光电催化氧化降解藻毒素MCLR的效能和脱毒效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水华蓝藻产生的藻毒素是破坏水质环境、影响人类健康的主要因素。本文以DSA电极(形稳电极)为阳极,通过电极材料、光电反应器、光电协同作用和影响因素的探讨,研究光电催化氧化法对藻毒素MCLR的降解效能,并采用发光菌急性毒性实验、蚕豆根尖微核实验和单细胞凝胶电泳实验,分析MCLR粗提液降解过程中水质急性毒性和遗传毒性变化,评价该方法的安全性。研究表明RuO2/TiO2电极对MCLR的降解效果最好,这与其表面涂层均匀的龟裂状形貌、大量的锐钛矿型和金红石相的Ti02,较高的析氧电位和伏安电荷量有关。电极数量由2片增至6片时,MCLR去除率由55.9%提高到79.6%。浸入式光电反应器的电流效率高于外辐照式。电极表面的Ti02在光电催化氧化降解MCLR的过程中发挥了明显的光催化作用。光电催化氧化的去除率大于光催化氧化和电催化氧化之和,表明后两者的耦合过程产生了一定的协同作用。辐照光源和电流密度存在最佳匹配条件,分别为UVC辐照、电流密度10mA/cm2和UVA辐照、电流密度1.0mA/cm2,此条件下光电协同作用最显著。在光电催化氧化过程中,随极板间距增大而出现的去除率下降取决于电催化过程,而不是光催化过程;MCLR去除率随其初始浓度增加而减小。MCLR粗提液具有较强的毒性,能够抑制发光菌发光、诱导蚕豆根尖产生微核、造成小鼠淋巴细胞DNA损伤,光电催化氧化降解MCLR粗提液的过程中,会产生了具有较强急性毒性的物质,使发光菌相对发光度逐渐降低,从109.6%减小为零,但这些物质不具有明显的遗传毒性,随着处理时间的延长微核率和DNA损伤水平逐渐减小,最终与阴性对照组无显著差异(P<0.05)。光电催化氧化法能够有效减小水样遗传毒性。
The pollution of algal and its metabolite microcystins cause serious threats to human. The degradation of algal toxin microcystin-LR (MCLR) by photoelectrocatalytic oxidation and detoxification were studied, including anodes selection, reactor design, influence factors, and the toxicity changes during the process of photoelectrocatalytic oxidation were detected by the luminescent acute toxicity test, vicia faba root tip micronucleus method and single-cell gel electrophoresis assay, and the security of the method was discussed.The results showed that the anode materials had great influence on the degradation of MCLR and RuO2/TiO2anode had the best effect with compact surface morphology, favorable crystal form of TiO2, high oxygen evolution potential and voltammetry charge. MCLR removal rate increase form55.9%to79.6%as the increase of the number of electrode form2to6. The immersion type reactor obtained higher current efficiency of MCLR than the external radiation reactor. Besides, TiO2on the electrode surface present obvious photocatalytic effects. The degradation efficiency of photoelectrocatalytic oxidation was higher than that of the sum of photocatalytic oxidation and electrocatalytic oxidation, showing a certain synergetic effect. The best synergetic effect was obtained under optimum match condition of irradiation source and current density, which were irradiation UVC, current density10mA/cm2and irradiation UVA, current density1.0mA/cm2.The removal efficiency in photoelectrocatalytic oxidation decreased along with the increase of the plate distance, which was correlative with electrocatalytic process rather than photocatalytic process; The MCLR removal efficiency decreased with the increase of its initial concentration in photoelectrocatalytic oxidation.Crude MCLR could reduce luminosity of luminescent bacteria, induce Vicia faba root tip micronucleus and DNA damage. During photoelectrocatalytic oxidation process, some acute toxic substances were produced and led to the decrease of relative luminosity of luminescent bacteria from109.6%to zero, but those substances were not genotoxicity, as the treatment progressing, the micronucleus rate and cells DNA damage decreased, the genotoxicity of water samples showed a significantly decline (P<0.05). Photoelectrocatalytic oxidation was effective in reducing genotoxicity.
引文
[1]陈晓国,陈博,胡帆等.固定化降解菌去除原水中微囊藻毒素[J].武汉理工大报,2011,33(7):122-115.
    [2]陈卫,盛誉,曹喆等.超声波强化混凝处理太湖高藻水效能研究[J].华中科技大学学报,2011,39(1):110-113.
    [3]陈怡,施利毅,袁帅等.Ti02纳米管阵列薄膜光电协同降解亚甲基蓝的研究[J].无机材料学报,2009,24(4):680-684.
