oxidative stress.There is some difference of system oxidative stress between the two kind of exposure.
引文
1. Pauwels RA, Buist AS, Calverley PM, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001;163:1256-1276.
    2. Marco R, Accordini S, Cerveri I,etal. Incidence of chronic obstructive pulmonary disease in a cohort of young adults according to the presence of chronic cough and phlegm. Am J Respir Crit Care Med 2007;175(1):32-39.
    3. Johannessen A, Omenaas E, Bakke P, Gulsvik A. Incidence of GOLD-defined chronic obstructive pulmonary disease in a general adult population. Int J Tuberc Lung Dis. 2005,9(8):926-932.
    4. Regional COPD Working Group. COPD prevalence in 12 Asia-Pacific countries and regions: projections based on the COPD prevalence estimation model. Respirology. 2003,8(2):192-198.
    5. Nanshan Zhong, Chen Wang, Wanzhen Yao, et al. Prevalence of chronic obstructive pulmonary disease in China: a large, population based survey. Am J Respir Crit Care Med 2007; 176(8):753-760.
    6. David M. Mannino, Dennis E. Doherty and A. Sonia Buist. Global Initiative on Obstructive Lung Disease (GOLD) classification of lung disease and mortality: findings from the Atherosclerosis Risk in Communities (ARIC) study. Respiratory Medicine 2006;100(1):115-122.
    7. Anne Lindberg, Anders Bjerg-B?cklund, Eva R?nmark , etal. Prevalence and underdiagnosis of COPD by disease severity and the attributable fraction of smoking: Report from the Obstructive Lung Disease in Northern Sweden Studies. Respiratory Medicine 2006;100(2):264-272.
    8. Victor JT G, Francisco J L A, Norma R S,etal. Recent Trends in Mortality Due toChronic Obstructive Pulmonary Disease(COPD) in Mexico, 1980-2002. Archives of Medical Research 2005;36:65–69.
    9. Mannino M.COPD:epidemiology , prevalence morbidility and mortality. Chest 2002;121:121s-126s
    10. Robert S Chapman, Xingzhou He, Aaron E Blair,etal. Improvement in household stoves and risk of chronic obstructive pulmonary disease in Xuanwei,China: retrospective cohort study. BMJ 2005; 331 (7524):1050-1057.
    11. Tzanakis N, Anagnostopoulou U, Filaditaki V,etal. Prevalence of COPD in Greece. Chest 2004;125(3):892-900.
    12. Kalucka S.The occurrence of chronic obstructive pulmonary disease (COPD) in cigarette smoking families.Przegl Lek 2006;63(10):848-857.
    13. Svanes C, Omenaas E, Jarvis D,etal. Parental smoking in childhood and adult obstructive lung disease: results from the European Community Respiratory Health Survey. Thorax 2004;59(4):295-302.
    14. Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 2000; 78:1078–1092.
    15. Ezzati M, Lopez AD, Rodgers A, et al. Selected major risk factors and globaland regional burden of disease. Lancet 2002; 60:1347–1360.
    16. Mestl HE, Aunan K, Seip HM, et al. Urban and rural exposure to indoor air pollution from domestic biomass and coal burning across China. Sci Tot Environ 2007; 77:12–26.
    17. Office of the Registrar General of India Ministry of Home Affairs. Census of India. New Delhi, India; 2001.
    18. Desai M, Mehta S, Smith K. Indoor smoke from solid fuels: assessing the environmental burden of disease at national and local levels. Geneva, Switzerland: World Health Organization; 2004.
    19. Rehfuess E, Mehta S, Pruss-Ustun A. Assessing household solid fuel use:multiple implications for the Millennium Development Goals. Environ Health Perspect 2006;114:373–378.
    20. Smith KR. National burden of disease in India from indoor air pollution. Proc Natl Acad Sci U S A 2000; 97:13286–13293.
