丙烷选择氧化制丙烯醛Mo(V)Te(Nb)O催化剂活性相的研究和设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烷选择氧化是利用储量丰富的天然气资源替代石油产品的化工生产途径之一,在天然气工业中有着极其重要的意义,所以对该反应催化剂的结构以及构效关系的研究成为催化氧化领域基础研究的热点。并且在对该课题的研究过程中,不仅合成了许多新型材料,还揭示了很多催化学科领域的新概念、新现象。
     虽然MoVTe(Nb)O复合金属氧化物是目前丙烷选择氧化制丙烯酸和丙烯睛最高效的催化体系,但对其晶体结构以及催化剂的构效关系尚待进一步的研究。例如,催化剂中多活性中心的组合作用、活性中心中d电子耦合作用以及M1相与M2相之间的协同作用等。
     值得关注的是,丙烷选择氧化高选择性地制丙烯醛至今仍然是一个悬而未决的难题。因而,开发新型高活性并有高丙烯醛选择性的催化剂是当前关注的热点。本论文在总结大量文献工作的基础上,开展了以下内容的研究工作。
     1.主要研究了M1相的电子结构和晶体结构的关系。发现M1相骨架中绝大多数以Mo/V为中心的八面体单元在沿着c轴方向形成的O-M…O桥键明显呈现键长交替的规律,并导致了d电子的耦合作用。相对于Mo活性中心而言,相互耦合的d电子更易分布在V活性中心上。并且,对同样的元素,M3、M7、M8、M11活性中心更能稳定局域化的d电子。V5+/V4+离子对具有非常高的氧化还原速率和可逆性,这导致了其在催化剂表面所形成的活性中心(VOx)易产生深度氧化产物。另一方面,高V掺杂含量引起的氧缺位会大大增加催化剂的体相氧扩散速率,从而导致催化剂的体相晶格氧扩散速率很高,并导致产物过氧化。此外,M1晶相结构的M4、M5、M9、M10活性中心趋向于生成氧缺位,这是产生大量C-C键断裂产物(甲醛和乙醛)的主要原因。
     2.详细研究了M2相的晶体结构和表面重构,本征氧缺位与体相氧扩散途径的关系及其对催化性能的影响,阐明了M1和M2相的相协同作用。研究发现M2相在表面重构为VOMoO4纳米晶,其原因在于M2相表面通过相邻两个TeO3E四面体单元进行的氧传递,使Te4+从Mo(V)O6相互连接八面体骨架得到两个电子而岐化为Te6+和Te0物种。前者偏析富集于M2相的最顶层,后者在反应条件下以金属Te和合金MoTe2的形式升华脱离M2相的表面,并通过晶界转移或者气相沉积对M1相中的Mo/Te进行补充。在M2相纳米晶重构最顶层富集着大量高氧化性的Te6+物种,它拥有高的丙烯α位C-H键的活化能力,并且能够更为有效地将M1相脱附而来的丙烯中间产物经过氧化或氨氧化转化为丙烯酸或丙烯腈。这就是M1相和M2向协同作用的本质。与此同时,M2相亚表层中的Te以Te0物种的形式发生了流失,因而结构非常不稳定,并重构形成了VOMoO4的纳米晶层。
     研究发现,利用硝酸对M2相中本征氧缺位的调制或利用氧化性气氛处理M2相能够非常有效地改变不同配位环境本征氧缺位的含量。这种调制可以控制M2相晶格中存在三条氧扩散途径:i)畸变八面体(也可认为四方锥)顶点之间,即12f Wyckoff端基03位置的晶格氧沿着[0110]方向的氧扩散;ii)在ab晶面上,即12f Wyckoff桥键02位置参与的氧缺位-晶格氧摆动形式的扩散;iii)在八面体内(四方锥),即赤道面02和端基03位置之间的氧缺位-晶格氧“齿轮转动”形式的扩散。临近V的氧缺位含量控制了所有氧扩散途径的速率,而位于端基的氧缺位含量则可以控制第iii)项扩散途径,并改变表面竞争的反应途径从C-H键的活化转变成为C-C键的断裂。
     3.研究了单斜与正交TeMo5O16相结构及其与催化性能的关系。由于V5+/V4+离子对的强氧化还原能力,因而在催化剂中大量存在V时就不可避免地引起丙烯醛的过氧化。我们通过引入微量V对丙烯选择氧化制丙烯醛的单斜TeMo5O16活性相进行结构弛豫。这种结构弛豫改变了单斜TeMo5O16相晶体结构中的Mo-O键长分布与d电子的空间分布和耦合性质。骨架结构中的d电子一方面局域在Mo(3)和Mo(5)为中心的八面体单元中,另一方面配对填充在能带隙下方的t2g轨道上这种结构调制还促进了Mo(3)-O-Mo(5)和Mo(2)-O-Mo(4)中氧缺位的生成。并且这种结构调制不仅仅发生在催化剂体相,而且也发生在表面,并产生了具有电子授-受和高速氧流动能力的(Mo5+-O-Mo5+)/(Mo6+-O-Mo6+)氧化还原活性中心,极大地促进了表面氧化还原反应的进行。
     4.研究发现,较高含量的V对单斜TeMo5O16活性相的掺杂可以诱导其相变为正交结构的TeMo5O16。根据TeMo5O16的相变温度首次合成了高活性粉晶正交TeMo5O16相。研究还发现了正交TeMo5O16相结构中孔道储氧现象及其对丙烯醛的选择性和产率的影响,利用高分辨X射线衍射研究了孔道氧物种的结构并提出了孔道储氧机理。根据所得到的研究结果,我们基于i)增加正交TeMo5O16相孔道储氧量;ii)通过M2相协同作用增加丙烯醛选择性这两条思路,成功地设计并合成了TeCrδMo5-δO16单相和M2/TeMo5O16混相催化剂,并都取得了很高的丙烯醛得率(20.1%和21.4%)。
Propane selective oxidation is of high importance in nature gas industry. The studies in crystal structure and related properties are the hot topics and "seven pillars" in fundamental research of catalysis. The researches that focused on propane selective oxidation not only provide novel catalytic materials but also elucidate some new phenomenon and concepts in catalysis.
     There are still many ambiguities in crystal structure of MoVTe(Nb)O mixed oxides as the most efficient catalysts, such as the interaction between M1 and M2 phase:The symbiosis between M1 and M2 phase, that is the presence of M2 phase promotes the production of acrylic acid (AA) or acrylonitrile (ACN) of M1 phase; M2 phase replenishes the Mo/Te loss in Ml phase and alleviates its deactivation. On the other side, propane selective oxidation to acrolein in high selectivity is a difficult research topic in this century.
     Firstly, this work studied the relationship between the electronic structure and crystal structure of M1 phase and found out that there's strong O-M…O alteration along the c axis which resulted in the coupling of d electrons. The coupled d electrons were prone to locate at V sites rather than Mo sites. M3, M7, M8 and M11 sites preferred the location of d electrons. The high redox activity and reversibility of V5+/V4+pair resulted in the formation of surface VOX active sites for deep oxidation. On the other side, the doping of V emerged oxygen vacancy in the bulk and boosted the bulk oxygen diffusion rate that caused the over-oxidation. While M4, M5, M9 and M10 sites were prone to present oxygen vacancy and acted as C-C active sites to produce formaldehyde and acetaldehyde.
     Secondly, the crystal structure and surface reconstruction of M2 phase were studied to interpret the interaction between M1 and M2 phases. Results showed that the surface of M2 phase reconstructed to nanocrystalline VOMoO4, because Te4+ species in the neighboring two TeO3E tetrahedral units accepted two electron from the Mo(V)O6 interconnections and disproportionated to Te6+and Te0 species on the surface. Te6+species are enriched on the topmost surface and Te0 species sublimed from M2 grains in the form of Te and MoTe2 to replenish Mo/Te loss in M1 phase by either spillover through grain boundaries or solid-gas-solid deposition. While those Te6+species should be more active than Te4+species activating a C-H bond and efficiently converted propylene intermediate that migrated from M1 grains and formed AA and ACN by (amm)oxidation. This was interpreted as the nature of M1/M2 phases'symbiosis. At the same time, the Te depleted in the sublayer and reconstructed to nanocrystalline VOMoO4.
     Having known the decent crystal structure of M2 phase, the content of intrinsic oxygen vacancy was intended to be tuned to study the roles of oxygen diffusion pathways in the catalytic performance. Results showed that the addition of nitric acid and oxidative atmosphere could tune the content of intrinsic oxygen vacancy with different coordination modes. These methods controlled three anisotropic oxygen diffusion pathways in the bulk lattice of M2 phase:ⅰ) inter-pyramid vertex anion hopping between fluctuated 12f Wyckoff 03 terminal sites along [0110] direction; ii) ab-plane intra/inter-pyramid anion-vacancy wagging involving 12f Wyckoff 02 bridge sites; iii) intra-pyramid "cog-wheel" type pitching between 02 and 03 sites. The content of oxygen vacancy neighboring to V controlled the rates of all anisotropic diffusion pathways, and content of oxygen vacancy at terminal sites controlled the diffusion rate of pathway iii) that can change surface reaction pathway from C-H activation to C-C bond cracking-oxidation.
     Due to the strong redox ability of V5+/V4+pair, the large content of V in the catalyst may result in the over-oxidation of acrolein. Hence, we introduce traces of V into the lattice of monoclinic TeMo5O16 to induce the structural relaxation. The structural relaxation changed the distribution of Mo-O bond lengths and the d electron as well as its coupling. The d electrons in the framework on one side localized at Mo(3) and Mo(5) centered octahedral units, and filled the lower t2g levels from Eg of 0.45 eV to 0.23 eV. The relaxation on the other side facilitated the formation of oxygen vacancy in Mo(3)-O-Mo(5) and Mo(2)-O-Mo(4) bonds. The relaxation occurred not only in bulk but also on the surface, and formed the redox sites of (Mo5+-O-Mo5+)/(Mo6+-O-Mo6+) with electron donor-acceptor and fast oxygen transfer abilities. Those active sites on the surface highly promoted the surface redox reactions.
     We also found high content of V doping in monoclinic TeMo5O16 active phase induced a phase transition to orthorhombic TeMo5O16. After investigating the phase transition temperature of TeMo5O16, we succeeded in synthesizing pure orthorhombic TeMo5O16. Studies also showed that the channel structure of orthorhombic TeMo5O16 acted as an oxygen reservior and played an important role producing acrolein. We found out the nature of the oxygen species in the channel and proposed a mechanism of oxygen transfer and reservation. Upon those ideas derived from previous studies, we designed novel catalyst in two ways:i) increasing the oxygen reservation;ⅱ) symbiosis between M2 and orthorhombic TeMo5O16 phases. The catalytic performance of as-synthesized TeCrδMo5-δO16 and M2/TeMo5O16 catalysts reached a world class yield of acrolein (20.1% and 21.4%).
引文
[1]Y.H. Hu, E. Ruckenstein, Binary MgO-based solid solution catalysts for methane conversion to syngas, Catal Rev,2002,44(3):423.
    [2]R.D. Cortright, R.M. Watwe, J.A. Dumesic, Ethane hydrogenolysis over platinum-Selection and estimation of kinetic parameters, J Mol Catal a-Chem,2000,163(1-2):91.
    [3]A. Hagen, F. Roessner, Ethane to aromatic hydrocarbons:Past, present, future, Catal Rev,2000, 42(4):403.
    [4]M.D. Argyle, K.D. Chen, A.T. Bell, E. Iglesia, Ethane oxidative dehydrogenation pathways on vanadium oxide catalysts, J Phys Chem B,2002,106(21):5421.
    [5]A. Sopa, A. Waclaw-Held, M. Grossy, J. Pijanka, K. Nowinska, Ethane to acetic acid oxidation over supported heteropoly acids, Appl Catal a-Gen,2005,285(1-2):119.
    [6]CRC Handbook of Chemistry and Physics,80th Ed., CRC Press, Boca Raton, FL,1999-2000.
    [7]Lange's Handbook of Chemisiry,16th Ed., New York:McGraw-Hill, Inc.
    [8]J. Berkowitz, G.B. Ellison, D. Gutman,3 Methods to Measure Rh Bond-Energies, Journal of Physical Chemistry,1994,98(11):2744.
    [9]J.S. Buchanan, J. Apostolakis, S. Sundaresan, Pretreatment and Activation of a Vanadium Phosphate Catalyst for Butane Oxidation to Maleic-Anhydride, Applied Catalysis,1985,19(1): 65.
    [10]S.C. Arnold, GD. Suciu, L. Verde, A. Neri, Use Fluid Bed Reactor for Maleic-Anhydride from Butane, Hydrocarb Process,1985,64(9):123.
    [11]T. Shimoda, T. Okuhara, M. Misono, Preparation of Vanadium-Phosphorus Mixed-Oxide (P/V=1) Catalysts and Their Application to Oxidation of Butane to Maleic-Anhydride, B Chem Soc Jpn, 1985,58(8):2163.
    [12]F. Cavani, G. Centi, F. Trifiro, Structure Sensitivity of the Catalytic-Oxidation of Normal-Butane to Maleic-Anhydride, J Chem Soc Chem Comm,1985, (8):492.
    [13]T.P. Moser, G.L. Schrader, Selective Oxidation of Normal-Butane to Maleic-Anhydride by Model V-P-O Catalysts, Journal of Catalysis,1985,92(2):216.
    [14]B.K. Hodnett, B. Delmon, Factors Influencing the Activity and Selectivity of Vanadium Phosphorus Oxide Catalysts for Normal-Butane Oxidation to Maleic-Anhydride, Applied Catalysis,1985,15(1):141.
    [15]F. Cavani, G. Centi, F. Trifiro, Study of Normal-Butane Oxidation to Maleic-Anhydride in a Tubular Flow Stacked-Pellet Reactor-Influence of Phosphorus on the Selectivity, Applied Catalysis,1985,15(1):151.
    [16]E. Bordes, P. Courtine, New Phases in V-P-O Catalysts and Their Role in Oxidation of Butane to Maleic-Anhydride, J Chem Soc Chem Comm,1985, (5):294.
    [17]G. Centi, G Fomasari, F. Trifiro, Normal-Butane Oxidation to Maleic-Anhydride on Vanadium Phosphorus Oxides-Kinetic-Analysis with a Tubular Flow Stacked-Pellet Reactor, Ind Eng Chem Prod Rd,1985,24(1):32.
    [18]G.S. Schaffel, S.S. Chem, J.J. Graham, Maleic-Anhydride from Butane-Catalytic-Oxidation in a Fluidized-Bed, Erdol Kohle Erdgas P,1983,36(2):85.
    [19]Escardin.A, C. Sola, F. Ruiz, Catalytic-Oxidation of Butane to Maleic Anhydride.1. Reaction-Mechanism, An Quim,1973,69(3):385.
    [20]H. Villouta, J. Cortes, S. Droguett, Catalytic Oxidation of Butane and Its Conversion to Maleic Anhydride, An Quim-Int,1971,67(11):1111.
    [21]T.C. Bissot, K.A. Benson, Oxidation of Butane to Maleic Anhydride, Ind Eng Chem Prod Rd, 1963,2(1):57.
    [22]Escardin.A, C. Sola, F. Ruiz, Catalytic-Oxidation of Butane with Maleic-Anhydride.2. Kinetic Study of Process (for Partial Pressures of Carbohydrates in Food Below 7.5 Mm Hg), An Quim, 1973,69(11):1157.
    [23]A. Escardino, M.D. Rodrigo, C. Sola, Catalytic-Oxidation of Butane to Maleic-Anhydride.3. Note on Reaction-Mechanism, An Quim,1978,74(12):1573.
    [24]XT. Gao, P. Ruiz, Q. Xin, X.X. Guo, B. Delmon, Effect of Coexistence of Magnesium Vanadate Phases in the Selective Oxidation of Propane to Propene, Journal of Catalysis,1994,148(1):56.
    [25]Y.S. Yoon, N. Fujikawa, W. Ueda, Y. Morooka, Oxidative Dehydrogenation of Propane to Propene over Cobalt Molybdate Catalysts, Chemistry Letters,1994, (9):1635.
    [26]Y.S. Yoon, W. Ueda, Y Morooka, Selective conversion of propane to propene by the catalytic oxidative dehydrogenation over cobalt and magnesium molybdates, Top Catal,1996,3(3-4): 265.
    [27]Y. Liu, J.X. Wang, G.D. Zhou, M. Xian, YL. Bi, K.J. Zhen, Oxidative dehydrogenation of propane to propene over barium promoted Ni-Mo-O catalyst, React Kinet Catal L,2001,73(2): 199.
    [28]R. Ramos, M.P. Pina, M. Menendez, J. Santamaria, GS. Patience, Oxidative dehydrogenation of propane to propene,1:Kinetic study on V/MgO, Can J Chem Eng,2001,79(6):891.
    [29]R. Ramos, M.P. Pina, M. Menendez, J. Santamaria, GS. Patience, Oxidative dehydrogenation of propane to propene,2:Simulation of a commercial inert membrane reactor immersed in a fluidized bed, Can J Chem Eng,2001,79(6):902.
    [30]P. Michorczyk, J. Ogonowski, Dehydrogenation of propane to propene over gallium oxide in the presence of CO2, Appl Catal a-Gen,2003,251(2):425.
    [31]Y.J. Ren, W.M. Hua, YH. Yue, Z. Gao, Dehydrogenation of Propane to Propene over Ga2O3/HZSM-5 Catalysts, Chem J Chinese U,2009,30(6):1162.
    [32]Y.J. Ren, F. Zhang, W.M. Hua, Y.H. Yue, Z. Gao, ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2, Catalysis Today, 2009,148(3-4):316.
    [33]P. Biloen, F.M. Dautzenberg, W.M.H. Sachtler, Catalytic Dehydrogenation of Propane to Propene over Platinum and Platinum-Gold Alloys, Journal of Catalysis,1977,50(1):77.
    [34]M. Baerns, O.V. Buyevskaya, M. Kubik, G. Maiti,O. Ovsitser,O. Seel, Catalytic Partial Oxidation of Propane to Acrolein, Abstr Pap Am Chem S,1995,210:53.
    [35]M. Baerns, O.V. Buyevskaya, M. Kubik, G. Maiti, O. Ovsitser, O. Seel, Catalytic partial oxidation of propane to acrolein, Catalysis Today,1997,33(1-3):85.
    [36]A. Kaddouri, C. Mazzocchia, E. Tempesti, The synthesis of acrolein and acrylic acid by direct propane oxidation with Ni-Mo-Te-P-O catalysts, Appl Catal a-Gen,1999,180(1-2):271.
    [37]M.Y. Sinev, O.V. Udalova, Y.P. Tulenin, L.Y. Margolis, V.P. Vislovskii, R.X. Valenzuela, V.C. Corberan, Propane partial oxidation to acrolein over combined catalysts, Catal Lett,2000, 69(3-4):203.