    [4]邓南圣,吴峰.环境光化学[M].北京,化学工业出版,2003:411-427.
    [5]樊有赋,詹寿发,甘金莲等.微囊藻毒素的危害及其防治[J].生命化学,2008,28(1):101-103.
    [6]胡成生,王刚,吴超飞等.含甲醛毒性废水电-Fenton试剂氧化技术研究[J].环境科学,2003,24(6):106-111.
    [7]胡友娇,杨冬梅,杨昌柱等.ZnO薄膜光电催化降解乙酰甲胺磷[J].环境化学,2012,31(3):335-340.
    [8]胡鸿钧.水华蓝藻生物学[M].科学出版社,北京,2011:169.
    [9]贺志庆,王文波.发光细菌的特性及其在环境监测方面的应用[J].北学工程与装备,2008,7:105-106.
    [10]冷文华,张昭,成少安等.光电催化降解苯胺的研究-单槽与双槽光反应器对比[J].环境科学学报,2002,22(1):40-44.
    [11]冷文华.光电催化降解苯胺的研究-外加电压的影响[J].环境科学学报,2001,21:710-714.
    [12]李国亭,王海荣,李东颖等.紫外光协助下DSA电极对1,4-苯醌的强化开环作用研究[J].环境科学,2009,30(7):1955-1961.
    [13]李桂英,安太成,陈嘉鑫等.光电催化氧化处理高含氯采油废水的研究[J].环境科学研究,2007,19(1):30-34.
    [14]李明玉,熊林,陈芸芸等.光/电/化学催化降解水中酸性大红3R染料的研究[J].中国科学B辑,2005,35(2):144-150.
    [15]刘蕊,陈斌,何方波.Ru-Ir-Sn-Ti/Ti氧化物涂层阳极的性能研究[J].电镀与涂饰,2008,27(6):41-44.
    [16]李明玉,刁增辉,宋琳等.光电化学协同催化降解孔雀绿的研究[J].环境科学,2010,31(7):1538-1543.
    [17]刘振鸿,闵浩,薛罡,等.颗粒活性碳负载TiO2去除微囊藻毒素-LR的研究[J].水处理技术,2010,36(7):61-65.
    [18]刘祖洞,江绍慧.遗传学实验(第二版)[M].北京,高等教育出社,1987:209.
    [19]梁志霞,梁文艳,许佳.UV和UV/H2O2对藻毒素MCLR的降解及脱毒研究[J].环境科学与技术,2010,33(6E):97-100.
    [20]吕锡武.有毒蓝藻及藻毒素生物降解的初步研究[J].中国环境科学,1999,19(2):138-140.
    [21]马宁,雷庆铎,陈志冉.高锰酸钾氧化池塘藻毒素的研究[J].水生态学杂志,2008,1(2):28-30.
    [22]乔俊莲,董磊,董敏莹等.高频超声对微囊藻毒素释放及降解的特性研究[J].中国给水排水,2009,25(17):94-96.
    [23]阮玲玲,梁文艳,许佳,等.天然有机物对颗粒活性炭吸附微囊藻毒素的影响[J].环境科学于技术,2010,33(6E):57-61.
    [24]沈放,路斌,仝向荣等.经湿地净化后滇池水体中微囊藻毒素的毒性变化[J].昆明学报,2011,33(3):92-97.
    [25]唐振宁.化工百科全书(第15卷)[M].化学工业出版社,北京,1997:194-252.
    [26]王坷Ti/RuO2电催化氧化法灭藻的效能和机制研究[J].硕十学位论文,2008.
    [27]王俊峰,阎海,陈建等.微囊藻毒素-RR的提取和臭氧氧化降解[J].环境工程学报,2012,6(4):1081-1085.
    [28]王金丽,梁文艳,马炎炎等Ti/RuO2电氧化法降解藻毒素MCLR影响因素的研究[J].中国环境科学,2008,28(8):709-713.
    [29]王英彦等.60Coy射线和平阳霉素诱发蚕豆根尖细胞微核与染色体畸变的剂量效应[J].环境科学,1984,5(4):20.
    [30]王理明,姚秉华,裴亮Ru-TiO2光电极的研制与性能研究[J].分析科学学报,2010,26(6):645-648.
    [31]吴振斌,陈辉蓉,雷腊梅等.人工湿地系统去除藻毒素研究[J].长江流域资源与环境,2000,9(2):242-247.
    [32]肖俊霞,胡记杰,阎虹等.光电催化氧化技术中光电反应器的研究与发展[J].化工进展,2007,26(3):331-335.