    21. WHO. The World Health Report 2002: reducing risks, promoting healthy life.World Health Organization; http://www.who.int/whr/2002/en/
    22. D?′az E, Bruce N, Pope D, et al. Lung function and symptoms among indigenous Mayan women exposed to high levels of indoor air pollution. Int J Tuberc Lung Dis 2007; 11:1372–1379.
    23.Bruce N, Pe′rez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Org 2000; 78: 1078-1092.
    24.Eddahibi S, Chaouat A, Tu L. Interleukin-6 gene polymorphism confers susceptibility to pulmonary hypertension in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006 ;3(6):475-476.
    25.Vestbo J,Hogg J C.Convergence of the epidemiology and pathology of COPD.Thorax 2006;61(1):86-88.
    26.Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax 2007; 62(10):889 -897.
    27.Vibhuti A, Arif E, Deepak D,et al. Correlation of oxidative status with BMI and lung function in COPD. Clin Biochem 2007;40(13-14):958-963.
    28. Crespo E, Macias M, Pozo D, et al. Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 1999;13(12):1537-1546.
    29.Markoulis N, Gourgoulianis KI, Moulas A, et al. Reactive oxygen metabolites as an index of chronic obstructive pulmonary disease severity. Panminerva Med 2006;48(4):209-213.
    30.kacova R, Kluchova Z, Joppa P, et al. Systemic inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. Respir Med 2007; 101(8): 1670-1676.
    31.Sadowska AM, Luyten C, Vints AM, et al. Systemic antioxidant defences during acute exacerbation of chronic obstructive pulmonary disease. Respirology 2006; 11(6): 741-747.
    32.Rahman I, Schadewijk AA, Hiemstra PS, et al. Location of gamma-glutamylcysteine synthetase messenger RNA expression in lungs of smokers and patients with chronic obstructive pulmonary disease. Free Radic Biol Med 2000;28:920-925.
    33. M. Chan-Yeung,S P Ho,A H K. Cheung,etal. Polymorphisms of glutathione S-transferase genes and functional activity in smokers with or without COPD INT J TUBERC LUNG DIS 2005;11(5):508–514.
    34 Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax 2007; 62(10):889 -897.
    35.Ekici A, Ekici M, Kurtipek E, et al. Obstructive airway diseases in women exposed to biomass smoke. Environ Res 2005; 99(1):93-98.
    36.Kiraz K, Kart L, Demir R, etal. Chronic pulmonary disease in rural women exposed to biomass fumes. Clin Invest Med 2003;26(5):243 -248.
    37 Goel, BP Gupta, S Kashyap, etal. Epidemiological aspects of chronic bronchitis in Shimla hills .The Indian Journal of Chest Diseases & Allied Sciences 2007; 49:143-147.
    38 Behera D, Jindal SK. Respiratory symptoms in Indian women using domestic cooking fuels. Chest 1991;100(2):385-388.
    39 Caballero A, Torres-Duque CA, Jaramillo C, et al. Prevalence of COPD in five Colombian cities situated at low, medium, and high altitude (PREPOCOL study). Chest 2008;133(2):343-349.
    40 Dennis RJ, Maldonado D, Norman S,etal. Woodsmoke exposure and risk for obstructive airways disease among women. Chest 1996; 109:115-119.
    41 Regalado J, Pérez-Padilla R, Sansores R, etal. The effect of biomass burning on respiratory symptoms and lung function in rural Mexican women. Am J Respir Crit Care Med 2006; 174:901-905.
    42 Perez-Padilla , Regalado J, Vedal S, etal. Exposure to biomass smoke and chronicairway disease in Mexican women: a case-control study. Am J Respir Crit Care Med 1996; 154:701-706.
    43 Mrigendra Rajpandey. Domestic smoke pollution and chronic bronchitis in a rural community of the hill region of Nepal. Thorax 1984;39:337-339.
    44 Akhtar T, Ullah Z, Khan MH, etal. Chronic bronchitis in women using solid biomass fuel in rural Peshawar,Pakistan. Chest 2007; 132:1472-1475.