    [38]Q.H. Zhang, Y. Wang, Y. Ohishi, T. Shishido, K. Takehira, V-MCM-41 for selective oxidation of propane to propene and acrolein, Chemistry Letters,2001, (3):194.
    [39]P. Kolsch, M. Noack, R. Schafer, G. Georgi, R. Omorjan, J. Caro, Development of a membrane reactor for the partial oxidation of hydrocarbons:direct oxidation of propane to acrolein, J Membrane Sci,2002,198(1):119.
    [40]P. Kolsch, Q. Smejkal, M. Noack, R. Schafer, J. Caro, Partial oxidation of propane to acrolein in a membrane reactor-Experimental data and computer simulation, Catal Commun,2002,3(10): 465.
    [41]J.R.H. Ross, E. O'Keefe, G. Grasso, Development of catalysts for the selective oxidation of propane to acrolein, Abstr Pap Am Chem S,2002,223:U24.
    [42]L.Q. Chen, J. Liang, W.Z. Weng, Y. Wang, H.L. Wan, J.C. Vedrine, Direct oxidation of propane to acrolein over MCM41-supported MoVTe mixed oxide catalysts, Catal Commun,2004,5(11): 697.
    [43]C.J. Huang, W. Guo, Y.X. Jin, X.D. Yi, W.Z. Weng, H.L. Wan, Study on structures and performances of MoVTeO/SiO2 catalysts for selective oxidation of propane to acrolein, Acta Chim Sinica,2004,62(18):1701.
    [44]C.J. Huang, W Guo, X.D. Yi, W.Z. Weng, H.L. Wan, Effect of support on performance of MoVTeO catalyst for selective oxidation of propane to acrolein, Natural Gas Conversion ⅶ, 2004,147:661.
    [45]H.C. Jiang, W.M. Lu, H.L. Wan, Selective oxidation of propane to acrolein over different Mo-V-Te-P-O catalysts, Indian J Chem A,2004,43(11):2320.
    [46]H.C. Jiang, W.M. Lu, H.L. Wan, Effect of different dopant in the Mo-V-Te-O catalyst on the performance of selective oxidation propane to acrolein, Chinese Chem Lett,2004,15(8):977.
    [47]H.C. Jiang, W.M. Lu, H.L. Wan, Synthesis of acrolein from partial oxidation of propane on Mo-V-Te-P-O catalysts prepared by different methods, Catal Commun,2004,5(1):29.
    [48]H.C. Jiang, W.M. Lu, H.L. Wan, The effect of MoV0.3Te0.23PxOn catalysts with different phosphorus content for selective oxidation of propane to acrolein, J Mol Catal a-Chem,2004, 208(1-2):213.
    [49]X.D. Yi, X.D. Sun, X.B. Zhang, C.J. Huang, W.Z. Weng, H.L. Wan, Highly dispersed MoVTeNbO/SiO2 catalysts prepared by the sol-gel method for selective oxidation of propane to acrolein, Catal Commun,2009,10(12):1591.
    [50]Y. Morooka, N. Miura, N. Fujikawa, Y.C. Kim, W. Ueda, Selective Oxidation and Ammoxidation of Propane to Form Acrolein and Acrylonitrile, Studies in Surface Science and Catalysis,1993, 75:1983.
    [51]Y.C. Kim, W. Ueda, Y. Morooka, Catalytic Activity of Mixed Metal-Oxides for Selective Oxidation of Propane to Acrolein, Chemistry Letters,1989, (4):531.
    [52]Y.C. Kim, W. Ueda, Y. Morooka, Selective Oxidation of Propane to Acrolein over Ag-Doped Bismuth Vanadomolybdate Catalysts, J Chem Soc Chem Comm,1989, (10):652.
    [53]T. Ushikubo, K. Oshima, A. Kayou, M. Hatano, Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts, Spillover and Migration of Surface Species on Catalysts,1997,112:473.
    [54]M.J.G Linders, L.J.P. van den Broeke, T.A. Nijhuis, F. Kapteijn, J.A. Moulijn, Modelling sorption and diffusion in activated carbon:a novel low pressure pulse-response technique, Carbon,2001,39(14):2113.
    [55]S.A. Holmes, J. Al-Saeedi, V.V. Guliants, P. Boolchand, D. Georgiev, U. Hackler, E. Sobkow, Solid state chemistry of bulk mixed metal oxide catalysts for the selective oxidation of propane to acrylic acid, Catalysis Today,2001,67(4):403.
    [56]P. Botella, B. Solsona, A. Martinez-Arias, J.M.L. Nieto, Selective oxidation of propane to acrylic acid on MoVNbTe mixed oxides catalysts prepared by hydrothermal synthesis, Catal Lett,2001, 74(3-4):149.
    [57]Y.F. Han, H.M. Wang, H. Cheng, J.F. Deng, V-Zr-P oxide catalysts for highly selective oxidation of propane to acrylic acid, Chem Commun,1999, (6):521.
    [58]W. Ueda, Y. Suzuki, Partial Oxidation of Propane to Acrylic-Acid over Reduced Heteropolymolybdate Catalysts, Chemistry Letters,1995, (7):541.
    [59]M. Ai, Oxidation of Propane to Acrylic-Acid on V2o5-P2o5-Based Catalysts, J Chem Soc Chem Comm,1986, (10):786.
    [60]M. Ai, Oxidation of Propane to Acrylic-Acid on V2o5-P2o5-Based Catalysts, Journal of Catalysis,1986,101(2):389.
    [61]A. Andersson, S.L.T. Andersson, G. Centi, R.K. Grasselli, M. Sanati, F. Trifiro, M. Sinev, J Haber, D.D. Suresh, R.K. Grasselli, O.V. Krylov, E. Bordes, M.F. Portela, P.L. Villa, Direct Propane Ammoxidation to Acrylonitrile-Kinetics and Nature of the Active Phase, Studies in Surface Science and Catalysis,1993,75:691.
    [62]K. Seshan, Commercial Process for Acrylonitrile from Propane, Applied Catalysis,1990,67(1): N5.
    [63]Y.C. Kim, W. Ueda, Y. Morooka, Selective Ammoxidation of Propane to Acrylonitrile over Multicomponent Metal-Oxide Catalysts with Scheelite Related Structures, Chemistry Letters, 1989, (12):2173.
    [64]R. Raja, C.R. Jacob, P. Ratnasamy, Direct oxidation of propane to isopropanol, Catalysis Today, 1999,49(1-3):171.
    [65]G Centi, R.K. Grasselli, F. Trifiro, Propane Ammoxidation to Acrylonitrile-an Overview, Catalysis Today,1992,13(4):661.
    [66]M. Ai, Oxidation of Propane to Acrylic-Acid, Catalysis Today,1992,13(4):679.
    [67]Y Moro-oka, W. Ueda, Catalysis, Royal Chemical Society, p.223.
    [68]G. Centi, P. Mazzoli, Structure-activity relationship in Sb-V-oxide catalysts for the direct synthesis of acrylonittile from propane, Catalysis Today,1996,28(4):351.
    [69]H.W. Zanthoff, S. Schaefer, GU. Wolf, Ammoxidation of propane over modified V-Sb-Al-oxides-The role of acidity and redox properties of the catalysts, Appl Catal a-Gen,1997,164(1-2): 105.
    [70]R.K. Grasselli, J.D. Burrington, D.J. Buttrey, P. DeSanto, C.G. Lugmair, A.F. Volpe, T. Weingand, Multifunctionality of active centers in (amm)oxidation catalysts:from Bi-Mo-O-x to Mo-V-Nb-(Te, Sb)-O-x, Top Catal,2003,23(1-4):5.
    [71]R.K. Grasselli, D.J. Buttrey, P. DeSanto, J.D. Burrington, C.G Lugmair, A.F. Volpe, T. Weingand, Active centers in Mo-V-Nb-Te-O-x (amm)oxidation catalysts, Catalysis Today,2004,91-92: 251.
    [72]T. Mazari, C.R. Marchal, S. Hocine, N. Salhi, C. Rabia, Oxidation of propane over ammonium-transition metal mixed keggin phosphomolybdate salts, J Nat Gas Chem,2010,19(1): 54.
    [73]G Savelieva, D. Abdukhalykov, K. Dossumov, Research of the Activity of Catalysts on the Base of H3PW12O40 in Partial Oxidative Conversion of C-3-C-4 alkanes, Catal Lett,2009,128(1-2): 106.
    [74]N. Dimitratos, J.C. Vedrine, Study of Ga modified Cs2.5H1.5PV1Mo11O40 heteropolyoxometallates for propane selective oxidation, J Mol Catal a-Chem,2006,255(1-2): 184.
    [75]Q. Deng, S.L. Jiang, T.J. Cai, Z.S. Peng, Z.J. Fang, Selective oxidation of isobutane over HxFe0.12Mo11VPAs0.30y heteropoly compound catalyst, J Mol Catal a-Chem,2005,229(1-2): 165.
    [76]N. Dimitratos, J.C. Vedrine, Properties of Cs-2.5 salts of transition metal M substituted Keggin-type M1-xPV1MxMo11-xO40 heteropolyoxometallates in propane oxidation, Appl Catal a-Gen,2003,256(1-2):251.
    [77]H.S. Jiang, X. Mao, S.J. Xie, B.K. Zhong, Partially reduced heteropoly compound catalysts for the selective oxidation of propane, J Mol Catal a-Chem,2002,185(1-2):143.
    [78]J.S. Min, N. Mizuno, Effects of additives on catalytic performance of heteropoly compounds for selective oxidation of light alkanes, Catalysis Today,2001,71(1-2):89.
    [79]N. Mizuno, W.C. Han, T. Kudo, Selective oxidation of ethane, propane, and isobutane catalyzed by copper-containing Cs2.5H1.5PVMo11O40 under oxygen-poor conditions, Journal of Catalysis,1998,178(1):391.
    [80]M. Misono, N. Mizuno, K. Inumaru, G. Koyano, X.H. Lu, Selective oxidation of hydrocarbons catalyzed by heteropoly compounds,3rd World Congress on Oxidation Catalysis,1997,110:35.
    [81]N. Mizuno, D.J. Suh, W. Han, T. Kudo, Catalytic performance of Cs2.5Fe0.08H1.26PVMo11040 for direct oxidation of lower alkanes, J Mol Catal a-Chem,1996, 114(1-3):309.
    [82]N. Mizuno, M. Tateishi, M. Iwamoto, Pronounced Catalytic Activity of Fe0.08cs2.5h1.26pvmo11o40 for Direct Oxidation of Propane into Acrylic-Acid, Appl Catal a-Gen,1995,128(2):L165.
    [83]P. Nagaraju, N. Lingaiah, A. Balaraju, P.S.S. Prasad, Studies on vanadium-doped iron phosphate catalysts for the ammoxidation of methylpyrazine, Appl Catal a-Gen,2008,339(2):99.
    [84]N. Dropka, V.N. Kalevaru, A. Martin, D. Linke, B. Lucke, The kinetics of vapour-phase ammoxidation of 2,6-dichlorotoluene over VPO catalyst, Journal of Catalysis,2006,240(1):8.
    [85]K.V. Narayana, A. Martin, U. Bentrup, B. Lucke, J. Sans, Catalytic gas phase ammoxidation of o-xylene, Appl Catal a-Gen,2004,270(1-2):57.
    [86]B. Manohar, B.M. Reddy, Ammoxidation of 3-picoline to nicotinonitrile over vanadium phosphorus oxide-based catalysts, J Chem Technol Biot,1998,71(2):141.
    [87]B.M. Reddy, B. Manohar, Ammoxidation of 3-Picoline to Nicotinonitrile on Silica-Supported Vpo Catalyst, Chem Ind-London,1992, (5):182.
    [88]M. Bacchini, N. Ballarini, F. Cavani, C. Cortelli, S. Cortesi, C. Fumagalliz, C. Mazzoniz, T. Monti, F. Pierelli, F. Trifiro, The transformation of light alkanes to chemicals:Mechanistic aspects of the gas-phase oxidation of n-pentane to maleic anhydride and phthalic anhydride, Chem Indust,2007,115:109.
    [89]C. Cabello, F.Cavani, S. Ligi, F. Trifiro, Oxidation of n-butane and n-pentane over V/P/O-based catalysts:comparison between fresh and "equilibrated" catalysts, Natural Gas Conversion V, 1998,119:925.
    [90]M.L. Granados, J.L.G Fierro, F. Cavani, A. Colombo, F. Giuntoli, F. Trifiro, Study by XPS and TPD of the interaction of n-pentane and n-butane with the surface of'non-equilibrated'and 'equilibrated'V-P-O catalysts, Catalysis Today,1998,40(2-3):251.
    [91]M.L. Granados, J.M. Coronado, J.L.G Fierro, F. Cavani, F. Giuntoli, F. Trifiro, TPD, XPS and ESR studies of the surface processes involved in the oxidation of n-pentane on a (VO)(2)P2O7 system, Surf Interface Anal,1997,25(9):667.
    [92]G. Calestani, F. Cavani, A. Duran, G. Mazzoni, G. Stefani, F. Trifiro, P. Venturoli, Oxidation of n-pentane to maleic and phthalic anhydrides:Some key-factors that affect the selectivity, Science and Technology in Catalysis 1994,1995,92:179.
    [93]A. Martin, B. Lucke, Ammoxidation of methylaromatics over vanadium phosphate catalysts.1. Effect of the size, position and electronic properties of substituents on the catalytic conversion of methylaromatics to the corresponding nitriles, Catalysis Today,1996,32(1-4):279.
    [94]A. Martin, H. Berndt, B. Lucke, M. Meisel, Reaction pathway of benzonitrile formation during toluene ammoxidation on vanadium phosphate catalysts, Top Catal,1996,3(3-4):377.
    [95]A. Bruckner, A. Martin, N. Steinfeldt, GU. Wolf, B. Lucke, Investigation of vanadium phosphorus oxide catalysts (VPO) during toluene ammoxidation:New mechanistic insights by in situ EPR, J Chem Soc Faraday T,1996,92(21):4257.
    [96]B.H. Sakakini, Y.H. Taufiq-Yap, K.C. Waugh, A study of the kinetics and mechanism of the adsorption and anaerobic partial oxidation of n-butane over a vanadyl pyrophosphate catalyst, J Catal,2000,189(2):253.
    [97]G. Koyano, T. Saito, M. Misono, In situ vibrational spectroscopic investigation of surface redox process of vanadyl pyrophosphate, J Mol Catal a-Chem,2000,155(1-2):31.
    [98]T. Ishimura, S. Sugiyama, H. Hayashi, Vanadyl hydrogenphosphate sesquihydrate as a precursor for preparation of (VO)(2)P2O7 and cobalt-incorporated catalysts, J Mol Catal a-Chem,2000, 158(2):559.
    [99]M. Ruitenbeek, A. Barbon, E.E. van Faassen, J.W. Geus, Evidence for a new type of vanadyl pairs in (VO)(2)P2O7:an ESR and magnetisation study, Catal Lett,1998,54(3):101.
    [100]B. Kubias, F. Richter, H. Papp, A. Krepel, A. Kretschmer, The nature of the active site of the (VO)(2)P2O7 catalyst:An investigation of the chemical composition and dynamics of the catalyst surface,3rd World Congress on Oxidation Catalysis,1997,110:461.
    [101]K. AitLachgar, M. Abon, J.C. Volta, Selective oxidation of n-butane to maleic anhydride on vanadyl pyrophosphate.1. Influence of oxidation pretreatments on the catalytic performances, J Catal,1997,171(2):383.
    [102]G. Centi, T. Tosarelli, F. Trifiro, Acrylonitrile from Propane on (Vo)2p2o7 with Preadsorbed Ammonia.1. Role of Competitive Adsorption Phenomena in Determining Selectivity, Journal of Catalysis,1993,142(1):70.
    [103]U.Illgen, J. Scheve, R. Feldhaus, K. Anders, Influence of the Silica Support of Iron-Antimony Oxides on the Oxidation and Ammoxidation of Propene, React Kinet Catal L,1982,20(1-2): 203.
    [104]J. Halasz, K. Varga, P. Fejes, K. Hemadi, Mechanism of Ammoxidation of Propene and Isobutene over Mixed Tin-Antimony Oxide Catalysts, Acta Chim Hung,1987,124(1):35.
    [105]J. Halasz, K. Varga, P. Fejes, Selective Ammoxidation of Propene over Promoted Tin-Antimony Mixed-Oxide Catalysts, Journal of Molecular Catalysis,1989,51(3):303.
    [106]M.D. Allen, S. Poulston, E.G. Bithell, M.J. Goringe, M. Bowker, An XPS, TEM, and TPD study of the oxidation and ammoxidation of propene using mixed Fe-Sb oxide catalysis, Journal of Catalysis,1996,163(1):204.
    [107]M. Bowker, C.R. Bicknell, P. Kerwin, Ammoxidation of propane to acrylonitrile on FeSbO4, Appl Catal a-Gen,1996,136(2):205.
    [108]E.A. Mamedov, V.C. Corberan, Oxidative Dehydrogenation of Lower Alkanes on Vanadium Oxide-Based Catalysts-the Present State-of-the-Art and Outlooks, Appl Catal a-Gen,1995, 127(1-2):1.
    [109]S.A. Korili, P. Ruiz, B. Delmon, Activation of n-pentane on magnesium-vanadium catalysts, Heterogeneous Hydrocarbon Oxidation,1996,638:192.
    [110]G Centi, E. Foresti, F. Guarnieri, Structure and Stability during the Catalytic Reaction of Unsupported V-Antimonate Catalysts for the Direct Selective Ammoxidation of Propane to Acrylonitrile, New Developments in Selective Oxidation Ii,1994,82:281.
    [111]G. Centi, F. Marchi, S. Perathoner, Surface chemistry of V-Sb-oxide in relation to the mechanism of acrylonitrile synthesis from propane.1. Chemisorption and transformation of possible intermediates, J Chem Soc Faraday T,1996,92(24):5141.
    [112]G Centi, F. Marchi, S. Perathoner, Surface chemistry of V-Sb-oxide in relation to the mechanism of acrylonitrile synthesis from propane.2. Reactivity towards ammonia and relationship with catalytic behaviour, J Chem Soc Faraday T,1996,92(24):5151.
    [113]H.W. Zanthoff, S.A. Buchholz, O.Y. Ovsitser, Ammoxidation of propane to acrylonitrile on V-Sb-O catalysts. Role of ammonia in the reaction pathways, Catalysis Today,1996,32(1-4): 291.
    [114]G. Centi, P. Mazzoli, S. Perathoner, Dependence of the catalytic behavior of V-Sb-oxides in propane ammoxidation to acrylonitrile from the method of preparation, Appl Catal a-Gen,1997, 165(1-2):273.
    [115]G. Centi, S. Perathoner, Surface chemistry of V-Sb-oxide in relation to the mechanism of acrylonitrile synthesis from propane.3. Influence of ammonia on the competitive pathways of reaction, J Chem Soc Faraday T,1997,93(6):1147.