    [33]肖兴富,李文奇,刘娜杨等.富营养化水体中滥造的危害及其控制[J].中国水利水电科学研究院学报,2005,3(2):116-123.
    [34]徐云兰.光电液膜反应器处理染料废水的研究.博士论文,2009.
    [35]杨爽,李星,杨艳玲等.沸石负载高锰酸钾除藻及藻毒素效能研究[J].北京工业大学学报,2012,37(12):1843-1847.
    [36]于传义,刘春艳,沈涛.导体光催化剂的表面修饰[J].高等学校化学学报,1998,19(12):2013-2019.
    [37]张可佳,高乃云,殷娣娣等.臭氧氧化降解微囊藻毒素-LR的动力学研究[J].同济大学学报,2009,37(7):919-924.
    [38]周汪平,沈建国,童建.微囊藻毒素LR对小鼠肝脏和淋巴细胞的损伤效应[J].环境与职业医学,2003,20(1):41-42.
    [39]臧宇.蚕豆根尖微核试验的应用与发展[J].癌变·畸变·突变,1999,11(3):158-160.
    [40]张招贤,赵国鹏,罗小军等.钛电极学导论[M].冶金工业出版社,2008:17-34.
    [41]张维,朱蕾,顾君嗣等.可见光下Ti02薄膜电极的光电性能研究[J].稀有金属材料与工程,2010,39(6):1013-1017.
    [42]An T C, Zhu X H, Ya Y. Feasibility study of photoelectrochemical degradation of methylene blue aqueous solutions with three-dimensional electrodes-photo-catalytic reactor [J].Chemosphere,2002, 46(6):897-903.
    [43]An T C, Ya Y, Li G Y. Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor [J]. J.Photochem.Photobio A,2002,151:154-165.
    [44]Alice H, Wei H S, Kevin E, et al. Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation [J]. Toxicology and Applied Pharmacology,2007,220(3):357-364.
    [45]Alves P A, Malpass G R P, Johansen H D, et al. Photo-assisted electrochemical degradation of real textile wastewater [J]. Water Science & Technology,2010,61(2):491-521.
    [46]Angeline K, Phillip M, Ellie E. Biotransformation of the cyanobacterial hepatotoxin Microcystin-LR as determined by HPLC and protein phosphatase bioassay [J]. Environment Science & Technology,1995,29(1):242-246.
    [47]Amy L L, Guangquan L, John T Y. Photocatalysis on TiO2 surface:priciples, mechanisms and selected Results[J]. Chemical Reviews,1995,95(3):735-758.
    [48]Bandala E R, Martinez D, Martinez E, et al. Degradation of microcystin-LR toxin by Fenton and Photo-Fenton processes [J]. Toxicon,2004,43(7):829-832.
    [49]Batista T, Sousa G, Suput J S, et al. Microcystin-LR causes the collapse of actin filaments in primary human hepatocytes [J]. Aquatic toxicology,2003,65(1):85-91.
    [50]Candal R J, Zeltner W A, Anderson M A. Titanium-supported titania photoelectrodes made by sol-gel processes [J]. Environmental Engineering,1999,10:906-912.
    [51]Catanho M, Malpass G R P & Motheo A J. Photoelectrochemical treatment of the dye reactive red 198 using DSA electrodes [J]. Applied Catalysis B-Enviromental,2006a,62(3-4):193-200.
    [52]Catanho M, Malpass G R P & Motheo A J. Evaluation of electrochemical and photoelectrochemical methods for the degradation of three textile dyes [J]. Qui mica Nova,2006b,29(5):983-989.
    [53]Choras I, Falconer I R, Salas H J, et al. Health risk caused by freshwater cyanobacteria in recreational waters [J]. Toxicology and Environmental Health. Part B, Critical Reviews,2000,3: 323-347.
    [54]Couper A M, Pletcher D, Walsh F C. Electrode material for elelctrosythesis [J]. Chemical Reviews, 1990,90(5):837-865.
    [55]Cousins IT, Bealing D J, James H A, et al. Biodegradation of microcystin-LR by indigenous mixed bacterial populations [J]. Water Research,1996,30(2):481-485.
    [56]Degrassi F. Micronucleus test in vicia faba root tips to detect mutagen amage in fresh-water pollution [J]. Mutation Research, Environmental Mutagenesis and Related Subjects,1982,97(1): 19-33.
    [57]Dietrich D R, Hoeger S J. Guidance values for microcystin in water and cyanobacterial supplement products (blue-green algae supplements):a reasonable or misguided approach [J]. Toxicology Applied Pharmacology,2005,203:273-289.