    45 Orozco-Levi M, Garcia-Aymerich J, Villar J, etal. Wood smoke exposure and risk of chronic obstructive pulmonary disease. Eur Respir J 2006; 27(3): 542-546.
    46 D?ssing M, Khan J, al-Rabiah F. Risk factor for chronic obstructive lung disease in Saudi Arabia. Respiratory Medicine 1994; 88:519-522.
    47 R Albalak, A R Frisancho and G J Keeler. Domestic biomass fuel combustion and chronic bronchitis in two rural Bolivian villages. Thorax 1999; 54;1004-1008.
    48 Menezes AM,Jardim JR,Pérez-Padilla R,etal.Prevalence of chronic obstructive pulmonary disease and associated factors: the PLATINO Study in S?o Paulo,Brazil. Cad Saude Publica 2005; 21(5):1565-1573.
    49 Shrestha IL, Shrestha SL.Indoor Air Pollution from Biomass Fuels and Respiratory Health of the Exposed population in Nepalese households. Int J Occup Environ Health 2005; 11(2):150-160.
    50 Xu F, Yin X, Shen H,etal. Better understanding the influence of cigarette smoking and indoor air pollution on chronic obstructive pulmonary disease: A case-control study in Mainland China. Respirology 2007; 12:891-897.
    51 Sezer H, Akkurt I, Guler N,etal. A case-control study on the effect of exposure to different substances on the development of COPD. Ann Epidemiol 2006; 16(1):59-62.
    52 Jindal SK. A field study on follow up at 10 years of prevalence of chronic obstructive pulmonary disease & peak expiratory flow rate. Indian J Med Res 1993, 98:20-26.
    53 Moreira MA, de Moraes MR, Silva DG, etal. Comparative study of respiratory symptoms and lung function alterations in patients with chronic obstructive pulmonary disease related to the exposure to wood and tobacco smoke. J Bras Pneumol 2008; 34(9):667-674.
    54 Díaz E, Bruce N, Pope D, etal. Lung function and symptoms among indigenous Mayan women exposed to high levels of indoor air pollution. Int J Tuberc Lung Dis 2007;11(12):1372-1379.
    55 LeVan TD, Koh WP, Lee HP, etal. Vapor, dust, and smoke exposure in relation to adult-onset asthma and chronic respiratory symptoms: the Singapore Chinese Health Study.Am J Epidemiol 2006;163(12):1118-1128.
    56 Chapman RS, He X, Blair AE, Lan Q. Improvement in household stoves and risk of chronic obstructive pulmonary disease in Xuanwei, China: retrospective cohort study. BMJ 2005;331(7524):1050
    57 Gunen H, Hacievliyagil SS, Yetkin O,etal. Prevalence of COPD: first epidemiological study of a large region in TurkeyEur J Intern Med 2008;19(7):499-504.
    58 Ko FW, Woo J, Tam W, etal. Prevalence and risk factors of airflow obstruction in an elderly Chinese populationEur Respir J 2008;32(6):1472-1478.
    59 Yaksic, Mateo Sainz, etal. Profile of a Brazilian population with severe chronic obstructive pulmonary disease. J pneumol 2003; 29(2):64-68.
    60 Jan Vandevoorde, Sylvia Verbanck, Lieve Gijssels,etal. Early detection of COPD: A case finding study in general practice. Respiratory Medicine 2007;101(3): 525-530.
    61 Frank TL, Hazell ML, Linehan MF, Frank PI. The diagnostic accuracies of chronic obstructive pulmonary disease (COPD) in general practice: The results of the MAGIC (Manchester Airways Group Identifying COPD) study. Primary Care Respiratory Journal 2006;15(5) 286-293.
    62 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21:1539-1558.