    [116]M. Sanati, R. Akbari, S. Masetti, F. Trifiro, Kinetic study on propane ammoxidation to acrylonitrile over V-Sb-O/TiO2(B), Catalysis Today,1998,42(3):325.
    [117]M.O. Guerrero-Perez, M.A. Banares, Operando Raman study of alumina-supported Sb-V-O catalyst during propane ammoxidation to acrylonitrile with on-line activity measurement, Chem Commun,2002,(12):1292.
    [118]M.O. Guerrero-Perez, J.L.G. Fierro, M.A. Vicente, M.A. Banares, Effect of Sb/V ratio and of Sb+V coverage on the molecular structure and activity of alumina-supported Sb-V-O catalysts for the ammoxidation of propane to acrylonitrile, Journal of Catalysis,2002,206(2):339.
    [119]M.O. Guerrero-Perez, J.L.G Fierro, M.A. Banares, Niobia-supported Sb-V-0 catalysts for propane ammoxidation:effect of catalyst composition on the selectivity to acrylonitrile, Phys Chem Chem Phys,2003,5(18):4032.
    [120]M.O. Guerrero-Perez, J.L.G. Fierro, M.A. Banares, Effect of synthesis method on stabilized nano-scaled Sb-V-O catalysts for the ammoxidation of propane to acrylonitrile, Top Catal,2006, 41(1-4):43.
    [121]M.O. Guerrero-Perez, J.L.G Fierro, M.A. Banares, Tunning the Nb addition to Sb-V-0 catalysts for an efficient promotion of the ammoxidation of propane to acrylonitrile, Catalysis Today, 2006,118(3-4):366.
    [122]N. Ballarini, F.J. Berry, F. Cavani, M. Cimini, X. Ren, D. Tamoni, F. Trifiro, The synthesis of rutile-type V/Sb mixed oxides, catalysts for the ammoxidation of propane to acrylonitrile-A comparison of high-energy milling and co-precipitation methods, Catal Today,2007,128(3-4): 161.
    [123]M.O. Guerrero-Perez, J.S. Chang, D.Y. Hong, J.M. Lee, M.A. Banares, Effect of Mg in alumina-supported Sb-V-O catalysts for the ammoxidation of propane into acrylonitrile, Catal Lett,2008,125(3-4):192.
    [124]M.O. Guerrero-Perez, M.A. Banares, Role of V in supported V-Sb-O catalysts for the ammoxidation of propane to acrylonitrile:Multilayered VOx/SbOx/A12O3 catalysts, Catalysis Today,2009,142(3-4):152.
    [125]G. Centi, S. Perathoner, Influence of preparation method on the properties of V-Sb-0 catalysts for the ammoxidation of propane, Preparation of Catalysts Vi,1995,91:59.
    [126]G. Centi, S. Perathoner, F. Trifiro, V-Sb-oxide catalysts for the ammoxidation of propane, Appl Catal a-Gen,1997,157(1-2):143.
    [127]R. Nilsson, T. Lindblad, A. Andersson, C. Song, S. Hansen, Ammoxidation of Propane over Vanadium-Antimony-Oxide Catalysts-Role of Phase Cooperation Effects, New Developments in Selective Oxidation Ii,1994,82:293.
    [128]R. Nilsson, T. Lindblad, A. Andersson, Ammoxidation of Propene over Antimony-Vanadium-Oxide Catalysts, Catal Lett,1994,29(3-4):409
    [129]R. Nilsson, T. Lindblad, A. Andersson, Ammoxidation of Propane over Antimony Vanadium-Oxide Catalysts, Journal of Catalysis,1994,148(2):501.
    [130]G. Centi, S. Perathoner, Modification of the Surface Reactivity of Vanadium Antimonate Catalysts during Catalytic Propane Ammoxidation, Appl Catal a-Gen,1995,124(2):317.
    [131]R.G Teller, M1 Antonio, J.F. Brazdil, R.K. Grasselli, New materials synthesis:characterization of some metal-doped antimony oxides, Journal of Solid State Chemistry,1986,64(3):249.
    [132]A. Landacanovas, J. Nilsson, S. Hansen, K. Stahl, A. Andersson, On the Nonstoichiometry in Rutile-Type Approximate-to-Sbvo4, Journal of Solid State Chemistry,1995,116(2):369.
    [133]S. Hansen, K. Stahl, R. Nilsson, A. Andersson, The Crystal-Structure of Sb0.92v0.92o4, Determined by Neutron and Dual Wavelength X-Ray-Powder Diffraction, Journal of Solid State Chemistry,1993,102(2):340.
    [134]A. Andersson, S. Hansen, A. Wickman, The importance of site isolation and phase cooperation in propane ammoxidation on rutile-type vanadia catalysts, Top Catal,2001,15(2-4):103.
    [135]A. Wickman, L.R. Wallenberg, A. Andersson, Effect of titanium substitution in approximate to SbVO4 used for propane ammoxidation, J Catal,2000,194(1):153.
    [136]J. Nilsson, A.R. Landa-Canovas, S.A. Hansen, A. Andersson, An investigation of the Al-Sb-V-W-oxide system for propane ammoxidation, J Catal,1999,186(2):442.
    [137]N. Ballarini, F. Cavani, S. Di Memmo, F. Zappoli, P. Marion, The role of Sb and Nb in rutile-type Sn/V/Nb/Sb mixed oxides, catalysts for propane ammoxidation to acrylonitrile, Catalysis Today,2009,141(3-4):264.
    [138]J. Nilsson, A.R. Landa-Canovas, S. Hansen, A. Andersson, Formation of active phases in the Sb-V-, Al-Sb-V-, and Al-Sb-V-W-oxide systems for propane ammoxidation,3rd World Congress on Oxidation Catalysis,1997,110:413.
    [139]S. Albonetti, G. Blanchard, P. Burattin, S. Masetti, A. Tagliani, F. Trifiro, A new ternary mixed oxide catalyst for ammoxidation of propane:Sn/V/Sb, Catal Lett,1998,50(1-2):17.
    [140]S. Albonetti, G. Blanchard, P. Burattin, S. Masetti, F. Trifiro, A new catalyst for propane ammoxidation:the Sn/V/Sb mixed oxide,3rd World Congress on Oxidation Catalysis,1997,110: 403.
    [141]G. Xiong, VS. Sullivan, P.C. Stair, G.W. Zajac, S.S. Trail, J.A. Kaduk, J.T. Golab, J.F. Brazdil, Effect of titanium substitution on the structure of VSbO4 catalysts for propane ammoxidation, J Catal,2005,230(2):317.
    [142]E. Arcozzi, N. Ballarini, F. Cavani, M. Cimini, C. Lucarelli, F. Trifiro, P. Delichere, J.M.M. Millet, P. Marion, The control of catalytic performance of rutile-type Sn/V/Nb/Sb mixed oxides, catalysts for propane ammoxidation to acrylonitrile, Catal Today,2008,138(1-2):97.
    [143]S. Albonetti, G. Blanchard, P. Burattin, F. Cavani, S. Masetti, F. Trifiro, Propane ammoxidation to acrylonitrile over a tin-based mixed-oxide catalyst, Catal Today,1998,42(3):283.
    [144]F. Cavani, S. Ligi, S. Masetti, F. Trifiro, SbVO4:the chemistry of preparation, Preparation of Catalysts ⅶ,1998,118:377.
    [145]X.Y. Chen, S.W. Lee, Controlled synthesis and characterization of colloidal SbVO4 nanocrystals by a facile solution-phase method, Chem Phys Lett,2007,445(4-6):221.
    [146]M.O. Guerrero-Perez, M.A. Banares, Operando Raman-GC study of supported alumina Sb-and V-based catalysts:Effect of Sb/V molar ratio and total Sb+V coverage in the structure of catalysts during propane ammoxidation, J Phys Chem C,2007,111 (3):1315.
    [147]M.O. Guerrero-Perez, J.L.G. Fierro, M.A. Vicente, M.A. Banares, Support effect on the structure and reactivity of VSbO4 catalysts for propane ammoxidation to acrylonitrile, Chem Mater,2007, 19(26):6621.
    [148]S.A. D'Ippolito, M.A. Banares, J.L.G. Fierro, C.L. Pieck, Propane oxidative dehydrogenation on V-Sb/ZrO2 catalysts, Catal Lett,2008,122(3-4):252.
    [149]H.W. Zanthoff, M. Lahmer, M. Baerns, E. Klemm, M. Seitz, G. Emig, Enhanced product selectivity in partial oxidation of propane on multicomponent oxide catalysts by masking of total oxidation sites, J Catal,1997,172(1):203.
    [150]S. Shaikh, K. Bethke, E. Mamedov, Propane ammoxidation on bulk, diluted and supported VSb oxides, Top Catal,2006,38(4):241.
    [151]G. Centi, F. Marchi, S. Perathoner, Effect of ammonia chemisorption on the surface reactivity of V-Sb-oxide catalysts for propane ammoxidation, Appl Catal a-Gen,1997,149(1):225.
    [152]YA. SalehAlhamed, R.R. Hudgins, P.L. Silveston, Role of water vapor in the partial oxidation of propene, Journal of Catalysis,1996,161(1):430.
    [153]G Centi, F. Trifiro, Some Aspects of the Control of Selectivity in Catalytic-Oxidation on Mixed Oxides-a Review, Applied Catalysis,1984,12(1):1
    [154]C. Morterra, E. Giamello, G. Cerrato, G Centi, S. Perathoner, Role of surface hydration state on the nature and reactivity of copper ions in Cu-ZrO2 catalysts:N2O decomposition, Journal of Catalysis,1998,179(1):111.
    [155]G. Centi, J. Gleaves, G. Golinelli, S. Perathoner, F. Trifiro, in:C.H. Bartholomew and J.B. Butt (Eds), Catalyst Deactivation, Elsevier, Amsterdam,1991, p.449.
    [156]J.S. Yoo, PS. Lin, S.D. Elfline, Gas-Phase Oxygen Oxidations of Alkylaromatics over Cvd Fe/Mo/Borosilicate Molecular-Sieve.2. The Role of Carbon-Dioxide as a Cooxidant, Appl Catal a-Gen,1993,106(2):259.
    [157]G Centi, F. Guarnieri, S. Perathoner, Structure, activity and selectivity relationships in propane ammoxidation to acrylonitrile on V-Sb oxides.3. Modifications during the catalytic reaction and effect of feed composition, J Chem Soc Faraday T,1997,93(18):3391.
    [158]A.C. Sanfiz, T.W. Hansen, D. Teschner, P. Schnorch, F. Girgsdies, A. Trunschke, R. Schlogl, M.H. Looi, S.B.A. Hamid, Dynamics of the MoVTeNb Oxide M1 Phase in Propane Oxidation, J Phys Chem C,2010,114(4):1912.
    [159]R. Lopez-Medina, J.L.G. Fierro, M.O. Guerrero-Perez, M.A. Banares, Nanoscaled rutile active phase in Mo-V-Nb-O supported catalysts for the oxidation of propane to acrylic acid, Appl Catal a-Gen,2010,375(1):55.
    [160]F. Ivars, B. Solsona, S. Hernandez, J.M.L. Nieto, Influence of gel composition in the synthesis of MoVTeNb catalysts over their catalytic performance in partial propane and propylene oxidation, Catalysis Today,2010,149(3-4):260.
    [161]L. Yuan, V.V. Guliants, Dual-templating of macroporous multicomponent MoVTeNbOx catalysts for propane ammoxidation to acrylonitrile, J Porous Mat,2009,16(5):613.
    [162]H.X. Wang, Z.H. Deng, W.L. Chu, W.S. Yang, Two-Step Calcined MoVTeNbO Catalysts for the Oxidation of Propane to Acrylic Acid, Chinese J Catal,2009,30(6):490.
    [163]H.X. Wang, Z.H. Deng, W.L. Chu, W.S. Yang, A new approach to achieving a pure M1 phase catalyst for the selective oxidation of propane, React Kinet Catal L,2009,97(2):233.
    [164]W.D. Pyrz, D.A. Blom, N.R. Shiju, V.V. Guliants, T. Vogt, D.J. Buttrey, The effect of Nb or Ta substitution into the M1 phase of the MoV(Nb,Ta)TeO selective oxidation catalyst, Catalysis Today,2009,142(3-4):320.
    [165]G.Y. Popova, TV. Andrushkevich, L.S. Dovlitova, GA. Aleshina, Y.A. Chesalov, A.V. Ishenko, E.V. Ishenko, L.M. Plyasova, V.V. Malakhov, M.I. Khramov, The investigation of chemical and phase composition of solid precursor of MoVTeNb oxide catalyst and its transformation during the thermal treatment, Appl Catal a-Gen,2009,353(2):249.
    [166]G.Y. Popova, T.V. Andrushkevich, Y.A. Chesalov, L.M. Plyasova, L.S. Dovlitova, E.V. Ischenko, G.I. Aleshina, M.I. Khramov, Formation of active phases in MoVTeNb oxide catalysts for ammoxidation of propane, Catalysis Today,2009,144(3-4):312.
    [167]S.S. Kum, B.Y. Jo, S.H. Moon, Performance of Pd-promoted Mo-V-Te-Nb-O catalysts in the partial oxidation of propane to acrylic acid, Appl Catal a-Gen,2009,365(1):79.
    [168]F. Ivars, B. Solsona, E. Rodriguez-Castellon, J.M.L. Nieto, Selective propane oxidation over MoVSbO catalysts. On the preparation, characterization and catalytic behavior of M1 phase, Journal of Catalysis,2009,262(1):35.
    [169]F. Ivars, B. Solsona, P. Botella, M.D. Soriano, J.M.L. Nieto, Selective oxidation of propane over alkali-doped Mo-V-Sb-O catalysts, Catalysis Today,2009,141(3-4):294.
    [170]R. Idris, S.B. Abd Hamid, Thermal Behavior Study of the MoVTeNb Oxide Catalyst for Selective Oxidation Process, Aip Conf Proc,2009,1136:16.
    [171]J.Q. Guan, H.S. Wang, Y. Yang, B. Liu, X.F. Yu, YY. Ma, Q.B. Kan, Effect of pH on the Catalytic Properties of Mo-V-Te-P-O Catalysts for Selective Oxidation of Isobutane, Catal Lett, 2009,131(3-4):512.
    [172]J.Q. Guan, H.S. Wang, K. Song, C. Xu, Z.Q. Wang, Q.B. Kan, Selective oxidation of isobutane over hydrothermally synthesized Mo-V-Te-Sb-O mixed oxide catalysts, Catal Commun,2009, 10(10):1437.
    [173]Z.H. Deng, H.X. Wang, W.L. Chu, W.S. Yang, Highly active Mo-V-Te-Nb-O catalysts obtained by eliminating surface Te-0 for selective oxidation of propane to acrylic acid, React Kinet Catal L,2009,97(2):225.
    [174]M.A. Carreon, V.V. Guliants, M.O. Guerrero-Perez, M.A. Banares, Mesostructured mixed Mo-V-Nb oxides for propane ammoxidation, Catal Commun,2009,10(4).416.
    [175]D.A. Blom, W.D. Pyrz, T. Vogt, D.J. Buttrey, Aberration-corrected STEM investigation of the M2 phase of MoVNbTeO selective oxidation catalyst, Journal of Electron Microscopy,2009, 58(3):193.
    [176]X.J. Yang, WE Zhang, R.M. Feng, W.J. Ji, C.T. Au, A comparison study on the structure and performance of Mo-V-O and Mo-V-Te-O catalysts synthesized hydrothermally with ultrasonic pretreatment for propane oxidation, Catal Lett,2008,124(3-4):288.
    [177]X.J. Yang, R.M. Feng, W.H. Ji, C.T. Au, Characterization and evaluation of Mo-V-Te-Nb mixed metal oxide catalysts fabricated via hydrothermal process with ultrasonic pretreatment for propane partial oxidation, Journal of Catalysis,2008,253(1):57.
    [178]N.R. Shiju, A.J. Rondinone, D.R. Mullins, V. Schwartz, S.H. Overbury, V.V. Guliants, XANES Study of Hydrothermal Mo-V-Based Mixed Oxide. M1-Phase Catalysts for the (Amm)oxidation of Propane, Chem Mater,2008,20(21):6611.
    [179]N.R. Shiju, X.H. Liang, A.W. Weimer, C.D. Liang, S. Dai, V.V Guliants, The role of surface basal planes of layered mixed metal oxides in selective transformation of lower alkanes:Propane ammoxidation over surface ab planes of Mo-V-Te-Nb-O M1 phase, J Am Chem Soc,2008, 130(18):5850.
    [180]N.R. Shiju, V.V. Guliants, S.H. Overbury, A.J. Rondinone, Toward Environmentally Benign Oxidations. Bulk Mixed Mo-V-(Te-Nb)-O Ml Phase Catalysts for the Selective Ammoxidation of Propane, Chemsuschem,2008,1(6):519.
    [181]N.R. Shiju, V.V. Guliants, Mo-V-M-O (M=Te, W, Fe, Ga) catalysts for selective ammoxidation of propane, Catal Commun,2008,9(13):2253.
    [182]A.C. Sanfiz, T.W. Hansen, A. Sakthivel, A. Trunschke, R. Schlogl, A. Knoester, H.H. Brongersma, M.H. Looi, S.B.A. Hamid, How important is the (001) plane of M1 for selective oxidation of propane to acrylic acid?, Journal of Catalysis,2008,258(1):35.
    [183]A.C. Sanfiz, T.W. Hansen, F. Girgsdies, O. Timpe, E. Rodel, T. Ressler, A. Trunschke, R. Schlogl, Preparation of Phase-Pure M1 MoVTeNb Oxide Catalysts by Hydrothermal Synthesis-Influence of Reaction Parameters on Structure and Morphology, Top Catal,2008,50(1-4):19.
    [184]W.D. Pyrz, D.A Blom, T. Vogt, D.J. Buttrey, Direct imaging of the MoVTeNbO M1 phase using an aberration-corrected high-resolution scanning transmission electron microscope, Angewandte Chemie-Intemational Edition,2008,47(15):2788.
    [185]W.D. Pyrz, D.A. Blom, N.R. Shiju, V.V. Guliants, T. Vogt, D.J. Buttrey, Using aberration-corrected STEM imaging to explore chemical and structural variations in the M1 phase of the MoVNbTeO oxidation catalyst, J Phys Chem C,2008,112(27):10043.
    [186]K.S. Oh, S.I. Woo, Effect of preparation and reaction condition on the catalytic performance of Mo-V-Te-Nb catalysts for selective oxidation of propane to acrylic acid by high-throughput methodology, Catalysis Today,2008,137(1):61.
    [187]R.I. Maksimovskaya, V.M. Bondareva, G.I. Aleshina, NMR Spectroscopic Studies of Interactions in Solution during the Synthesis of MoVTeNb Oxide Catalysts, Eur J Inorg Chem,2008, (31): 4906.