    [58]Dong-Keun L. Photo-catalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon [J]. Separation and PurificationTechnology.2007,34:59-66
    [59]Feitz A, Walte D, Jones G, et al. Photocatalytic degradation of the blue green algal toxin Microcystin-LR in a natural organic aqueous matrix [J]. Environmental Science and Technology, 1999,33(2):243-249.
    [60]Fischer W J, Garthwaite I, Miles C O, Ross K M, et al. Congener-independent immunoassay for microcystins and nodularins [J]. Environmental Science Techology,2001,35:4753-4757.
    [61]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38.
    [62]Himberg K, Keijola A M, Hiisvirta L, et al. The effect of water treatment processes on the removal of hepatotoxins from Microcystis and Oscillatoria cyanobacterial:a laboratory study [J]. Water Research,1989,23(8):979-984.
    [63]Hoffmann J H. Removal of microcystin toxins in water purification process [J]. Water Science and Techology,1976,2:58-60.
    [64]Holst T S, Jorgensen N O G, Jorgensen C, et al. Degradation of microcystin in sediments at oxic and anoxic, denitrifying conditions denitrifying[J]. Water Research,2003,37(19):4748-4760.
    [65]Jeosadaque J, Sene W A, Zeltner. Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials [J]. Physical Chemistry B,2003, 107(7):1597-1603.
    [66]Geoffrey A, Codd L F M, James S M. Cyanobacterial toxins:risk mangement for health protection[J]. Toxicology and Applied Pharmacology,2004,10:1016-1025.
    [67]K'onca K, Lankoff A, Banasik A, et al. A cross-platform public domain PC image-analysis program for the comet assay [J]. Mutat. Res.2003,534(1-2):15-20.
    [68]Kleikauf V D. A nonribosomal system of peptide synthesis [J]. Water Research,1996,23(8): 335-351.
    [69]Kim D H, Anderson M A. Photoelectrocatalytic degradation of formic acid using a porous TiO2
    thin-film electrode [J]. Environmental Science & Technology,1994,28(3):479-483.
    [70]Kim D H, Anderson M A. Solution factors affecting the photocatalytic and photoelectrocatalytic degradation of formic acid using supported TiO2 thin films [J].Photochemistry and Photobiology, 1996,94:221-229.
    [71]Lambert T W, Holmes C F B, Hrudey S E. Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment [J]. Water Research.1996,30(6):1411-1422.
    [72]Lain L, Linda A L, Detlef W. The photocatalytic decomposition of microcystin-LR using selected titanium dioxide material [J]. Chemosphere,2009,76(4):549-553.
    [73]Lawton L A, Robertason P K J, Cornish B, et al. Detoxification of microcystins(cyanobacterial hepatotoxins) using TiO2 photocatalytic oxidation [J]. Environmental science and Technology,1999, 33(5):771-775.
    [74]Lionel H, Gaudieux A L, Fanok S, et al. Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity [J]. Toxicon,2007,50(3):438-441.
    [75]Majera B J, Grummtb T, Uhlc M, et al. Use of plant bioassays for the detection of genotoxins in the aquatic environment [J]. Acta Hydrochimica Hydrobiologlca.2005,33(1):45-55.
    [76]Malpass G R P, Miwa D W, Miwa A C P, et al. Study of photo-assisted electrochemical degradation of carbaryl at dimensionally stable anodes (DSA(?)) [J]. Hazardous Materials,2009, 167(3):224-229.
    [77]Malpass G R P, Miwa D W, Miwa A C P, et al. Photo-assisted electrochemical oxidation of atrazine on a commercial Ti Ru0.3Ti0.7O2 DSA electrode [J]. Environmental Science & Technology, 2007,41(20):71·20-7125.
    [78]Neumann U J & Weckesser. Elimination of microcystin peptide toxins from water by reverse osmosis [J]. Environmental Toxicology&Water Quality,1998,13(2):143-157.
    [79]Martinez-Huitle C A, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment:direct and indirect processes [J]. Chemical Society Reviews,2006,35(12):1324-1340.
    [80]Matthews R W. Photooxidation of organic impurities in water using thin film of titanium dioxide[J]. Physical Chemisty,1987,91(12):3326-3333.
    [81]Pinhedo L, Bertazzoli R P, Motheo A J. Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode [J]. Applied Catalysis B:Environmental,2005,57 (2):75-81.
    [82]Philippidis N, Sotiropoulos S, Efstathiou A, et al. Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes [J]. Photochemistry and Photobiology A: Chemistry,2009,204(2-3):129-136.