    63 DerSimonian R, Laird N. Meta-analysis in clinical trials.Control Clin Trials 1986; 7:177-188.
    64 Egger M, Smith GD, Schneider M, Minder C. et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315(7109):629
    65 Moran-Mendoza O, Pe′rez-Padilla JR, Salazar-Flores M, et al. Wood smokeassociated lung disease: a clinical, functional, radiological and pathologicaldescription. Int J Tuberc Lung Dis 2008; 12:1092–1098.
    66 Rivera RM, Cosio MG, Ghezzo H, et al. Comparison of lung morphology in COPD secondary to cigarette and biomass smoke. Int J Tuberc Lung Dis 2008; 12:972-977.
    67 Fidan F, Unlu M, Sezer M et al. Acute effects of environmental tobacco smoke and dried dung smoke on lung histopathology in rabbits. Pathology 2006 ;38(1):53-57
    68 Rahman I, van Schadewijk AA, Crowther AJ, etal. 4-hydroxy-2-nonenal,a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Resp ir Crit Care Med 2002;166(4):490-495.
    69 Sadowska AM, Luyten C, Vints AM, etal. Systemic antioxidant defences during acute exacerbation of chronic obstructive pulmonary disease. Respirology 2006; 11(6): 741-747.
    70 Kondo T, Tagami S, Yoshioka A, etal.Current smoking of elderly men reduces antioxidants in alveolar macrophages.American Journal of Respiratory and Critical Care Medicine 1994;149:178–182.
    71 Yan Huang, Jun Li, Qi Cao, etal.Anti-oxidative effect of triterpene acids of Eriobotrya japonica (Thunb.)Lindl. leaf in chronic bronchitis rats. Life Sciences 2006; 78: 2749-2757.
    72 Li GF, He YF, Huang MR, etal.Determination of serum superoxide dismutase, glutathione peroxidase, total antioxidative capacity, malondialdehyde in patients with pneumonia. Di YiJun Yi Da Xue Xue Bao 2003; 23:961-962.
    73 Joppa P, PetrásováD, Stancák B, etal. Oxidative stress in patients with COPD and pulmonary hypertension. Wien Klin Wochenschr 2007; 119(13-14): 428-434.
    74 Ahmed Nadeem,Hanumanthrao Guru Raj, Sunil Kumar Chhabra1. Increased Oxidative Stress and Altered Levels ofAntioxidants in Chronic Obstructive Pulmonary Disease.Inflammation 2005;29(1):23-32.
    75赵克然.氧自由基与临床[M].北京:中国医药科技出版社,2000:44-51.
    76 Isik B, Ceylan A, Isik R. Oxidative stress in smokers and non-smokers. Inhal Toxicol 2007;19(9):767-769.
    77 Al-All MK, Howarth PH. Nitric oxide and the respiratory system in health anddisease. Respir Med 1998;92(5):701-705.
    78 Crespo E, Macias M, Pozo D, et al. Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 1999;13(12):1537-1546.
    79邹朝霞,何志义,冉丕鑫.吸咽对大鼠肺内谷胱甘肽与γ- GCS的影响及乙酰半胱氨酸的干预作用.中国病理生理杂志2007; 23(1): 86-89.
    80 LI XY, RAHMAN I, DONALDSON K, et al. Mechanism of cigarette smoke induced increased air space permeability. Thorax 1996;51: 465- 471.
    81 Zaidi SM , Banu N. Antioxidant potential of vitamins A ,E and C in modulating oxidative st ress in rat brain. Clin Chim Acta 2004; 340 (1/2): 229-233.
    82.Harju T, Mazur W, Merikallio H, Soini Y, Kinnula VL. Glutathione- S-transferases in lung and sputum specimens, effects of smoking and COPD severity. Respir Res 2008; 9(1): 80.
    83.Jian-Qing He, Jian Ruan, John E,etal. Antioxidant Gene Polymorphisms and Susceptibility to a Rapid Decline in Lung Function in Smokers. Am J Respir Crit Care Med 2002;166:323–328.