    [188]P. Korovchenko, N.R. Shiju, A.K. Dozier, U.M. Graham, M.O. Guerrero-Perez, V.V. Guliants, M1 to M2 Phase Transformation and Phase Cooperation in Bulk Mixed Metal Mo-V-M-O (M=Te, Nb) Catalysts for Selective Ammoxidation of Propane, Top Catal,2008,50(1-4):43.
    [189]F. Ivars, B. Solsona, M.D. Soriano, J.M. Lopez, Selective Oxidation of Propane Over AMoVSbO Catalysts (A= Li, Na, K, Rb or Cs), Top Catal,2008,50(1-4):74.
    [190]R. Haggblad, J.B. Wagner, B. Deniau, J.M.M. Millet, J. Holmberg, R.K. Grasselli, S. Hansen, A. Andersson, Substituted Mo-V(Ti)-Te(Ce)-oxide M2 Catalysts for Propene Ammoxidation, Top Catal,2008,50(1-4):52.
    [191]M.O. Guerrero-Perez, L.J. Alemany, Alumina supported Mo-V-Te-O catalysts for the ammoxidation of propane to acrylonitrile, Appl Catal a-Gen,2008,341(1-2):119.
    [192]J.Q. Guan, C. Xu, B. Liu, Y. Yang, Y.Y. Ma, Q.B. Kan, Partial Oxidation of Isobutane Over Hydrothermally Synthesized Mo-V-Te-O Mixed Oxide Catalysts, Catal Lett,2008,126(3-4): 301.
    [193]R.K. Grasselli, C.G. Lugmair, A.F. Volpe, A. Andersson, J.D. Burrington, Inhibition of Propylene Oxidation to Acrylic Acid by Amorphous Overlayers on MoV(Nb)TeO Based M2 Catalysts, Catal Lett,2008,126(3-4):231.
    [194]R.K. Grasselli, C.G. Lugmair, A.F. Volpe, Doping of MoVNbTeO (M1) and MoVTeO (M2) Phases for Selective Oxidation of Propane and Propylene to Acrylic Acid, Top Catal,2008, 50(1-4):66.
    [195]B. Deniau, J.M.M. Millet, S. Loridant, N. Christin, J.L. Dubois, Effect of several cationic substitutions in the M1 active phase of the MoVTeNbO catalysts used for the oxidation of propane to acrylic acid, Journal of Catalysis,2008,260(1):30.
    [196]B. Deniau, G. Bergeret, B. Jouguet, J.L. Dubois, J.M.M. Millet, Preparation of Single M1 Phase MoVTe(Sb) NbO Catalyst:Study of the Effect of M2 Phase Dissolution on the Structure and Catalytic Properties, Top Catal,2008,50(1-4):33.
    [197]Z.H. Deng, H.X. Wang, W.L. Chu, W.S. Yang, Influence of the Reducing Atmosphere on the Structure and Activity of Mo-V-Te-Nb-O Catalysts for Propane Selective Oxidation, Chinese J Catal,2008,29(10):1032.
    [198]Y.H. Zhu, W.M. Lu, H. Li, H.L. Wan, Selective modification of surface and bulk V5+/V4+ratios and its effects on the catalytic performance of Mo-V-Te-O catalysts, Journal of Catalysis,2007, 246(2):382.
    [199]W.C. Zhu, M.J. Jia, Z.L. Wang, G.J. Wang, T.H. Wu, Selective oxidation of isobutane over hydrothermally synthesised Mo-V-Te-Nb-O mixed oxide catalyst, Chem J Chinese U,2007, 28(2):334.
    [200]B. Solsona, M.I. Vazquez, F. Ivars, A. Dejoz, P. Concepcion, J.M.L. Nieto, Selective oxidation of propane and ethane on diluted Mo-V-Nb-Te mixed-oxide catalysts, Journal of Catalysis,2007, 252(2):271.
    [201]N.R. Shiju, R.R. Kale, S.S. Iyer, V.V. Guliants, C-13 isotope labeling study of propane ammoxidation over Ml phase Mo-V-Te-Nb-O mixed oxide catalyst, J Phys Chem C,2007, 111(49):18001.
    [202]N.R. Shiju, V.V. Guliants, Microwave-assisted hydrothermal synthesis of monophasic Mo-V-Te-Nb-O mixed oxide catalyst for the selective ammoxidation of propane, Chemphyschem,2007,8(11):1615.
    [203]G. Y. Popova, T.V. Andrushkevich, G.I. Aleshina, L.M. Plyasov, M.I. Khramov, Effect of oxalic acid content and medium of thermal treatment on physicochemical and catalytic properties of MoVTeNb oxide catalysts in propane ammoxidation, Appl Catal a-Gen,2007,328(2):195.
    [204]H. Murayama, D. Vitry, W. Ueda, G. Fuchs, M. Anne, J.L. Dubois, Structure characterization of orthorhombic phase in MoVTeNbO catalyst by powder X-ray diffraction and XANES, Appl Catal a-Gen,2007,318:137.
    [205]J. Holmberg, J.B. Wagner, R. Haggblad, S. Hansen, L.R. Wallenberg, A. Andersson, Catalytic and structural effects of W-substitution in M2 Mo-V-Te-oxide for propene ammoxidation, Catalysis Today,2007,128(3-4):153.
    [206]J.Q. Guan, S.J. Wu, H.S. Wang, S.B. Jing, G.J. Wang, K.J. Zhen, Q.B. Kan, Synthesis and characterization of MoVTeCeO catalysts and their catalytic performance for selective oxidation of isobutane and isobutylene, Journal of Catalysis,2007,251(2):354.
    [207]R.M. Feng, X.J. Yang, W.J. Ji, H.Y Zhu, X.D. Gu, Y. Chen, S. Han, H. Hibst, The study on the source of Te and the dispersion of TeO2 in fabricating Mo-V-Te and Mo-V-Te-Nb mixed metal oxide catalysts for propane partial oxidation, J Mol Catal a-Chem,2007,267(1-2):245.
    [208]W. Ueda, Y. Endo, N. Watanabe, K-doped Mo-V-Sb-O crystalline catalysts for propane selective oxidation to acrylic acid, Top Catal,2006,38(4):261.
    [209]X.L. Tu, N. Furuta, Y. Sumida, M. Takahashi, H. Niiduma, A new approach to the preparation of MoVNbTe mixed oxide catalysts for the oxidation of propane to acrylic acid, Catalysis Today, 2006,117(1-3):259.
    [210]O.V. Safonova, B. Deniau, J.M.M. Millet, Mechanism of the oxidation-reduction of the MoVSbNbO catalyst:In operando X-ray absorption spectroscopy and electrical conductivity measurements, J Phys Chem B,2006,110(47).23962.
    [211]F. Ivars, P. Botella, A. Dejoz, J.M.L. Nieto, P. Conception, M.I. Vazquez, Selective oxidation of short-chain alkanes over hydrothermally prepared MoVTeNbO catalysts, Top Catal,2006, 38(1-3):59.
    [212]J. Holmberg, S. Hansen, R.K. Grasselli, A. Andersson, Catalytic effects in propene ammoxidation achieved through substitutions in the M2 phase of the Mo-V-Nb-Te-oxide system, Top Catal,2006,38(1-3):17.
    [213]J. Holmberg, R. Haggblad, A. Andersson, A study of propane ammoxidation on Mo-V-Nb-Te-oxide catalysts diluted with A12O3, SiO2, and TiO2, Journal of Catalysis,2006, 243(2):350.
    [214]V.V. Guliants, H.H. Brongersma, A. Knoester, A.M. Gaffney, S. Han, Surface active sites present in the orthorhombic Ml phases:low energy ion scattering study of methanol and allyl alcohol chemisorption over Mo-V-Te-Nb-O and Mo-V-O catalysts, Top Catal,2006,38(1-3):41.
    [215]V.V. Guliants, R. Bhandari, A.R. Hughett, S. Bhatt, B.D. Schuler, H.H. Brongersma, A. Knoester, A.M. Gaffney, S. Han, Probe molecule chemisorption-low energy ion scattering study of surface active sites present in the orthorhombic Mo-V-(Te-Nb)-O catalysts for propane (Amm)oxidation, J Phys Chem B,2006,110(12):6129.
    [216]R.K. Grasselli, D.J. Buttrey, J.D. Burrington, A. Andersson, J. Holmberg, W. Ueda, J. Kubo, C.G. Lugmair, A.F. Volpe, Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb,Ta)TeO ammoxidation catalysts, Top Catal,2006,38(1-3):7.
    [217]M. Florea, A.S. Mamede, P. Eloy, V.I. Parvulescu, E.M. Gaigneaux, High surface area Mo-V-Te-Nb-O catalysts:Preparation, characterization and catalytic behaviour in ammoxidation of propane, Catalysis Today,2006,112(1-4):139.
    [218]P. DeSanto, D.J. Buttrey, R.K. Grasselli, W.D. Pyrz, C.G Lugmair, A.F. Volpe, T. Vogt, B.H. Toby, Comparison of MoVTaTeO and MoVNbTeO M1 crystal chemistry, Top Catal,2006, 38(1-3):31.
    [219]P. Botella, A. Dejoz, J.M.L. Nieto, P. Concepcion, M.I. Vazquez, Selective oxidative dehydrogenation of ethane over MoVSbO mixed oxide catalysts, Appl Catal a-Gen,2006,298: 16.
    [220]U. Bentrup, A. Bruckner, M. Kant, S. Kolf, U. Dingerdissen, S. Jansen, D. Maschmeyer, H. Siegert, H.W. Zanthoff, Selective oxidation of i-butane and i-butene to methacrolein and methacrylic acid over Keggin-type polyoxometalate and MoVTeNbOx catalysts-A comparative catalytic and in situ spectroscopic study, Oil Gas-Eur Mag,2006,32(3):145.
    [221]H.P. Yang, Y.N. Fan, J.M. Wu, Y. Chen, Structure and properties of BiCeVMoO mixed metal oxides catalysts for selective oxidation of propane, J Mol Catal a-Chem,2005,227(1-2):279.
    [222]Q. Xie, L.Q. Chen, W.Z. Weng, H.L. Wan, Preparation of MoVTe(Sb)Nb mixed oxide catalysts using a slurry method for selective oxidative dehydrogenation of ethane, J Mol Catal a-Chem, 2005,240(1-2):191.
    [223]M. Roussel, M. Bouchard, E. Bordes-Richard, K. Karim, S. Al-Sayari, Oxidation of ethane to ethylene and acetic acid by MoVNbO catalysts, Catalysis Today,2005,99(1-2):77.
    [224]J.S. Paul, R. Janssens, J.F.M. Denayer, GV. Baron, PA. Jacobs, Optimization of MoVSb oxide catalyst for partial oxidation of isobutane by combinatorial approaches, J Comb Chem,2005, 7(3):407.
    [225]V.V. Guliants, R. Bhandari, B. Swaminathan, V.K. Vasudevan, H.H. Brongersma, A. Knoester, A.M. Gaffney, S. Han, Roles of surface Te, Nb, and Sb oxides in propane oxidation to acrylic acid over orthorhombic Mo-V-O phase, J Phys Chem B,2005,109(50):24046.
    [226]V.V. Guliants, R. Bhandari, H.H. Brongersma, A. Knoester, A.M. Gaffney, S. Han, A study of the surface region of the Mo-V-Te-O catalysts for propane oxidation to acrylic acid, J Phys Chem B, 2005,109(20):10234.
    [227]A.M. Gaffney, S. Chaturvedi, M.B. Clark, S. Han, D. Le, S.A. Rykov, J.G. Chen, Characterization and catalytic studies of PVD synthesized Mo/V/Nb/Te oxide catalysts, Journal of Catalysis,2005,229(1):12.
    [228]R. Fushimi, S.O. Shekhtman, A. Gaffney, S. Han, G.S. Yablonsky, J.T. Gleaves, TAP vacuum pulse-response and normal-pressure studies of propane oxidation over MoVTeNb oxide catalysts, Ind Eng Chem Res,2005,44(16):6310.
    [229]P. Botella, E. Garcia-Gonzalez, J.M.L. Nieto, J.M. Gonzalez-Calbet, MoVTeNbO multifunctional catalysts:Correlation between constituent crystalline phases and catalytic performance, Solid State Sci,2005,7(5):507.
    [230]P. Botella, P. Concepcion, J.M. Lopez Nieto, Y. Moreno, The influence of Te-precursor in Mo-V-Te-O and Mo-V-Te-Nb-O catalysts on their catalytic behaviour in the selective propane oxidation, Catalysis Today,2005,99(1-2):51.
    [231]M. Baca, A. Pigamo, J.L. Dubois, J.M.M. Millet, Fourier transform infrared spectroscopic study of surface acidity by pyridine adsorption on the Ml active phase of the MoVTe(Sb)NbO catalysts used in propane oxidation, Catal Commun,2005,6(3):215.
    [232]M. Baca, J.M.M. Millet, Bulk oxidation state of the different cationic elements in the MoVTe(Sb)NbO catalysts for oxidation or ammoxidation of propane, Appl Catal a-Gen,2005, 279(1-2):67.
    [233]M. Baca, M. Aouine, J.L. Dubois, J.M.M. Millet, Synergetic effect between phases in MoVTe(Sb)NbO catalysts used for the oxidation of propane into acrylic acid, Journal of Catalysis,2005,233(1):234.
    [234]B.C. Zhu, H.B. Li, W.S. Yang, L.W. Lin, Effects of reaction conditions on the selective oxidation of propane to acrylic acid on Mo-V-Te-Nb oxides, Catalysis Today,2004,93-95:229.
    [235]B. Solsona, J.M.L. Nieto, J.M. Oliver, J.P. Gumbau, Selective oxidation of propane and propene on MoVNbTeO catalysts-Effect of chemical composition in catalysts prepared by slurry, Catalysis Today,2004,91-92:247.
    [236]J.M. Oliver, J.M.L. Nieto, P. Botella, A. Mifsud, The effect of pH on structural and catalytic properties of MoVTeNbO catalysts, Appl Catal a-Gen,2004,257(1):67.
    [237]J.M. Oliver, J.M.L. Nieto, P. Botella, Selective oxidation and ammoxidation of propane on a Mo-V-Te-Nb-O mixed metal oxide catalyst:a comparative study, Catalysis Today,2004,96(4): 241.
    [238]J.M.L. Nieto, P. Botella, P. Conception, A. Dejoz, M.I. Vazquez, Oxidative dehydrogenation of ethane on Te-containing MoVNbO catalysts, Catalysis Today,2004,91-92:241.
    [239]J.W. Lee, J.K. Lee, S.K. Cho, J.S. Jung, S.H. Lee, Partial oxidation of methane over M-Sb-Te-0 (M= transition metal) catalysts, B Kor Chem Soc,2004,25(4):573.
    [240]J. Holmberg, R.K. Grasselli, A. Andersson, Catalytic behaviour of Ml, M2, and M1/M2 physical mixtures of the Mo-V-Nb-Te-oxide system in propane and propene ammoxidation, Appl Catal a-Gen,2004,270(1-2):121.
    [241]V.V. Guliants, R. Bhandari, J.N. Al-Saeedi, V.K. Vasudevan, R.S. Soman, O. Guerrero-Perez, M.A. Banares, Bulk mixed Mo-V-Te-O catalysts for propane oxidation to acrylic acid, Appl Catal a-Gen,2004,274(1-2):123.
    [242]M.O. Guerrero-Perez, J.N. Al-Saeedi, V.V. Guliants, M.A. Banares, Catalytic properties of mixed Mo-V-Sb-Nb-O oxides catalysts for the ammoxidation of propane to acrylonitrile, Appl Catal a-Gen,2004,260(1):93.
    [243]P. DeSanto, D.J. Buttrey, R.K. Grasselli, C.G Lugmair, A.F. Volpe, B.H. Toby, T. Vogt, Structural aspects of the Ml and M2 phases in MoVNbTeO propane ammomidation catalysts, Z Kristallogr, 2004,219(3):152.
    [244]M. Cimini, J.M.M. Millet, N. Ballarini, F. Cavani, C. Ciardelli, C. Ferrari, Synthesis, characterization and evaluation as catalysts for propane ammoxidation of VMoSbO systems with rutile-type structure, Catalysis Today,2004,91-92:259.
    [245]L.Q. Chen, E.G. Derouane, J.C. Vedrine, High-throughput preparation and testing of MoNbSbV mixed oxide catalysts for direct oxidation of propane to acrylic and acetic acids, Appl Catal a-Gen,2004,270(1-2):157.
    [246]D.J. Buttrey, P. DeSanto, R.K. Grasselli, T. Vogt, B.H. Toby, A.F. Volpe, C.G. Lugmair, Structural characterization of phases in the MoVNbTeO propane ammoxidation catalyst., Abstr Pap Am Chem S,2004,227:U1245.
    [247]P. Botella, E. Garcia-Gonzalez, A. Dejoz, J.M.L. Nieto, M.I. Vazquez, J. Gonzalez-Calbet, Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts, Journal of Catalysis,2004,225(2):428.
    [248]T. Blasco, P. Botella, P. Concepcion, J.M.L. Nieto, A. Martinez-Arias, C. Prieto, Selective oxidation of propane to acrylic acid on K-doped MoVSbO catalysts:catalyst characterization and catalytic performance, Journal of Catalysis,2004,228(2):362.
    [249]E. Balcells, F. Borgmeier, I. Grisstede, H.G Lintz, F. Rosowski, Partial oxidation of propane to acrylic acid at a Mo-V-Te-Nb-oxide catalyst, Appl Catal a-Gen,2004,266(2):211.
    [250]H.P. Yang, Y.N. Fan, B.L. Xu, Y. Chen, Effect of cerium component on selective oxidation of propane over BiCeVMoO composite oxide catalyst, Chinese J Catal,2003,24(4):265.
    [251]D. Vitry, Y. Morikawa, J.L. Dubois, W. Ueda, Propane selective oxidation over monophasic Mo-V-Te-O catalysts prepared by hydrothermal synthesis, Top Catal,2003,23(1-4):47.
    [252]J.M.L. Nieto, J.M. Oliver, P. Botella, Selective oxidation and ammoxidation of propane on a MoVTeNB catalyst prepared hydrothermally., Abstr Pap Am Chem S,2003,226:U392.
    [253]J.M.M. Millet, M. Baca, A. Pigamo, D. Vitry, W. Ueda, J.L. Dubois, Study of the valence state and coordination of antimony in MoVSbO catalysts determined by XANES and EXAFS, Appl Catal a-Gen,2003,244(2):359.
    [254]J.M. Lopez Nieto, P. Botella, B. Solsona, J.M. Oliver, The selective oxidation of propane on Mo-V-Te-Nb-O catalysts The influence of Te-precursor, Catalysis Today,2003,81(2):87.
    [255]J. Holmberg, R.K. Grasselli, A. Andersson, A study of the functionalities of the phases in Mo-V-Nb-Te oxides for propane ammoxidation, Top Catal,2003,23(1-4):55.
    [256]E. Garcia-Gonzalez, J.M.L. Nieto, P. Botella, B. Solsona, J.M. Gonzalez-Calbet, On the nature and structure of new MoVTeO and MoVTeNbO crystalline phases, Solid-State Chemistry of Inorganic Materials Iv,2003,755:327.