    [83]Olive P L & Durand R E. Heterogeneity in radiation-indiuce DNA damage and repair in tumor and normal cells measured using the "comet" [J]. Radiation Research,1990,122(1):86-94.
    [84]Park H D, Sasaki Y, Maruyama T, et al. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake [J]. Environment Toxicology,2001,16(4): 337-343.
    [85]Panizza M, Ouattara L, Baranova E, et al. DSA-type anode based on conductive porous p-silicon substrate [J]. Electrochem Commun,2003,5(4):365-368.
    [86]Pelegrini R T, Freire R S, Duran N, et al. Photoassisted Electrochemical Degradation of Organic Pollutants on a DSA Type Oxide Electrode Process Test for a Phenol Synthetic Solution and Its Application for the E1 Bleach Kraft Mill Effluent [J]. Environmental Science Technology,2001, 35(13):2849-2853.
    [87]Piotr G, Zbigniew L, Tadeusz B, et al. Decomposition of microcystin-LR by Fenton oxidation
    [J].Toxicon,2001,39(10):1575-1578.
    [88]Rita F Y, Zheng Y M, Nadeeshani K G, et al. Electrochemical Removal of Rhodamine 6G by Using RuO2 Coated Ti DSA [J]. Industrial & Enginierring Chemistry Research,2009,48(16): 7466-7473.
    [89]Robertson P K J, Lawton L A, Muench B, et al. Destruction of cyanobacterial toxins by semiconductor photocatalysis [J]. Chemical Communication,1997,42(4):393-394.
    [90]Rodriguez E, Majado M E, Meriluoto J, et al. Oxidation of microcystins by permanganate:reaction kinetics and implications for water treatment [J]. Water Research,2007,41(1):102-110.
    [91]Rojas E, Lopez M C, Valverde M. Single cell gel electrophoresis assay:methodology and applications [J]. Chromatography. B, Biomedical sciences and applications,1999,722(1-2):22-254.
    [92]Rositano J, Newcombe G, Nicholson B, et al. Ozonation of NOM and algal toxins in four treated waters [J]. Water Research,2001,35(1):23-32.
    [93] Shi H X, Qu J H, Wang A M, et al. Degradation of microcystins in aqueous solution with in situ electrogenerated active chlorine [J]. Chemosphere,2005,60(3):326-333.
    [94]Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu2O/TiO2 Heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Mater[J]. Solar Cells,2003,77(3):229-237
    [95] Singh N P, Mcoy M T, Tice R R, et al. A simple technique for quantitation of low levels of DNA damage in individual cells [J]. Experimental Cell Research,1988,175(1):184-191.
    [96]Takenaka S & Watanabe M F. Microcystin-LR degradation by Pseudomonas aeruginosa alkaline protease [J]. Chemosphere,1997,34(4):749-757.
    [97]Tokumoto, Miriam S, Pulcinelli, et al. Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route [J]. Journal of Physical Chemistry B,2003,107(2):568-574.
    [98]Tsuji K, Watanuki T, Kondo F, et al. Stability of microcystins from cyanobacteria-Ⅱ. Effect of UV light on decomposition and isomerization[J].Toxicon,1995,33(12):1619-1631.
    [99]Tsuji K, Watanuki T, Kondo F, et al. Stability of microcystins from cyanobacteria-iv. effect of chlorination on decomposition [J]. Toxicon,1997,35(7):1033-1041.
    [100]Van A M E, Van E H P, Speijers G J A, et al. Toxins of cyanobacteria [J]. Molecular Nutrition& Food Research,2007,51(1):7-60.
    [101]Vinodgopal K.& Kamat P. V. Combine electrochemistry with photocatalysis [J]. Chemtech,199, 26(4):18-22
    [102]Zanoni M V B, Sene J J, Anderson M A. Photoelectrocatalytic degradation of Remazol Brilliant Orange 3R on titanium dioxide thin-film electrodes[J]. Photochemistry & Photobiology A-chemistry,2003,157(1):55-56
    [103]Zegura B, Volcic M, Lah T T, et al. Different sensitivities of human colon adenocarcinoma (CaCo-2) astrocytoma(IPDDC-A2) and lymphoblastoid(NCNC) cell lines to microcystin-LR induced reactive oxygen species and DNA damage[J].Toxicon,2008,52(3):518-525.
    [104]Zhang G M, Zhang P Y, et al. Ultrasonic damages cyanbacterial photosynthesis [J]. Sonochemistry, 2006,13(2):501-505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700