    84. Guoping Hu, Weimin Yao, Yumin Zhou,etal.Meta- and pooled analyses of the effect of glutathione S-transferase M1 and T1 deficiency on chronic obstructive pulmonary disease。The International Journal of Tuberculosis and Lung Disease 2008;12(12): 1474-1481.
    85.Kinnula VL. Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases.Thorax 2005; 60(8):693-700.
    86. Rahman I, MacNee W. Lung glutathione and oxidative stress: implications in cigarette smoke - induced airway disease. Am J Physiol 1999; 277 (6 Pt1) : L1067 -L1088.
    87.林书典,戴爱国,唐朝克.γ-谷氨酰半胱氨酸合成酶在大鼠慢性阻塞性肺疾病中的表达.中华结核和呼吸杂志2004;27: 348-349.
    88.林书典,戴爱国,徐平.慢性阻塞性肺疾病患者γ谷氨酰半胱氨酸合成酶活性及表达的变化.中华结核和呼吸杂志2005;28(2):97-101.
    89.Tager M, Piecyk A, kohnlein T, et al. Evidence of a defective thiol status of alveolar macrophages from COPD patients smokers. Free Radic Biol Med 2000;29:1160-1165.
    90.Rusznak C, Mills PR, Devalia JL, et al. Effect of cigarette smoke release from cultured human chronic obstructive pulmonary disease. Am J Rerpir Cell Mol Biol 2000;23:530-536.
    91.Brekken DL and Phillips MA.Trypanosoma brucei g-Glutamylcysteine Synthetase.J Biol Chem 1998; 273:26317–26326
    1. Pauwels RA, Buist AS, Calverley PM, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001;163:1256-1276.
    2. Yigla M, Berkovich Y, Nagler RM. Oxidative stress indices in COPD--Bronchoalveolar lavage and salivary analysis. Arch Oral Biol 2007; 52(1):36-43.
    3.Isik B, Ceylan A, Isik R. Oxidative stress in smokers and non-smokers. Inhal Toxicol 2007;19(9):767-769.
    4.Joppa P, PetrásováD, Stancák B, et al. Oxidative stress in patients with COPD and pulmonary hypertension. Wien Klin Wochenschr 2007; 119(13-14):428-434.
    5.Vibhuti A, Arif E, Deepak D,et al. Correlation of oxidative status with BMI and lung function in COPD. Clin Biochem 2007;40(13-14):958-963.
    6.Markoulis N, Gourgoulianis KI, Moulas A, et al. Reactive oxygen metabolites as an index of chronic obstructive pulmonary disease severity. Panminerva Med 2006;48(4):209-213.
    7. Tkacova R, Kluchova Z, Joppa P, et al. Systemic inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. Respir Med 2007; 101(8): 1670-1676.
    8.Sadowska AM, Luyten C, Vints AM, et al. Systemic antioxidant defences during acute exacerbation of chronic obstructive pulmonary disease. Respirology 2006; 11(6):741-747.
    9. van Helvoort HA, Heijdra YF, de Boer RC, et al. Six-minute walking-induced systemic inflammation and oxidative stress in muscle-wasted COPD patients. Chest 2007;131(2):439-445.
    10. Rabinovich RA, Ardite E, Mayer AM, et al. Training depletes muscle glutathione in patients with chronic obstructive pulmonary disease and low body mass index.Respiration 2006;73(6):757-761.
    11. William MacNee, MBChB, MD, FRCP.Pathogenesis of Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine,2007, 28(3):479-513.
    12. Kalucka S.The occurrence of chronic obstructive pulmonary disease (COPD) in cigarette smoking families.Przegl Lek 2006;63(10):848-857
    13. Svanes C, Omenaas E, Jarvis D,etal. Parental smoking in childhood and adult obstructive lung disease: results from the European Community Respiratory Health Survey. Thorax 2004;59(4):295-302.
    14 Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 2000;78:1078-1092.
    15.Ezzati M, Lopez AD, Rodgers A, et al. Selected major risk factors and globaland regional burden of disease. Lancet 2002; 60:1347-1360.