    [257]E. Filipek, Phase relations in the system SbVO5-Sb3V2Mo3O21 in solid-state and in air-The solid solutions of MoO3 in SbVo(5), J Therm Anal Calorim,2003,74(2):477.
    [258]P. DeSanto, D.J. Buttrey, R.K. Grasselli, C.G. Lugmair, A.F. Volpe, B.H. Toby, T. Vogt, Structural characterization of the orthorhombic phase Ml in MoVNbTeO propane ammoxidation catalyst, Top Catal,2003,23(1-4):23.
    [259]M. Baca, A. Pigamo, J.L. Dubois, J.M.M. Millet, Propane oxidation on MoVTeNbO mixed oxide catalysts:study of the phase composition of active and selective catalysts, Top Catal,2003, 23(1-4):39.
    [260]J.N. Al-Saeedi, V.K. Vasudevan, V.V. Guliants, Model bulk Mo-V-Te-O catalysts for selective oxidation of propane to acrylic acid, Catal Commun,2003,4(10):537.
    [261]J.N. Al-Saeedi, V.V. Guliants, O. Guerrero-Perez, M.A. Banares, Bulk structure and catalytic properties of mixed Mo-V-Sb-Nb oxides for selective propane oxidation to acrylic acid, Journal of Catalysis,2003,215(1):108.
    [262]H.P. Yang, Y.N. Fan, L.Y. Feng, J.H. Qiu, M. Lin, B.L. Xu, Y. Chen, The structure and catalytic properties of Bi-V-Mo-O composite oxide catalysts for selective oxidation of propane, Acta Chim Sinica,2002,60(6):1006.
    [263]E.K. Novakova, J.C. Vedrine, E.G Derouane, Propane oxidation on Mo-V-Sb-Nb mixed oxide catalysts 2. Influence of catalyst activation methods on the reaction mechanism, Journal of Catalysis,2002,211(1):235.
    [264]E.K. Novakova, J.C. Vedrine, E.G Derouane, Propane oxidation on Mo-V-Sb-Nb mixed-oxide catalysts 1. Kinetic and mechanistic studies, Journal of Catalysis,2002,211(1):226.
    [265]J.M.M. Millet, H. Roussel, A. Pigamo, J.L. Dubois, J.C. Jumas, Characterization of tellurium in MoVTeNbO catalysts for propane oxidation or ammoxidation, Appl Catal a-Gen,2002,232(1-2): 77.
    [266]E. Garcia-Gonzalez, J.M.L. Nieto, P. Botella, J.M. Gonzalez-Calbett, On the nature and structure of a new MoVTeO crystalline phase, Chem Mater,2002,14(10):4416.
    [267]D.J. Buttrey, P. DeSanto, R.K. Grasselli, Structural characterization of the crystalline phases in Mo-V-Nb-Te-O propane ammoxidation catalysts., Abstr Pap Am Chem S,2002,224:U272.
    [268]P. Botella, J.M.L. Nieto, B. Solsona, A. Mifsud, F. Marquez, The preparation, characterization, and catalytic behavior of MoVTeNbO catalysts prepared by hydrothermal synthesis, Journal of Catalysis,2002,209(2):445.
    [269]P. Botella, J.M.L. Nieto, B. Solsona, Preparation, characterisation and catalytic behaviour of a new TeVMoO crystalline phase, Catal Lett,2002,78(1-4):383.
    [270]J.N. Al-Saeedi, V.V. Guliants, High-throughput experimentation in multicomponent bulk mixed metal oxides:Mo-V-Sb-Nb-O system for selective oxidation of propane to acrylic acid, Appl Catal a-Gen,2002,237(1-2):111.
    [271]T. Shishido, T. Konishi, I. Matsuura, Y. Wang, K. Takaki, K. Takehira, Oxidation and ammoxidation of propane over Mo-V-Sb mixed oxide catalysts, Catalysis Today,2001,71(1-2): 77.
    [272]L. Luo, J.A. Labinger, M.E. Davis, Comparison of reaction pathways for the partial oxidation of propane over vanadyl ion-exchanged zeolite beta and MolV0.3Te0.23Nb0.12Ox, Journal of Catalysis,2001,200(2):222.
    [273]M. Aouine, J.L. Dubois, J.M.M. Millet, Crystal chemistry and phase composition of the MoVTeNbO catalysts for the ammoxidation of propane, Chem Commun,2001,(13):1180.
    [274]H. Watanabe, Y. Koyasu, New synthesis route for Mo-V-Nb-Te mixed oxides catalyst for propane ammoxidation, Appl Catal a-Gen,2000,194:479.
    [275]T. Shishido, A. Inoue, T. Konishi, I. Matsuura, K. Takehira, Oxidation of isobutane over Mo-V-Sb mixed oxide catalyst, Catal Lett,2000,68(3-4):215.
    [276]K. Asakura, K. Nakatani, T. Kubota, Y. Iwasawa, Characterization and kinetic studies on the highly active ammoxidation catalyst MoVNbTeOx, Journal of Catalysis,2000,194(2):309.
    [277]T. Ushikubo, K. Oshima, T. Numazawa, M. Vaarkamp, I. Sawaki, Ammoxidation of propane over Mo-V-Nb-Te mixed metal oxide catalysts, Stud Surf Sci Catal,1999,121:339.
    [278]M. Vaarkamp, T. Ushikubo, Limitations of V-Sb-W and Mo-V-Nb-Te mixed oxides in catalyzing propane ammoxidation, Appl Catal a-Gen,1998,174(1-2):99.
    [279]D. Vitry, Y. Morikawa, J.L. Dubois, W. Ueda, Mo-V-Te-(Nb)-O mixed metal oxides prepared by hydrothermal synthesis for catalytic selective oxidations of propane and propene to acrylic acid, Appl Catal a-Gen,2003,251(2):411.
    [280]W. Ueda, M. Sadakane, H. Ogihara, Nano-structuring of complex metal oxides for catalytic oxidation, Catalysis Today,2008,132(1-4):2.
    [281]T. Katou, D. Vitry, W. Ueda, Structure dependency of Mo-V-O-based complex oxide catalysts in the oxidations of hydrocarbons, Catalysis Today,2004,91-92:237.
    [282]T. Katou, D. Vitry, W. Ueda, Hydrothermal synthesis of a new Mo-V-O complex metal oxide and its catalytic activity for the oxidation of propane, Chemistry Letters,2003,32(11):1028.
    [283]N. Watanabe, W. Ueda, Comparative study on the catalytic performance of single-phase Mo-V-O-based metal oxide catalysts in propane ammoxidation to acrylonitrile, Ind Eng Chem Res,2006,45(2):607.
    [284]M. Sadakane, N. Watanabe, T. Katou, Y. Nodasaka, W. Ueda, Crystalline Mo3VOx mixed-metal-oxide catalyst with trigonal symmetry, Angewandte Chemie-International Edition, 2007,46(9):1493.
    [285]H.W. Yan, C.F. Blanford, W.H. Smyrl, A. Stein, Preparation and structure of 3D ordered macroporous alloys by PMMA colloidal crystal templating, Chem Commun,2000, (16):1477.
    [286]S. Sokolov, D. Bell, A. Stein, Preparation and characterization of macroporous alpha-alumina, J Am Ceram Soc,2003,86(9):1481.
    [287]H.W. Yan, C.F. Blanford, B.T. Holland, W.H. Smyrl, A. Stein, General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion, Chem Mater,2000, 12(4):1134.
    [288]S. Kobayashi, N. Hamasaki, M. Suzuki, M. Kimura, H. Shirai, K. Hanabusa, Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents, J Am Chem Soc,2002,124(23):6550.
    [289]J.H. Jung, Y. Ono, S. Shinkai, Sol-gel polycondensation in a cyclohexane-based organogel system in helical silica:Creation of both right-and left-handed silica structures by helical organogel fibers, Chem-Eur J,2000,6(24):4552.
    [290]J.H. Jung, Y. Ono, K. Hanabusa, S. Shinkai, Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives, J Am Chem Soc,2000,122(20):5008.
    [291]H. Ogihara, M. Sadakane, Y Nodasaka, W. Ueda, Shape-controlled synthesis of ZrO2, Al2O3, and SiO2 nanotubes using carbon nanofibers as templates, Chem Mater,2006,18(21):4981.
    [292]H. Tsuji, K. Oshima, Y. Koyasu, Synthesis of molybdenum and vanadium-based mixed oxide catalysts with metastable structure:Easy access to the MoVNbTe(Sb)O-x catalytically active structure using reductant and oxoacid, Chem Mater,2003,15(11):2112.
    [293]W. Ueda, K. Oshihara, in:O.V. Krylov (Eds.), Proceedings of the 4th World Congress on Oxidation Catalysis, Berlin,2001, p.243.
    [294]P. Botella, J.M.L. Nieto, B. Solsona, A. Mifsud, F. Marquez, The preparation, characterization, and catalytic behavior of MoVTeNbO catalysts prepared by hydrothermal synthesis, J Catal, 2002,209(2):445.
    [295]L.T. Weng, P. Ruiz, B. Delmon, in:P. Ruiz and B. Delmon (Eds), Studies in Surface Science and Catalysis, New Developments in Selective Oxidation by Heterogeneous Catalysis, Elsevier, Amsterdam,1992, p.399.
    [296]L.T. Weng, B. Delmon, Phase Cooperation and Remote-Control Effects in Selective Oxidation Catalysts, Appl Catal a-Gen,1992,81(2):141.
    [297]J.S. Kim, S.I. Woo, Selective Ammoxidation of Propane over Ca-Bi-Mo Oxide Catalyst, Appl Catal a-Gen,1994,110(2):173.
    [298]J.S. Kim, S.I. Woo, Selective Ammoxidation of Propane over Multicomponent Oxide Catalysts, Appl Catal a-Gen,1994,110(2):207.
    [299]S.I. Woo, J.S. Kim, Selective ammoxidation of propane over Ca-Bi-Mo oxide catalysts, Science and Technology in Catalysis 1994,1995,92:191.
    [300]S.I. Woo, J.S. Kim, H.K. Jun, Characterization of Ca-Bi-Mo oxide catalyst for selective propane ammoxidation, using XRD, XPS, TPRX/TPRO, and IR/Raman, J Phys Chem B,2004,108(26): 8941.
    [301]Y.M. He, X.D. Yi, C.J. Huang, F. Ying, X.B. Zhang, W.Z. Weng, H.L. Wan, Role of Te on selective oxidation of propane to acrolein over MoBiTeO/SiO2 catalysts, Acta Phys-Chim Sin, 2007,23(6):851.
    [302]B.Y. Jo, E.J. Mm, S.H. Moon, Performance of Mo-Bi-Co-Fe-K-O catalysts prepared from a sol-gel solution containing a drying control chemical additive in the partial oxidation of propylene, Appl Catal a-Gen,2007,332(2):257.
    [303]M.A. Soria, P. Ruiz, E.M. Gaigneaux, Parameters influencing the synergetic effect induced by vanadium incorporation on non-conventional (Al)(Ga)PO supports for the propane ammoxidation, Catalysis Today,2007,128(3-4):168.
    [304]M.A. Soria, S. Delsarte, E.M. Gaigneaux, P. Ruiz, Promoter role of V2O5 on vanadium supported A10.5Ga0.5PO4 catalysts during propane ammoxidation, Appl Catal a-Gen,2007, 325(2).296.
    [305]G.A. Zenkovets, GN. Kryukova, S.V. Tsybulya, V.F. Anufrienko, TV. Larina, E.B. Burgina, The structure of oxide Ga-Sb-Ni-P-W-O/SiO2 catalyst and its catalytic properties in propane ammoxidation, Kinet Catal+,2002,43(3):384.
    [306]M.O. Guerrero-Perez, M.C. Herrera, I. Malpartida, M.A. Larrubia, L.J. Alemany, M.A. Banares, Operando Raman study of propane oxidation over alumina-supported V-Mo-W-O catalysts, Catalysis Today,2007,126(1-2):177.
    [307]Z. Xin, W. Hui-Lin, W.Z. Weng, L.F. Yang, X.D. Yi, Role of Ce on selective oxidation of propane to acrolein over Ce-Ag-Mo-P-O catalysts, Acta Phys-Chim Sin,2003,19(6):492.
    [308]X. Zhang, H.L. Wan, W.Z. Weng, X.D. Yi, Selective oxidation of propane to acrolein over Ce-doped Ag-Mo-P-0 catalysts:influence of Ce promoter, Catal Lett,2003,87(3-4):229.
    [309]X. Zhang, H.L. Wan, W.Z. Weng, Reaction pathways for selective oxidation of propane to acrolein over Ce-Ag-Mo-P-0 catalysts, Appl Catal a-Gen,2009,353(1):24.
    [310]X.D. Yi, W.Z. Weng, C.J. Huang, Y.M. He, W. Guo, H.L. Wan, Infrared study of the reaction pathways for the selective oxidation of propane to acrolein over MOPO/SiO2 catalyst, Natural Gas Conversion Vii,2004,147:667.
    [311]H. Lin, X.D. Yi, Z.S. Han, Y.M. He, C.J. Huang, L.Q. Chen, W.Z. Weng, H.L. Wan, Effect of Te on selective oxidation of propane to acrolein over MoPO/SiO2 catalyst, Chinese J Catal,2005, 26(6):497.
    [312]R.C. Li, X.D. Yi, X.B. Zhang, C.J. Huang, W.Z. Weng, H.L. Wan, Reaction mechanism of selective oxidation of propane to acrolein over MoPO/SiO2 catalyst, Chinese J Catal,2006, 27(12):1069.
    [313]Y.M. He, X.D. Yi, X.B. Zhang, F. Ying, C.J. Huang, W.H. Weng, H.L. Wan, Reconstruction of surface structure of MoBiTeO/SiO2 catalyst during propane selective oxidation, Chinese J Catal, 2007,28(2):112.
    [314]Y.M. He, X.D. Yi, C.J. Huang, W.Z. Weng, H.L. Wan, Catalytic performance of MoVBiTeO/SiO2 for selective oxidation of propane to acrolein, Chinese J Catal,2008,29(4): 409.
    [315]YE. Gorbunova, S.A. Linde, Structure of Crystals of Vanadylpyrophosphate(Vo)2p2o7, Dokl AkadNauk Sssr+,1979,245(3):584
    [316]B.H. Sakakini, Y.H. Taufiq-Yap, K.C. Waugh, A study of the kinetics and mechanism of the adsorption and anaerobic partial oxidation of n-butane over a vanadyl pyrophosphate catalyst, Journal of Catalysis,2000,189(2):253.
    [317]T. Birchall, A.W. Sleight, Oxidation-States in Vsbo4, Inorg Chem,1976,15(4):868.
    [318]R.K. Grasselli, Selectivity issues in (amm)oxidation catalysis, Catal Today,2005,99(1-2):23.
    [319]B. Chen, E.J. Munson, Investigation of the mechanism of n-butane oxidation on vanadium phosphorus oxide catalysts:Evidence from isotopic labeling studies, J Am Chem Soc,2002, 124(8):1638.
    [320]J.D. Burrington, R.K. Grasselli, Surface-Reaction Mechanisms in Selective Olefin Oxidation Catalysis, Abstr Pap Am Chem S,1984,187(Apr):45.
    [321]J.N. Michaels, D.L. Stern, R.K. Grasselli, Oxydehydrogenation of propane over Mg-V-Sb-oxide catalysts.2. Reaction kinetics and mechanism, Catal Lett,1996,42(3-4):139.
    [322]C. Batiot, B.K. Hodnett, The role of reactant and product bond energies in determining limitations to selective catalytic oxidations, Appl Catal a-Gen,1996,137(1):179.
    [323]A. Costine, B.K. Hodnett, Factors limiting selectivity in C3 and C4 amm(oxidation) reactions, Appl Catal a-Gen,2005,290(1-2):9.
    [324]J.L. Callahan, R.K. Grasselli, A Selectivity Factor in Vapor-Phase Hydrocarbon Oxidation Catalysis, Aiche J,1963,9(6):755.
    [325]M.W. McKittrick, C.W. Jones, Effect of site isolation on the preparation and performance of silic alpha-immobilized Ti CGC-inspired ethylene polymerization catalysts, J Catal,2004,227(1): 186.
    [326]M.F. Portela, Effects of site isolation on n-butenes catalytic oxidation and isomerization over bismuth molybdates, Top Catal,2001,15(2-4):241.
    [327]R.K. Grasselli, Genesis of site isolation and phase cooperation in selective oxidation catalysis, Top Catal,2001,15(2-4):93.
    [328]J.M.M. Millet, J.C. Vedrine, Importance of site isolation in the oxidation of isobutyric acid to methacrylic acid on iron phosphate catalysts, Top Catal,2001,15(2-4):139.
    [329]U.A. Schubert, F. Anderle, J. Spengler, J. Zuhlke, H.J. Eberle, R.K. Grasselli, H. Knozinger, Possible effects of site isolation in antimony oxide-modified vanadia/titania catalysts for selective oxidation of o-xylene, Top Catal,2001,15(2-4):195.
    [330]R.K. Grasselli, J.M. Thomas, The role of site isolation and phase cooperation in selective oxidation catalysis-Symposium on the role of site isolation and phase cooperation in selective oxidation catalysis, Kloster Irsee, Germany,8-11 June 2000-Preface, Top Catal,2001,15(2-4): 83.
    [331]S.B. Derouane-Abd Hamid, G Centi, P. Pal, E.G. Derouane, Site isolation and cooperation effects in the ammoxidation of propane with VSbO and Ga/H-ZSM-5 catalysts, Top Catal,2001, 15(2-4):161.
    [332]J.C. Volta, Site isolation for light hydrocarbons oxidation, Top Catal,2001,15(2-4):121.
    [333]G Centi, S. Perathoner, Site isolation in iron-molybdate-based catalysts for side chain oxidation of alkylaromatics, Top Catal,2001,15(2-4).145.
    [334]E. Bordes, Synergistic effects in selective oxidation catalysis:does phase cooperation result in site isolation?, Top Catal,2001,15(2-4):131.
    [335]G.I. Panov, A.K. Uriarte, M.A. Rodkin, V.I. Sobolev, Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites, Catal Today,1998, 41(4):365.
    [336]J. Haber, in:PA. Jacobs (Eds.), Verlag Chemie, Weinheim,1984, p.85.
    [337]T.V. Andrushkevich, Heterogeneous Catalytic-Oxidation of Acrolein to Acrylic-Acid Mechanism and Catalysts, Catal Rev,1993,35(2):213.
    [338]P.J. Gellings, H.J.M. Bouwmeester, Ion and Mixed Conducting Oxides as Catalysts, Catalysis Today,1992,12(1):1.
    [339]P.D. Petrolekas, I.S. Metcalfe, Redox Kinetics of Co Oxidation over a Perovskite Oxide Catalyst, Chem Eng Res Des,1995,73(A2):122.
    [340]D.V Ivanov, E.M. Sadovskaya, L.G. Pinaeva, L.A. Isupova, Influence of oxygen mobility on catalytic activity of La-Sr-Mn-O composites in the reaction of high temperature N2O decomposition, Journal of Catalysis,2009,267(1):5.
    [341]S. Royer, D. Duprez, S. Kaliaguine, Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1-xFexO3, Journal of Catalysis,2005,234(2):364.
    [342]A.Q.M. Boon, H.M. Huisman, J.W. Geus, Influence of Surface Oxygen Vacancies on the Catalytic Activity of Copper-Oxide.2. Oxidation of Methane, Journal of Molecular Catalysis, 1992,75(3):293.
    [343]A.Q.M. Boon, F. Vanlooij, J.W. Geus, Influence of Surface Oxygen Vacancies on the Catalytic Activity of Copper-Oxide.1. Oxidation of Carbon-Monoxide, Journal of Molecular Catalysis, 1992,75(3):277.
    [344]A. Hinz, A. Andersson, Propane ammoxidation on an Al-Sb-V-W-oxide catalyst. A mechanistic study using the TAP-2 reactor system, Chem Eng Sci,1999,54(20):4407.
    [345]M.O. Guerrero-Perez, J.L. Rivas-Cortes, J.A. Delgado-Oyague, J.L.G. Fierro, M.A. Banares, Sb-V-O-based catalysts for the ammoxidation of propane with a fluidized bed reactor, Catalysis Today,2008,139(3):202.
    [346]R.K. Widi, S.B.A. Hamid, R. Schlogl, Effect of diluent and reaction parameter on selective oxidation of propane over MoVTeNb catalyst using nanoflow catalytic reactor, J Nat Gas Chem, 2008,17(2):130.
    [347]J.B. Wang, B.F. Ji, W.L. Chu, S.J. Zhan, L.W. Lin, W.S. Yang, Bi4Cu0.2V1.8O11-delta based electrolyte membrane reactor for selective oxidation of propane to acrylic acid, Catalysis Today, 2010,149(1-2):157.
    [348]A. Godefroy, G.S. Patience, T. Tzakova, D. Garrait, J.L. Dubois, Reactor Technologies for Propane Partial Oxidation to Acrylic Acid, Chem Eng Technol,2009,32(3):373.
    [349]J.C. Vedrine, E.K. Novakova, E.G. Derouane, Recent developments in the selective oxidation of propane to acrylic and acetic acids, Catal Today,2003,81(2):247.
    [350]M. Baca, M. Aouine, J.L. Dubois, J.M.M. Millet, Synergetic effect between phases in MoVTe(Sb)NbO catalysts used for the oxidation of propane into acrylic acid, J Catal,2005, 233(1):234.
    [1]M. Jayamurthy, S. Vasudevan, Temperature Programmed Surface Reaction studies of the methanol to gasoline (MTG) conversion over ZSM-5, Ber Bunsen Phys Chem,1995,99(12): 1521.
    [2]I.E. Wachs, T. Kim, E.I. Ross, Catalysis science of the solid acidity of model supported tungsten oxide catalysts, Catalysis Today,2006,116(2):162.
    [3]X. Wang, I.E. Wachs, Designing the activity/selectivity of surface acidic, basic and redox active sites in the supported K2O-V2O5/A12O3 catalytic system, Catalysis Today,2004,96(4).211.
    [4]S.H. Zhong, A.J. Wang, H.S. Li, X.F. Xiao, Adsorption and reaction of CO2 and CH3OH on Ni-2 (OCH3)(2)/SiO2 catalyst, Chinese J Chem Phys,2003,16(2):156.
    [5]T. Kim, A. Burrows, C.J. Kiely, I.E. Wachs, Molecular/electronic structure-surface acidity relationships of model-supported tungsten oxide catalysts, Journal of Catalysis,2007,246(2): 370.
    [6]E.L. Lee, I.E. Wachs, Surface chemistry and reactivity of well-defined multilayered supported M1Ox/M2Ox/SiO2 catalysts, Journal of Catalysis,2008,258(1):103.
    [7]E.I. Ross-Medgaarden, W.V. Knowles, T. Kim, M.S. Wong, W. Zhou, C.J. Kiely, I.E. Wachs, New insights into the nature of the acidic catalytic active sites present in Zr02-supported tungsten oxide catalysts, Journal of Catalysis,2008,256(1):108.
    [8]K. Routray, L.E. Briand, I.E. Wachs, Is there a relationship between the M=O bond length (strength) of bulk mixed metal oxides and their catalytic activity?, Journal of Catalysis,2008, 256(1):145.
    [9]I.E. Wachs, J.M. Jehng, W. Ueda, Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts, J Phys Chem B,2005,109(6):2275.
    [10]M.O. Guerrero-Perez, T. Kim, M.A. Banares, I.E. Wachs, Nature of Catalytic Active Sites for Sb-V-O Mixed Metal Oxides, J Phys Chem C,2008,112(43):16858.
    [11]J.N. Shu, D.S. Peterka, S.R. Leone, M. Ahmed, Tunable synchrotron vacuum ultraviolet ionization, time-of-flight investigation of the photodissociation of trans-crotonaldehyde at 193 nm, J Phys Chem A,2004,108(39):7895.
    [12]H. Kruger, R.X. Fischer, Divergence-slit intensity corrections for Bragg-Brentano diffractometers with circular sample surfaces and known beam intensity distribution, J Appl Crystallogr,2004,37:472.
    [13]S. Aoyagi, K. Kato, A. Ota, H. Yamochi, G Saito, H. Suematsu, M. Sakata, M. Takata, Direct observation of bonding and charge ordering in (EDO-TTF)(2)PF6, Angewandte Chemie-International Edition,2004,43(28):3670.
    [14]M. Yashima, K. Oh-uchi, M. Tanaka, T. Ida, A compact furnace for synchrotron powder diffraction experiments up to 1800 K, J Am Ceram Soc,2006,89(4):1395.
    [15]R. Kumai, S. Horiuchi, H. Sagayama, T.H. Arima, M. Watanabe, Y. Noda, Y. Tokura, Structural assignment of polarization in hydrogen-bonded supramolecular ferroelectrics, J Am Chem Soc, 2007,129(43):12920.
    [16]M. Yashima, N. Sirikanda, T. Ishihara, Crystal Structure, Diffusion Path, and Oxygen Permeability of a Pr2NiO4-Based Mixed Conductor (Pr0.9La0.1)(2)(Ni0.74Cu0.21Ga0.05)O4+delta, J Am Chem Soc,2010,132(7):2385.
    [17]S. Nishimura, G Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Experimental visualization of lithium diffusion in LixFePO4, Nat Mater,2008,7(9):707.
    [18]R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H.C. Chang, T.C. Ozawa, M. Suzuki, M. Sakata, M. Takata, Formation of a one-dimensional array of oxygen in a microporous metal-organic solid, Science,2002, 298(5602):2358.
    [19]D.M. Collins, Electron-Density Images from Imperfect Data by Iterative Entropy Maximization, Nature,1982,298(5869):49.
    [20]S. Van Smaalen, L. Palatinus, Applications of the Maximum Entropy Method in superspace, Ferroelectrics,2004,305:57.
    [21]L. Palatinus, S. Van Smaalen, The ferroelectric phase transition and modulated valence electrons in the incommensurate phase of ammonium tetrafluoroberyllate, Ferroelectrics,2004,305:49.
    [22]L. Palatinus, S. van Smaalen, Incommensurate modulations made visible by the Maximum Entropy Method in superspace, Z Kristallogr,2004,219(11):719.
    [23]L. Palatinus, W. Steurer, G Chapuis, Extending the charge-flipping method towards structure solution from incomplete data sets, J Appl Crystallogr,2007,40:456.
    [24]L. Palatinus, M. Amami, S. van Smaalen, Structure of incommensurate ammonium tetrafluoroberyllate studied by structure refinements and the maximum entropy method, Acta Crystallogr B,2004,60:127.
    [25]S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z Kristallogr,2005,220(5-6):567.
    [26]B. Hammer, L.B. Hansen, J.K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Emzerhof functionals, Phys Rev B,1999, 59(11):7413.
    [27]J.P. Perdew, A. Zunger, Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems, Phys Rev B,1981,23(10):5048.
    [28]V.I. Anisimov, J. Zaanen, O.K. Andersen, Band Theory and Mott Insulators-Hubbard-U Instead of Stoner-I, Phys Rev B,1991,44(3):943.
    [29]A.D. Becke, A New Mixing of Hartree-Fock and Local Density-Functional Theories, J Chem Phys,1993,98(2):1372.
    [30]D. Kim, T.B. Lee, S.B. Choi, J.H Yoon, J. Kim, S.H. Choi, A density functional theory study of a series of functionalized metal-organic frameworks, Chem Phys Lett,2006,420(1-3):256.
    [31]S.Q. Deng, J. Kohler, A. Simon, Unusual lone pairs in tellurium and their relevance for superconductivity, Angew Chem Int Edit,2006,45(4):599.
    [32]A.D Boese, N.C. Handy, A new parametrization of exchange-correlation generalized gradient approximation functionals, J Chem Phys,2001,114(13):5497.
    [33]G Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J Chem Phys,2000,113(22):9978.
    [1]杨汉培,范以宁,许波连,陈懿,丙烷选择氧化用BiCeVMoO复合氧化物催化剂中Ce组分的作用,催化学报,2003,24(4):265
    [2]金燕仙,黄传敬,应方,翁维正,万惠霖,丙烷选择氧化制丙烯醛VTeO/SiO2催化剂的反应性能与结构表征,厦门大学学报:自然科学版,2005,44(6):796.
    [3]朱百春,李洪波,盛世善,杨维慎,林励吾,Mo-V-Te-Nb-O催化剂上丙烷选择氧化制丙烯酸Ⅰ.催化剂的制备条件及稳定性,催化学报,2004,25(4):277.
    [4]T. Ushikubo, K. Oshima, A. Kayou, M. Hatano, Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts, Spillover and Migration of Surface Species on Catalysts,1997,112:473.
    [5]J.C.J. Bart, N. Giordano, Structure and Activity of Tellurium-Molybdenum Oxide Acrylonitrile Catalysts, J. Catal.,1980,64(2):356.
    [6]P. Botella, J.M.L. Nieto, B. Solsona, Selective oxidation of propene to acrolein on Mo-Te mixed oxides catalysts prepared from ammonium telluromolybdates, Journal of Molecular Catalysis a-Chemical,2002,184(1-2):335.
    [7]P. DeSanto, D.J. Buttrey, R.K. Grasselli, W.D. Pyrz, C.G Lugmair, A.F. Volpe, T. Vogt, B.H Toby, Comparison of MoVTaTeO and MoVNbTeO M1 crystal chemistry, Top Catal,2006, 38(1-3):31.
    [8]W.D. Pyrz, D.A. Blom, N.R. Shiju, V.V. Guliants, T. Vogt, D.J. Buttrey, Using aberration-corrected STEM imaging to explore chemical and structural variations in the M1 phase of the MoVNbTeO oxidation catalyst, J Phys Chem C,2008,112(27):10043.
    [9]N.R. Shiju, A.J. Rondinone, D.R. Mullins, V. Schwartz, S.H. Overbury, V.V. Guliants, XANES Study of Hydrothermal Mo-V-Based Mixed Oxide. M1-Phase Catalysts for the (Amm)oxidation of Propane, Chem Mater,2008,20(21):6611.
    [10]P. DeSanto, D.J. Buttrey, R.K. Grasselli, C.G. Lugmair, A.F. Volpe, B.H. Toby, T. Vogt, Structural aspects of the Ml and M2 phases in MoVNbTeO propane ammomidation catalysts, Z Kristallogr,2004,219(3):152.
    [11]A.C. Sanfiz, T.W. Hansen, F. Girgsdies,O. Timpe, E. Rodel, T. Ressler, A. Trunschke, R. Schlogl, Preparation of Phase-Pure M1 MoVTeNb Oxide Catalysts by Hydrothermal Synthesis-Influence of Reaction Parameters on Structure and Morphology, Top Catal,2008, 50(1-4):19.
    [12]W.D. Pyrz, D.A Blom, N.R. Shiju, V.V. Guliants, T. Vogt, D.J. Buttrey, The effect of Nb or Ta substitution into the Ml phase of the MoV(Nb,Ta)TeO selective oxidation catalyst, Catalysis Today,2009,142(3-4):320.
    [13]H. Murayama, D. Vitry, W. Ueda, G. Fuchs, M. Anne, J.L. Dubois, Structure characterization of orthorhombic phase in MoVTeNbO catalyst by powder X-ray diffraction and XANES, Appl Catal a-Gen,2007,318:137.
    [14]P. DeSanto, D.J. Buttrey, R.K. Grasselli, C.G. Lugmair, A.F. Volpe, B.H. Toby, T. Vogt, Structural characterization of the orthorhombic phase Ml in MoVNbTeO propane ammoxidation catalyst, Top Catal,2003,23(1-4):23.
    [15]E. Garcia-Gonzalez, J.M.L. Nieto, P. Botella, J.M. Gonzalez-Calbett, On the nature and structure of a new MoVTeO crystalline phase, Chem Mater,2002,14(10):4416.
    [16]D.J. Buttrey, P. DeSanto, R.K. Grasselli, T. Vogt, B.H. Toby, A.F. Volpe, C.G. Lugmair, Structural characterization of phases in the MoVNbTeO propane ammoxidation catalyst., Abstr Pap Am Chem S,2004,227:U1245.
    [17]D.J. Buttrey, P. DeSanto, R.K. Grasselli, Structural characterization of the crystalline phases in Mo-V-Nb-Te-O propane ammoxidation catalysts, Abstr Pap Am Chem S,2002,224:U272.
    [18]R.K. Grasselli, J.D. Burrington, D.J. Buttrey, P. DeSanto, C.G. Lugmair, A.F. Volpe, T. Weingand, Multifunctionality of active centers in (amm)oxidation catalysts:from Bi-Mo-O-x to Mo-V-Nb-(Te, Sb)-O-x, Top Catal,2003,23(1-4):5.
    [19]R.K. Grasselli, D.J. Buttrey, P. DeSanto, J.D. Burrington, C.G. Lugmair, A.F. Volpe, T Weingand, Active centers in Mo-V-Nb-Te-O-x (amm)oxidation catalysts, Catalysis Today,2004,91-92: 251.
    [20]R.K. Grasselli, Selectivity issues in (amm)oxidation catalysis, Catalysis Today,2005,99(1-2): 23.
    [21]R.K. Grasselli, D.J. Buttrey, J.D. Burrington, A. Andersson, J. Holmberg, W. Ueda, J. Kubo, C.G. Lugmair, A.F. Volpe, Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb,Ta)TeO ammoxidation catalysts, Top Catal,2006,38(1-3):7.
    [22]I.D. Brown, D. Altermatt, Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal-Structure Database, Acta Crystallogr B,1985,41 (Aug):244.
    [23]K. Hermann, M. Witko, R. Druzinic, R. Tokarz, Hydrogen assisted oxygen desorption from the V2O5(010) surface, Top Catal,2000,11(1-4):67.
    [24]E.F. Fialko, A.V. Kikhtenko, V.B. Goncharov, Molybdenum oxide cluster ions in the gas phase: Reactions with small alcohols, Organometallics,1998,17(1):25.
    [25]E.F. Fialko, A.V. Kikhtenko, V.B. Goncharov, K.I. Zamaraev, Molybdenum oxide cluster ions in the gas phase:Structure and reactivity with small molecules, J Phys Chem A,1997,101(46): 8607.
    [26]S. Pudar, J. Oxgaard, K. Chenoweth, A.C.T. van Duin, W.A. Goddard, Mechanism of selective oxidation of propene to acrolein on bismuth molybdates from quantum mechanical calculations, J Phys Chem C,2007,111 (44):16405.
    [27]G. Fu, X. Xu, X. Lu, H.L. Wan, Mechanisms of methane activation and transformation on molybdenum oxide based catalysts, J Am Chem Soc,2005,127(11):3989.
    [28]YH. Jang, W.A. Goddard, Mechanism of selective oxidation and ammoxidation of propene on bismuth molybdates from DFT calculations on model clusters, J Phys Chem B,2002,106(23): 5997
    [29]G. Fu, X. Xu, X. Lu, H.L. Wan, Mechanisms of initial propane activation on molybdenum oxides: A density functional theory study, J Phys Chem B,2005,109(13):6416.
    [30]W. Li, GD. Meitzner, R.W. Bony, E. Iglesia, Raman and X-ray absorption studies of Mo species in Mo/H-ZSM5 catalysts for non-oxidative CH4 reactions, J Catal,2000,191(2):373.
    [31]G. Baronetti, L. Briand, U. Sedran, H. Thomas, Heteropolyacid-based catalysis. Dawson acid for MTBE synthesis in gas phase, Appl Catal a-Gen,1998,172(2):265.
    [32]J.C. McLaughlin, S.L. Tagg, J.W. Zwanziger, The structure of alkali tellurite glasses, J Phys Chem B,2001,105(1):67.
    [33]M. Baca, J.M.M. Millet, Bulk oxidation state of the different cationic elements in the MoVTe(Sb)NbO catalysts for oxidation or ammoxidation of propane, Appl Catal a-Gen,2005, 279(1-2):67.
    [34]E. Canadell, J. Provost, A. Guesdon, M.M. Borel, A. Leclaire, Magnetic properties and new structural classification of molybdenum phosphates containing Mo(V), Chem Mater,1997,9(1): 68.
    [35]M. Baca, A. Pigamo, J.L. Dubois, J.M.M. Millet, Fourier transform infrared spectroscopic study of surface acidity by pyridine adsorption on the M1 active phase of the MoVTe(Sb)NbO catalysts used in propane oxidation, Catal Commun,2005,6(3):215.
    [36]H. Hibst, F. Rosowski, G. Cox, New Cs-containing Mo-V4+based oxides with the structure of the M1 phase-Base for new catalysts for the direct alkane activation, Catalysis Today,2006, 117(1-3):234.
    [37]R.K. Grasselli, Genesis of site isolation and phase cooperation in selective oxidation catalysis, Top Catal,2001,15(2-4):93.
    [38]D.P. Debecker, K. Bouchmella, R. Delaigle, P. Eloy, C. Poleunis, P. Bertrand, E.M. Gaigneaux, PH. Mutin, One-step non-hydrolytic sol-gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation, Appl Catal B-Environ,2010,94(1-2):38.
    [39]D. Gazzoli, S. De Rossi, G Ferraris, G. Mattei, R. Spinicci, M. Valigi, Bulk and surface structures of V2O5/ZrO2 catalysts for n-butane oxidative dehydrogenation, J Mol Catal a-Chem, 2009,310(1-2):17.
    [40]J.E. Lee, J. Jurng, Catalytic conversions of polychlorinated benzenes and dioxins with low-chlorine using V2O5/TiO2, Catal Lett,2008,120(3-4):294.