    16. Mestl HE, Aunan K, Seip HM, et al. Urban and rural exposure to indoor air pollution from domestic biomass and coal burning across China. Sci Tot Environ 2007; 77:12–26.
    17.Office of the Registrar General of India Ministry of Home Affairs. Census of India. New Delhi, India; 2001.
    18. Desai M, Mehta S, Smith K. Indoor smoke from solid fuels: assessing the environmental burden of disease at national and local levels. Geneva, Switzerland: World Health Organization; 2004.
    19. Rehfuess E, Mehta S, Pruss-Ustun A. Assessing household solid fuel use:multiple implications for the Millennium Development Goals. Environ Health Perspect 2006; 114:373–378.
    20.Smith KR. National burden of disease in India from indoor air pollution. Proc Natl Acad Sci U S A 2000; 97:13286–13293.
    21.WHO. The World Health Report 2002: reducing risks, promoting healthy life.World Health Organization; http://www.who.int/whr/2002/en/
    22.D?′az E, Bruce N, Pope D, et al. Lung function and symptoms amongindigenous Mayan women exposed to high levels of indoor air pollution. Int J Tuberc Lung Dis 2007; 11:1372-1379.
    23.Bruce N, Pe′rez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Org 2000; 78: 1078-1092.
    24. Eddahibi S, Chaouat A, Tu L. Interleukin-6 gene polymorphism confers susceptibility to pulmonary hypertension in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3(6):475-476.
    25.Vestbo J,Hogg J C.Convergence of the epidemiology and pathology of COPD.Thorax 2006;61(1):86-88.
    26.Liu S, Zhou Y, Wang X, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. Thorax 2007; 62(10):889 -897.
    27.Vibhuti A, Arif E, Deepak D,et al. Correlation of oxidative status with BMI and lung function in COPD. Clin Biochem 2007;40(13-14):958-963.
    28. Crespo E, Macias M, Pozo D, et al. Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 1999;13(12):1537-1546.
    29.Markoulis N, Gourgoulianis KI, Moulas A, et al. Reactive oxygen metabolites as an index of chronic obstructive pulmonary disease severity. Panminerva Med 2006;48(4):209-213.
    30.kacova R, Kluchova Z, Joppa P, et al. Systemic inflammation and systemic oxidative stress in patients with acute exacerbations of COPD. Respir Med 2007;101(8):1670-1676.
    31.Sadowska AM, Luyten C, Vints AM, et al. Systemic antioxidant defences during acute exacerbation of chronic obstructive pulmonary disease. Respirology 2006;11(6):741-747.
    32.Rahman I, Schadewijk AA, Hiemstra PS, et al. Location of gamma-glutamylcysteine synthetase messenger RNA expression in lungs of smokers and patients with chronic obstructive pulmonary disease. Free Radic Biol Med 2000;28:920-925.
    33. M. Chan-Yeung,S P Ho,A H K. Cheung,etal. Polymorphisms of glutathione S-transferase genes and functional activity in smokers with or without COPD INT J TUBERC LUNG DIS 2005;11(5):508–514.
    15. Maeno T, Houghton AM, Quintero PA, et al. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol 2007;78(12): 8090-8096.
    16. Chung K.F. Cytokines as targets in chronic obstructive pulmonary disease. Curr Drug Targets 2006;7(6): 675-681.
    17. Churg A, Wang RD, Tai H, et al. Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 2004;170(5): 492-498.
    18. Hodge G, Nairn J, Holmes M, et al. Increased intracellular T helper 1 proinflammatory cytokine production in peripheral blood, bronchoalveolar lavage and intraepithelial T cells of COPD subjects. Clin Exp Immunol 2007;150(1):22-29.
    19. Groenewegen KH, Dentener MA, Wouters EF. Longitudinal follow-up of systemic inflammation after acute exacerbations of COPD. Respir Med 2007; 101(11): 2409-2415.