    [41]J. Lichtenberger, M.D. Amiridis, Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts, Journal of Catalysis,2004,223(2):296.
    [42]S.W. Moon, GD. Lee, S.S. Park, S.S. Hong, Catalytic combustion of chlorobenzene over V2O5/TiO2 catalysts prepared by the precipitation-deposition method, React Kinet Catal L, 2004,82(2):303.
    [43]T.V.M. Rao, G. Deo, Ethane and propane oxidation over supported V2O5/TiO2 catalysts: Analysis of kinetic parameters, Ind Eng Chem Res,2007,46(1):70.
    [44]B.M. Reddy, P. Lakshmanan, P. Loridant, Y. Yamada, T. Kobayashi, C. Lopez-Cartes, T.C. Rojas, A. Fernandez, Structural characterization and oxidative dehydrogenation activity of V2O5/CexZrl-xO2/SiO2 catalysts, J Phys Chem B,2006,110(18):9140.
    [45]P.T. Wierzchowski, L.W. Zatorski, Kinetics of catalytic oxidation of carbon monoxide and methane combustion over alumina supported Ga2O3, SnO2 or V2O5, Appl Catal B-Environ, 2003,44(1):53.
    [46]S. Lysenko, A.J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, H. Liu, Light-induced ultrafast phase transitions in VO2 thin film, Appl Surf Sci,2006,252(15):5512.
    [47]B.G. Chae, H.T. Kim, S.J. Yun, B.J. Kim, Y.W. Lee, K.Y Kang, Comparative analysis of VO2 thin films prepared on sapphire and SiO2/Si substrates by the sol-gel process, Jpn J Appl Phys 1, 2007,46(2):738.
    [48]G. Gopalakrishnan, D. Ruzmetov, S. Ramanathan, On the triggering mechanism for the metal-insulator transition in thin film VO2 devices:electric field versus thermal effects, J Mater Sci,2009,44(19):5345.
    [49]L. Whittaker, C. Jaye, Z.G. Fu, D.A. Fischer, S. Banerjee, Depressed Phase Transition in Solution-Grown VO2 Nanostructures, J Am Chem Soc,2009,131(25):8884.
    [50]J. Maeng, T.W. Kim, G Jo, T. Lee, Fabrication, structural and electrical characterization of VO2 nanowires, Mater Res Bull,2008,43(7):1649.
    [51]D. Ruzmetov, D. Heiman, B.B. Claflin, V. Narayanamurti, S. Ramanathan, Hall carrier density and magnetoresistance measurements in thin-film vanadium dioxide across the metal-insulator transition, Phys Rev B,2009,79(15).
    [52]E.B. Shadrin, A.V. Il'inskii, On the nature of metal-semiconductor phase transition in vanadium dioxide, Phys Solid State+,2000,42(6):1126.
    [53]M. Baca, M. Aouine, J.L. Dubois, J.M.M. Millet, Synergetic effect between phases in MoVTe(Sb)NbO catalysts used for the oxidation of propane into acrylic acid, Journal of Catalysis,2005,233(1):234.
    [54]R. Hofmann, R. Gruehn, Preparation and Structure of Lnnb7ol9 (Ln= La, Ce), Z Anorg Allg Chem,1991,602(11):105.
    [55]CRC Handbook of Chemistry and Physics,80th Ed., CRC Press, Boca Raton, FL,1999-2000.
    [56]H.P. Loock, B. Simard, S. Wallin, C. Linton, Ionization potentials and bond energies of TiO, ZrO, NbO and MoO, J Chem Phys,1998,109(20):8980.
    [57]Lange's Handbook of Chemistry,16th Ed., New York:McGraw-Hill, Inc.
    [58]J. Berkowitz, GB. Ellison, D. Gutman,3 Methods to Measure Rh Bond-Energies, Journal of Physical Chemistry,1994,98(11):2744.
    [59]J.B. Pedley, E.M. Marshall, Thermochemical Data for Gaseous Monoxides, J Phys Chem Ref Data,1983,12(4):967.
    [1]R.K. Grasselli, Handbook of Heterogeneous Catalysis, in G. Ertl, H. Knoezinger and J. Weitkamp (Editors), Handbook of Heterogeneous Catalysis, Vol. V, Wiley-VCH,1997, p.2303
    [2]M. Baca, M. Aouine, J.L. Dubois, J.M.M. Millet, Synergetic effect between phases in MoVTe(Sb)NbO catalysts used for the oxidation of propane into acrylic acid, J Catal,2005, 233(1):234.
    [3]Y.H. Zhu, W.M. Lu, H. Li, H.L. Wan, Selective modification of surface and bulk V5+/V4+ratios and its effects on the catalytic performance of Mo-V-Te-O catalysts, J Catal,2007,246(2):382.
    [4]J.N. Al-Saeedi, V.V. Guliants, O. Guerrero-Perez, M.A. Banares, Bulk structure and catalytic properties of mixed Mo-V-Sb-Nb oxides for selective propane oxidation to acrylic acid, J Catal, 2003,215(1):108.
    [5]M. Aouine, J.L. Dubois, J.M.M. Millet, Crystal chemistry and phase composition of the MoVTeNbO catalysts for the ammoxidation of propane, Chem Commun,2001,(13):1180.
    [6]H. Watanabe, Y. Koyasu, New synthesis route for Mo-V-Nb-Te mixed oxides catalyst for propane ammoxidation, Appl Catal a-Gen,2000,194:479.
    [7]J.M.M. Millet, H. Roussel, A. Pigamo, J.L. Dubois, J.C. Jumas, Characterization of tellurium in MoVTeNbO catalysts for propane oxidation or ammoxidation, Appl Catal a-Gen,2002,232(1-2): 77.
    [8]T. Ushikubo, K. Oshima, A. Kayou, M. Hatano, Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts, Spillover and Migration of Surface Species on Catalysts,1997,112:473.
    [9]R.K. Grasselli, J.D. Burrington, D.J. Buttrey, P. DeSanto, C.G Lugmair, A.F. Volpe, T. Weingand, Multifunctionality of active centers in (amm)oxidation catalysts:from Bi-Mo-O-x to Mo-V-Nb-(Te, Sb)-O-x, Top Catal,2003,23(1-4):5.
    [10]R.K. Grasselli, D.J. Buttrey, J.D. Burrington, A. Andersson, J. Holmberg, W. Ueda, J. Kubo, C.G. Lugmair, A.F. Volpe, Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb,Ta)TeO ammoxidation catalysts, Top Catal,2006,38(1-3):7.
    [11]R.K. Grasselli, D.J. Buttrey, P. DeSanto, J.D. Burrington, C.G. Lugmair, A.F. Volpe, T. Weingand, Active centers in Mo-V-Nb-Te-O-x (amm)oxidation catalysts, Catal Today,2004,91-92:251.
    [12]E. Garcia-Gonzalez, J.M.L. Nieto, P. Botella, J.M. Gonzalez-Calbett, On the nature and structure of a new MoVTeO crystalline phase, Chem Mater,2002,14(10):4416.
    [13]P. DeSanto, D.J. Buttrey, R.K. Grasselli, C.G. Lugmair, A.F. Volpe, B.H. Toby, T. Vogt, Structural aspects of the M1 and M2 phases in MoVNbTeO propane ammomidation catalysts, Z Kristallogr,2004,219(3):152.
    [14]J. Holmberg, R.K. Grasselli, A. Andersson, Catalytic behaviour of M1, M2, and M1/M2 physical mixtures of the Mo-V-Nb-Te-oxide system in propane and propene ammoxidation, Appl Catal a-Gen,2004,270(1-2):121.
    [15]R.K. Grasselli, C.G. Lugmair, A.F. Volpe, Doping of MoVNbTeO (M1) and MoVTeO (M2) Phases for Selective Oxidation of Propane and Propylene to Acrylic Acid, Top Catal,2008, 50(1-4):66.
    [16]R. Haggblad, J.B. Wagner, B. Deniau, J.M.M. Millet, J. Holmberg, R.K. Grasselli, S. Hansen, A. Andersson, Substituted Mo-V(Ti)-Te(Ce)-oxide M2 Catalysts for Propene Ammoxidation, Top Catal,2008,50(1-4):52.
    [17]D.A. Blom, W.D. Pyrz, T. Vogt, D.J. Buttrey, Aberration-corrected STEM investigation of the M2 phase of MoVNbTeO selective oxidation catalyst, Journal of Electron Microscopy,2009, 58(3):193.
    [18]J. Holmberg, R.K. Grasselli, A. Andersson, A study of the functionalities of the phases in Mo-V-Nb-Te oxides for propane ammoxidation, Top Catal,2003,23(1-4):55.
    [19]D.J. Buttrey, P. DeSanto, R.K. Grasselli, T. Vogt, B.H. Toby, A.F. Volpe, C.G. Lugmair, Structural characterization of phases in the MoVNbTeO propane ammoxidation catalyst, Abstr Pap Am Chem S,2004,227:U1245.
    [20]M. Baca, M. Aouine, J.L. Dubois, J.M.M. Millet, Synergetic effect between phases in MoVTe(Sb)NbO catalysts used for the oxidation of propane into acrylic acid, Journal of Catalysis,2005,233(1):234.
    [21]P. Botella, E. Garcia-Gonzalez, J.M.L. Nieto, J.M. Gonzalez-Calbet, MoVTeNbO multifunctional catalysts:Correlation between constituent crystalline phases and catalytic performance, Solid State Sci,2005,7(5):507.
    [22]J. Holmberg, S. Hansen, R.K. Grasselli, A. Andersson, Catalytic effects in propene ammoxidation achieved through substitutions in the M2 phase of the Mo-V-Nb-Te-oxide system, Top Catal,2006,38(1-3):17.
    [23]J. Holmberg, J.B. Wagner, R. Haggblad, S. Hansen, L.R. Wallenberg, A. Andersson, Catalytic and structural effects of W-substitution in M2 Mo-V-Te-oxide for propene ammoxidation, Catalysis Today,2007,128(3-4):153.
    [24]R.K. Grasselli, Selectivity issues in (amm)oxidation catalysis, Catalysis Today,2005,99(1-2): 23.
    [25]P. Korovchenko, N.R. Shiju, A.K. Dozier, U.M. Graham, M.O. Guerrero-Perez, V.V. Guliants, M1 to M2 Phase Transformation and Phase Cooperation in Bulk Mixed Metal Mo-V-M-O (M=Te, Nb) Catalysts for Selective Ammoxidation of Propane, Top Catal,2008,50(1-4):43.
    [26]M. Baca, A. Pigamo, J.L. Dubois, J.M.M. Millet, Propane oxidation on MoVTeNbO mixed oxide catalysts:study of the phase composition of active and selective catalysts, Top Catal,2003, 23(1-4):39.
    [27]D.J. Buttrey, P. DeSanto, R.K. Grasselli, Structural characterization of the crystalline phases in Mo-V-Nb-Te-O propane ammoxidation catalysts., Abstr Pap Am Chem S,2002,224:U272.
    [28]S. Aoyagi, K. Kato, A. Ota, H. Yamochi, G. Saito, H. Suematsu, M. Sakata, M. Takata, Direct observation of bonding and charge ordering in (EDO-TTF)(2)PF6, Angewandte Chemie-International Edition,2004,43(28):3670.
    [29]M. Yashima, K. Oh-uchi, M. Tanaka, T. Ida, A compact furnace for synchrotron powder diffraction experiments up to 1800 K, J Am Ceram Soc,2006,89(4):1395.
    [30]R. Kumai, S. Horiuchi, H. Sagayama, T.H. Arima, M. Watanabe, Y. Noda, Y. Tokura, Structural assignment of polarization in hydrogen-bonded supramolecular ferroelectrics, J Am Chem Soc, 2007,129(43):12920.
    [31]M. Yashima, N. Sirikanda, T. Ishihara, Crystal Structure, Diffusion Path, and Oxygen Permeability of a Pr2NiO4-Based Mixed Conductor (Pr0.9La0.1)(2)(Ni0.74Cu0.21Ga0.05)O4+delta, J Am Chem Soc,2010,132(7):2385.
    [32]S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Experimental visualization of lithium diffusion in LixFePO4, Nat Mater,2008,7(9):707.
    [33]R. Kitaura, S. Kitagawa, Y. Kubota, T.C. Kobayashi, K. Kindo, Y. Mita, A. Matsuo, M. Kobayashi, H.C. Chang, T.C. Ozawa, M. Suzuki, M. Sakata, M. Takata, Formation of a one-dimensional array of oxygen in a microporous metal-organic solid, Science,2002, 298(5602):2358.
    [34]D.M. Collins, Electron-Density Images from Imperfect Data by Iterative Entropy Maximization, Nature,1982,298(5869):49.
    [35]L. Palatinus, S. van Smaalen, The generalized F constraint in the maximum-entropy method-a study on simulated data, Acta Crystallogr A,2002,58:559.
    [36]S. van Smaalen, L. Palatinus, M. Schneider, The maximum-entropy method in superspace, Acta Crystallogr A,2003,59:459.
    [37]P. Botella, E. Garcia-Gonzalez, A. Dejoz, J.M.L. Nieto, M.I. Vazquez, J. Gonzalez-Calbet, Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts, J Catal,2004,225(2):428.
    [38]A. Altomare, R. Caliandro, M. Camalli, C. Cuocci, I. da Silva, C. Giacovazzo, A.GG Moliterni, R. Spagna, Space-group determination from powder diffraction data:a probabilistic approach, J Appl Crystallogr,2004,37:957.
    [39]E. Canadell, J. Provost, A. Guesdon, M.M. Borel, A. Leclaire, Magnetic properties and new structural classification of molybdenum phosphates containing Mo(V), Chem Mater,1997,9(1): 68.
    [40]P. Forestier, M. Goreaud, Crystal-Structure of the Orthorhombic Mixed-Valence Oxide Temo5o16,Cr Acad Sci Ii,1991,312(10):1141.
    [41]C.R. Becker, S.L. Tagg, J.C. Huffman, J.W. Zwanziger, Crystal structures of potassium tetratellurite, K2Te4O9, and potassium ditellurite, K2Te2O5, and structural trends in solid alkali tellurites, Inorg Chem,1997,36(24):5559.
    [42]J.C. McLaughlin, S.L. Tagg, J.W. Zwanziger, The structure of alkali tellurite glasses, J Phys Chem B,2001,105(1):67.
    [43]A.G. Kalampounias, G.N. Papatheodorou, S.N. Yannopoulos, A temperature dependence Raman study of the 0.1Nb(2)O(5)-0.9TeO(2), J Phys Chem Solids,2006,67(4):725.
    [44]I.D. Brown, Predicting Bond Lengths in Inorganic Crystals, Acta Crystallogr B,1977, 33(May13):1305.
    [45]J. Galy, R. Enjalbeft, P. Rozier, P. Millet, Lone pair stereoactivity versus anionic conductivity. Columnar structures in the Bi2O3-MoO3 system, Solid State Sci,2003,5(1):165.
    [46]L.T. Sim, C.K. Lee, A.R. West, High oxide ion conductivity in Bi2MoO6 oxidation catalyst, J Mater Chem,2002,12(1):17.
    [47]L. Holmes, L.M. Peng, I. Heinmaa, L.A. O'Dell, M.E. Smith, R.N. Vanmer, C.P. Grey, Variable-temperature 0-17 NMR study of oxygen motion in the anionic conductor Bi26Mo10O69, Chem Mater,2008,20(11):3638.
    [48]R.K. Grasselli, C.G Lugmair, A.F. Volpe, A. Andersson, J.D. Burrington, Inhibition of Propylene Oxidation to Acrylic Acid by Amorphous Overlayers on MoV(Nb)TeO Based M2 Catalysts, Catal Lett,2008,126(3-4):231.
    [49]V.V. Guliants, R. Bhandari, H.H. Brongersma, A. Knoester, A.M. Gaffney, S. Han, A study of the surface region of the Mo-V-Te-O catalysts for propane oxidation to acrylic acid, J Phys Chem B, 2005,109(20):10234.
    [50]S.K. Gupta, P.K. Jha, Modified phonon confinement model for size dependent Raman shift and linewidth of silicon nanocrystals, Solid State Commun,2009,149(45-46):1989.
    [51]M. Havel, D. Baron, L. Mazerolles, P. Colomban, Phonon confinement in SiC nanocrystals: Comparison of the size determination using transmission electron microscopy and Raman spectroscopy, Appl Spectrosc,2007,61(8):855.
    [52]K.R. Zhu, M.S. Zhang, Q. Chen, Z. Yin, Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal, Phys Lett A,2005,340(1-4):220.
    [53]V. Paillard, P. Puech, M.A. Laguna, R. Carles, B. Kohn, F. Huisken, Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals, J Appl Phys,1999, 86(4):1921.
    [54]S. Go, H. Bilz, M. Cardona, Bond Charge, Bond Polizaribility, and Phonon Spectra in Semiconductors, Phys Rev Lett,1975,34(10):4.
    [55]C.J. Doss, R. Zallen, Raman studies of sol-gel alumina:Finite-size effects in nanocrystalline AlO(OH), Phys Rev B,1993,48(21):12.
    [56]N. Murakami, T. Chiyoya, T. Tsubota, T. Ohno, Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength, Appl Catal a-Gen,2008,348(1):148.
    [57]A.S. Pine, Dresselh.G, Raman Spectra and Lattice Dynamics of Tellurium, Phys Rev B,1971, 4(2):356.
    [58]M. Baca, J.M.M. Millet, Bulk oxidation state of the different cationic elements in the MoVTe(Sb)NbO catalysts for oxidation or ammoxidation of propane, Appl Catal a-Gen,2005, 279(1-2):67.
    [59]A.C. Sanfiz, T.W. Hansen, D. Teschner, P. Schnorch, F. Girgsdies, A. Trunschke, R. Schlogl, M.H. Looi, S.B. A. Hamid, Dynamics of the MoVTeNb Oxide Ml Phase in Propane Oxidation, J Phys Chem C,2010,114(4):1912.
    [60]DR. Mullins, S.H. Overbury, DR. Huntley, Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces, Surf Sci,1998,409(2):307.
    [61]L.J. Wu, H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y.M. Zhu, D.O. Welch, M. Suenaga, Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size, Phys Rev B,2004,69(12).
    [62]U.G Singh, J. Li, J.W. Bennett, A.M. Rappe, R. Seshadri, S.L. Scott, A Pd-doped perovskite catalyst, BaCel-xPdxO3-delta, for CO oxidation, J Catal,2007,249(2):349.
    [63]M. Gillet, C. Lemire, E. Gillet, K. Aguir, The role of surface oxygen vacancies upon WO3 conductivity, Surf Sci,2003,532:519.
    [64]P. Mars, D.W. van Krevelen, Oxidations carried out by means of vanadium oxide catalysts, Chem Eng Sci,1954,3(Spec. Suppl):41.
    [65]Y.H. Han, W. Ueda, Y. Moro-Oka, Activity control by structural design of multicomponent scheelite-type molybdate catalysts for the selective oxidation of propene, J Catal,1999,186(1): 75.