    20. Groenewegen KH, Postma DS, Hop WC, et al. Increased Systemic Inflammation Is a Risk Factor for COPD Exacerbations. Chest 2008 ;133(2):350-357.
    21. Casadevall C, Coronell C, Ramírez-Sarmiento AL, et al. Upregulation of pro-inflammatory cytokines in the intercostal muscles of COPD patients. Eur Respir J 2007;30(4):701-707.
    22. Santos S, Peinado VI, Ramírez J, et al. Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J 2002;19(4):632-638.
    23 Miller JJ, Anand A, Robinson SD,etal. Increased arterial stiffness in patients with chronic obstructive pulmonary disease: a mechanism for increased cardiovascular risk. Thorax 2008; 63(4):306-311.
    24.Peinado VI, BarberáJA, Ramírez J, et al. Endothelial dysfunction in pulmonary arteriesof patients with mild COPD. Am J Physiol 1998;274(6 pt1): L908-913.
    25.Valipour A, Schreder M, Wolzt M, et al. Circulating vascular endothelial growth factor and systemic inflammatory markers in patients with stable and exacerbated chronic obstructive pulmonary disease. Clin Sci(Lond), 2008 Feb 29. [Epub ahead of print].
    26. Kasahara Y, Tuder RM, Taraseviciene-Stewart L, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000;106(11): 1311-1319.
    27. Rovina N, Papapetropoulos A, Kollintza A, et al. Vascular endothelial growth factor: an angiogenic factor reflecting airway inflammation in healthy smokers and in patients with bronchitis type of chronic obstructive pulmonary disease? Respir Res 2007; 8:53.
    28.Imai K, Mercer BA, Schulman LL, et al. Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 2005; 25(2): 250-258.
    29. Vandivier RW, Henson PM., Douglas IS. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 2006;129(6): 1673-1682.
    30. Ottenheijm CA, Heunks LM, Li YP, et al. Activation of the ubiquitin proteasome pathway in the diaphragm in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006;174(9):997-1002.
    31. Demedts IK, Morel-Montero A, Lebecque S, et al. Elevated MMP-12 protein levels in induced sputum from patients with COPD. Thorax 2006;61(3):196-201.
    32. Babusyte A, Stravinskaite K, Jeroch J, et al. Patterns of airway inflammation and MMP-12 expression in smokers and ex-smokers with COPD. Respir Res 2007;8:81.
    33 Ilumets H, Rytil? P, Demedts I, et al. Matrix metalloproteinases -8, -9 and -12 in smokers and patients with stage 0 COPD. Int J Chron Obstruct Pulmon Dis 2007;2(3):369-79.
    34. Baraldo S, Bazzan E, Zanin ME, et al. Matrix metalloproteinase-2 protein in lung periphery is related to COPD progression. Chest 2007; 132(6):1724-1725.
    35.Lowrey GE, Henderson N, Blakey JD, et al. MMP-9 protein level does not reflectoverall MMP activity in the airways of patients with COPD. Respir Med 2008, Epub ahead of print.
    36.Geraghty P, Greene CM, O'Mahony M, et al. Secretory leucocyte protease inhibitor inhibits interferon-gamma-induced cathepsin S expression. J Biol Chem 2007; 282(46): 33389-33395.
    37.Churg A, Wang R, Wang X, et al. Effect of an MMP-9/MMP-12 inhibitor on smoke induced emphysema and airway remodelling in guinea pigs. Thorax 2007; 62(8): 706-713.
    38.Wright JL, Tai H, Wang R, et al. Cigarette smoke upregulates pulmonary vascular matrix metalloproteinases via TNF-alpha signaling. Am J Physiol Lung Cell Mol Physiol 2007;292(1):L125-133.
    39.Li YQ, Zhang ZX, Xu YJ, et al. Tumor necrosis factor alpha-induced expression and activity of alveolar macrophages matrix metalloproteinase-9 in chronic obstructive pulmonary disease. Zhonghua Nei Ke Za Zhi2006; 45(1):38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700