    [66]T. Friessnegg, S. Madhukar, B. Nielsen, A.R. Moodenbaugh, S. Aggarwal, D.J. Keeble, E.H. Poindexter, P. Mascher, R. Ramesh, Metal ion and oxygen vacancies in bulk and thin film Lal-xSrxCoO3, Phys Rev B,1999,59(20):13365.
    [67]O.N. Tufte, P.W. Chapman, Electron Mobility in Semiconducting Strontium Titanate, Phys Rev, 1967,155(3):796.
    [68]M. Daturi, E. Finocchio, C. Binet, J.C. Lavalley, F. Fally, V. Perrichon, H. Vidal, N. Hickey, J. Kaspar, Reduction of high surface area CeO2-ZrO2 mixed oxides, J Phys Chem B,2000, 104(39).9186.
    [69]DA. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, H.Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature,2004,430(7000):657.
    [70]D.S. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S.C. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, M. Takano, Blue-light emission at room temperature from Ar+-irradiated SrTiO3, Nat Mater,2005,4(11):816.
    [71]M. Burriel, G. Garcia, J. Santiso, J.A. Kilner, J.C.C. Richard, S.J. Skinner, Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+delta, J Mater Chem,2008,18(4):416.
    [72]X.J. Chen, S. Soltan, H. Zhang, H.U. Habermeier, Strain effect on electronic transport and ferromagnetic transition temperature in La0.9Sr0.1 MnO3 thin films, Phys Rev B,2002,65(17).
    [73]K. Oshihara, T. Hisano, Y. Kayashima, W. Ueda, Catalytic performance of hydrothermally synthesized Mo-V-M-O (M= Sb or Te) oxides in the selective oxidation of light paraffins, Stud Surf Sci Catal,2001,136(Natural Gas Conversion VI):93.
    [74]T. Ressler, J. Wienold, R.E. Jentoft, T. Neisius, Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen, J Catal,2002,210(1).67.
    [75]Y.S. Chen, I.E. Wachs, Tantalum oxide-supported metal oxide (Re2O7, CrO3, MoO3, WO3, V2O5, and Nb2O5) catalysts:synthesis, Raman characterization and chemically probed by methanol oxidation, J Catal,2003,217(2):468.
    [76]F. Arena, N. Giordano, A. Parmaliana, Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde.2. Redox properties and reactivity of SiO2, MoO3/SiO2, V2O5/SiO2, TiO2, and V2O5/TiO2 systems, J Catal,1997,167(1):66.
    [77]S. Royer, D. Duprez, S. Kaliaguine, Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCol-xFexO3, J Catal,2005,234(2):364.
    [78]R. Ali, M. Yashima, Y Matsushita, H. Yoshioka, K. Ohoyama, F. Izumi, Diffusion Path of Oxide Ions in an Apatite-Type Ionic Conductor La-9.69(Si5.70Mg0.30)O-26.24, Chem Mater,2008, 20(16):5203.
    [79]M. Yashima, S. Kobayashi, T. Yasui, Positional disorder and diffusion path of oxide ions in the yttria-doped ceria Ce0.93Y0.07O1.96, Faraday Discuss,2007,134:369.
    [80]N. Kim, IF. Stebbins, Sc-2(WO4)(3) and Sc-2(MoO4)(3) and Their Solid Solutions:Sc-45, 0-17, and Al-27 MAS NMR Results at Ambient and High Temperature, Chem Mater,2009, 21(2):309.
    [81]E.A. Lombardo, G.A. Sill, W.K. Hall, The Assay of Acid Sites on Zeolites as Measured by Ammonia Poisoning, J Catal,1989,119(2):426.
    [82]B. Wichterlova, N. Zilkova, E. Uvarova, J. Cejka, P. Sarv, C. Paganini, J.A. Lercher, Effect of Broensted and Lewis sites in ferrierites on skeletal isomerization of n-butenes, Appl Catal a-Gen, 1999,182(2):297.
    [1]M.S. Avila, C.I. Vignatti, C.R. Apesteguia, V.V. Rao, K. Chary, T.F. Garetto, Effect of V2O5 Loading on Propane Combustion over Pt/V2O5-A12O3 Catalysts, Catal Lett,2010,134(1-2): 118.
    [2]S.W. Moon, G.D. Lee, S.S. Park, S.S. Hong, Catalytic combustion of chlorobenzene over V2O5/TiO2 catalysts prepared by the precipitation-deposition method, React Kinet Catal L,2004, 82(2):303.
    [3]P.T. Wierzchowski, L.W. Zatorski, Kinetics of catalytic oxidation of carbon monoxide and methane combustion over alumina supported Ga2O3, SnO2 or V2O5, Appl Catal B-Environ, 2003,44(1):53.
    [4]T.N. Natsvlishvili, D.T. Bezhitadze, G.F. Tavadze, V.I. Yukhvid, Effect of an Inert Additive on the Laws Governing the Combustion of the System V2O5+Al at Atmospheric-Pressure, Combust Explo Shock+,1990,26(1):65.
    [5]R.K. Grasselli, J.D. Burrington, D.J. Buttrey, P. DeSanto, C.G. Lugmair, A.F. Volpe, T. Weingand, Multifunctionality of active centers in (amm)oxidation catalysts:from Bi-Mo-O-x to Mo-V-Nb-(Te, Sb)-O-x, Top Catal,2003,23(1-4):5.
    [6]J. Holmberg, R.K. Grasselli, A. Andersson, A study of the functionalities of the phases in Mo-V-Nb-Te oxides for propane ammoxidation, Top Catal,2003,23(1-4):55.
    [7]P. DeSanto, D.J. Buttrey, R.K. Grasselli, C.G Lugmair, A.F. Volpe, B.H. Toby, T. Vogt, Structural aspects of the M1 and M2 phases in MoVNbTeO propane ammomidation catalysts, Z Kristallogr, 2004,219(3):152.
    [8]R.K. Grasselli, D.J. Buttrey, P. DeSanto, J.D. Burrington, C.G Lugmair, A.F. Volpe, T. Weingand, Active centers in Mo-V-Nb-Te-O-x (amm)oxidation catalysts, Catalysis Today,2004,91-92:251.
    [9]J. Holmberg, R.K. Grasselli, A. Andersson, Catalytic behaviour of M1, M2, and M1/M2 physical mixtures of the Mo-V-Nb-Te-oxide system in propane and propene ammoxidation, Appl Catal a-Gen,2004,270(1-2):121.
    [10]R.K. Grasselli, Selectivity issues in (amm)oxidation catalysis, Catalysis Today,2005,99(1-2):23.
    [11]R.K. Grasselli, D.J. Buttrey, J.D. Burrington, A. Andersson, J. Holmberg, W. Ueda, J. Kubo, C.G Lugmair, A.F. Volpe, Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb,Ta)TeO ammoxidation catalysts, Top Catal,2006,38(1-3):7.
    [12]W. Ueda, Y. Morooka, T. Ikawa, Role of Transition-Metal Elements in Te-Mo-M-O Catalysts as Revealed by the Oxidation of Propylene to Acrolein with 0-18(2) Tracer, Chemistry Letters, 1982, (4):483.
    [13]P. Botella, J.M.L. Nieto, B. Solsona, Selective oxidation of propene to acrolein on Mo-Te mixed oxides catalysts prepared from ammonium telluromolybdates, J Mol Catal a-Chem,2002, 184(1-2):335.
    [14]Y. Amaud, J. Guidot, J.Y. Robin, M. Romand, J.E. Germain, Catalytic Ammoxidation of Hydrocarbons and Related Reactions.17. Structure of Te-Mo-O Mixed Oxides and Catalysis of Propene Oxidation, J Chim Phys Pcb,1976,73(6).651.
    [15]I.L. Botto, C.I. Cabello, H.J. Thomas, (NH4)(6)[TeMo6O24]center dot 7H(2)O Anderson phase as precursor of the TeMo5O16 catalytic phase:Thermal and spectroscopic studies, Mater Chem Phys,1997,47(1):37.
    [16]S. Vallar, M. Goreaud, Crystal structure of a monoclinic form of TeMo5O16, a two-dimensional conductor mixed-valence oxide, Journal of Solid State Chemistry,1997,129(2):303.
    [17]Y. Arnaud, J. Guidot, Pentamolybdenum Tellurium(II) Oxide, Acta Crystallographica B,1977,33: 2151.
    [18]J.M. Oliva, P. Ordejon, E. Canadell, Electronic structure of monoclinic TeMo5O16:Prediction of semiconducting behavior, Phys Rev B,2000,62(24):16430.
    [19]Z. Sojka, M. Che, Epr Study of the Interaction of O-Ions with Cb3oh within the Coordination Sphere of Mo Ions Grafted on Silica-a New Approach for the Study of the Mechanism of Catalytic Reactions, J Phys Chem-Us,1995,99(15):5418.
    [20]E. Canadell, J. Provost, A. Guesdon, M.M. Borel, A. Leclaire, Magnetic properties and new structural classification of molybdenum phosphates containing Mo(V), Chem Mater,1997,9(1): 68.
    [21]J. Beille, U. Beierlein, J. Dumas, C. Schlenker, D. Groult, Pressure effect on the charge density wave instabilities in the quasi-two-dimensional conductors (PO2)(4)(WO3)(2m) (m=4,5,6) and eta-Mo4O11,J Phys-Condens Mat,2001,13(7):1517.
    [22]J.S. Brooks, S. Valfells, S. Uji, S. Hill, Z. Fisk, J. Sarrao, High magnetic field ground state in the molecular conductor eta-Mo4O11, Synthetic Met,1997,86(1-3):1963.
    [23]H. Gruber, E. Krautz, H.P. Fritzer, K. Gatterer, A. Popitsch, Electronic Property Changes of Eta-Mo4ol 1 by Doping with Tungsten, Rhenium, and Vanadium, Physica Status Solidi a-Applied Research,1984,86(2):749.
    [24]G.H. Gweon, S.K. Mo, J.W. Allen, C.R. Ast, H. Hochst, J.L. Sarrao, Z. Fisk, Hidden one-dimensional electronic structure and non-Fermi-liquid angle-resolved photoemission line shapes of eta-Mo4O11 (vol 72, pg 035126,2005), Phys Rev B,2005,72(7).
    [25]G.H. Gweon, S.K. Mo, J.W. Allen, C.R. Ast, H. Hochst, J.L. Sarrao, Z. Fisk, Hidden one-dimensional electronic structure and non-Fermi-liquid angle-resolved photoemission line shapes of eta-Mo4O11, Phys Rev B,2005,72(3).
    [26]S. Hill, S. Valfells, S. Uji, J.S. Brooks, G.J. Athas, P.S. Sandhu, J. Sarrao, Z. Fisk, J. Goettee, Quantum limit and anomalous field-induced insulating behavior in eta-Mo4O11, Phys Rev B, 1997,55(4):2018.
    [27]E.B. Lopes, M. Almeida, J. Dumas, H. Guyot, C. Escribefilippini, Thermal-Conductivity of the Charge-Density Wave Molybdenum Oxides Gamma-Mo4o11, Eta-Mo4o11 and Kmo6o17, J Phys-Condens Mat,1992,4(25):L357.
    [28]P. Mallet, H. Guyot, J.Y. Veuillen, N. Motta, Charge-density-wave STM observation in eta-Mo4O11, Phys Rev B,2001,63(16):art. no.
    [29]H. Negishi, Y. Kuroiwa, H. Akamine, S. Aoyagi, A. Sawada, T. Shobu, S. Negishi, M. Sasaki, CDW-induced negative thermal expansion in two-dimensional conductor eta-Mo4O11, Solid State Commun,2003,125(1):45.
    [30]S. Ohara, H. Negishi, M. Inoue, Structure Sensitive Electronic-Properties of Quasi-2-Dimensional Eta-Mo4o11 Crystals, Phys Status Solidi B,1992,172(1):419.
    [31]M. Sasaki, N. Miyajima, H. Negishi, S. Negishi, M. Inoue, H. Kadomatsu, G. Machel, Possibility of quantum Hall effect in quasi-two-dimensional eta-Mo4O11 crystal, Solid State Commun,1999, 109(5):357.
    [32]T. Sato, T. Dobashi, H. Komatsu, T. Takahashi, M. Koyano, Electronic structure of eta-Mo4011 studied by high-resolution angle-resolved photoemission spectroscopy, J Electron Spectrosc, 2005,144:549.
    [33]R.L. Smith, G.S. Rohrer, Scanning probe microscopy of cleaved molybdates:alpha-MoO3(010), Mo18O52(100), Mo8O23(010), and eta-Mo4O11(100), Journal of Solid State Chemistry,1996, 124(1):104.
    [34]J.P. Sorbier, H. Tortel, Density of State Study in Eta and Gamma-Mo4o11 by Tunneling Spectroscopy, Physica B,1994,194:1299.
    [35]M.A. Valbuena, J. Avila, S. Drouard, H. Guyot, M.C. Asensio, Electronic structure and anomalous photoemission line-shape of quasi-2D oxide eta-Mo4O11, Appl Surf Sci,2007,254(1): 40.
    [36]Z. Zhu, S. Chowdhary, V.C. Long, J.L. Musfeldt, H.J. Koo, M.H. Whangbo, X. Wei, H. Negishi, M. Inoue, J. Sarrao, Z. Fisk, Polarized optical reflectance and electronic structure of the charge-density-wave materials eta-and gamma-Mo4O11, Phys Rev B,2000,61(15):10057.
    [37]Z. Zhu, V.C. Long, J.L. Musfeldt, X. Wei, J. Sarrao, Z. Fisk, H. Negishi, M. Inoue, H.J. Koo, M.H. Whangbo, High field optical response of eta-Mo4O11, J Phys Iv,1999,9(P10):251.
    [38]E. Canadell, M.H. Whangbo, Semiconducting Properties of Li0.33moo3, Inorg Chem,1988, 27(2):228.
    [39]E. Canadell, M.H. Whangbo, Conceptual Aspects of Structure Property Correlations and Electronic Instabilities, with Applications to Low-Dimensional Transition-Metal Oxides, Chem Rev,1991,91(5):965.
    [40]E. Canadell, M.H. Whangbo, C. Schlenker, C. Escribefilippini, Band Electronic-Structure Study of the Electronic Instability in the Magneli Phase Mo4o 11, Inorg Chem,1989,28(8):1466.
    [41]J.M.M. Millet, H. Roussel, A. Pigamo, J.L. Dubois, J.C. Jumas, Characterization of tellurium in MoVTeNbO catalysts for propane oxidation or ammoxidation, Appl Catal a-Gen,2002,232(1-2): 77.
    [42]M. Baca, J.M.M. Millet, Bulk oxidation state of the different cationic elements in the MoVTe(Sb)NbO catalysts for oxidation or ammoxidation of propane (vol 279, pg 67,2005), Appl Catal a-Gen,2005,288(1-2):243.
    [43]F.D. Hardcastle, I.E. Wachs, Determination of Molybdenum Oxygen Bond Distances and Bond Orders by Raman-Spectroscopy, J Raman Spectrosc,1990,21(10):683.
    [44]G. Mestl, T.K.K. Srinivasan, Raman spectroscopy of monolayer-type catalysts:Supported molybdenum oxides, Catal Rev,1998,40(4):451.
    [45]G. Fu, X. Xu, X. Lu, H.L. Wan, Mechanisms of initial propane activation on molybdenum oxides: A density functional theory study, J Phys Chem B,2005,109(13):6416.
    [46]M. Anpo, M. Kondo, S. Coluccia, C. Louis, M. Che, Application of Dynamic Photoluminescence Spectroscopy to the Study of the Active Surface Sites on Supported Mo/Sio2 Catalysts-Features of Anchored and Impregnated Catalysts, J Am Chem Soc,1989,111(24):8791.
    [47]C. Louis, M. Che, M. Anpo, Characterization and Modeling of the Mo Species in Grafted Mo/Sio2 Catalysts after Redox Thermal Treatments, J Catal,1993,141(2):453.
    [48]I.E. Wachs, J.M. Jehng, W. Ueda, Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts, J Phys Chem B,2005,109(6):2275.
    [49]J.M. Tatibouet, Methanol oxidation as a catalytic surface probe, Appl Catal a-Gen,1997,148(2): 213.
    [50]P. Forestier, M. Goreaud, Crystal-Structure of the Orthorhombic Mixed-Valence Oxide Temo5ol6, Cr Acad Sci Ii,1991,312(10):1141.
    [51]V.O. Sokolov, V.G. Plotnichenko, V.V. Koltashev, I.A. Grishin, On the structure of molybdate-tellurite glasses, J Non-Cryst Solids,2009,355(4-5):239.
    [52]V.O. Sokolov, V.G. Plotnichenko, V.V. Koltashev, Structure of barium chloride-oxide tellurite glasses, J Non-Cryst Solids,2009,355(31-33):1574.
    [53]N.S. Abd El-Aal, H.A. Afifi, Structure and Ultrasonic Properties of Vanadium Tellurite Glasses Containing Copper Oxide, Arch Acoust,2009,34(4):641.
    [54]V.O. Sokolov, V.G. Plotnichenko, V.V. Koltashev, E.M. Dianov, On the structure of tungstate-tellurite glasses, J Non-Cryst Solids,2006,352(52-54):5618.
    [55]D. Holland, J. Bailey, G Ward, B. Turner, P. Tierney, R. Dupree, A Te-125 and Na-23 NMR investigation of the structure and crystallisation of sodium tellurite glasses, Solid State Nucl Mag, 2005,27(1-2):16.
    [56]J.W. Lim, H. Jain, J. Toulouse, S. Marjanovic, J.S. Sanghera, R. Miklos, I.D. Aggarwal, Structure of alkali tungsten tellurite glasses by X-ray photoelectron spectroscopy, J Non-Cryst Solids,2004, 349:60.
    [57]G.D. Khattak, A. Mekki, L.E. Wenger, Local structure and redox state of copper in tellurite glasses, J Non-Cryst Solids,2004,337(2):174.
    [58]J.C. McLaughlin, S.L. Tagg, J.W. Zwanziger, D.R. Haeffner, S.D. Shastri, The structure of tellurite glass:a combined NMR, neutron diffraction, and X-ray diffraction study, J Non-Cryst Solids,2000,274(1-3):1.
    [59]D.L. Sidebottom, M.A. Hruschka, B.G Potter, R.K. Brow, Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses, J Non-Cryst Solids,1997,222:282.
    [60]C.S. Sunandana, Alkali tellurite glasses:Bonding, structure and conductivity, B Mater Sci,1996, 19(6):1105.
    [61]C.R. Becker, S.L. Tagg, J.C. Huffman, J.W. Zwanziger, Crystal structures of potassium tetratellurite, K2Te4O9, and potassium ditellurite, K2Te2O5, and structural trends in solid alkali tellurites, Inorg Chem,1997,36(24):5559.
    [62]J.C. McLaughlin, S.L. Tagg, J.W. Zwanziger, The structure of alkali tellurite glasses, J Phys Chem B,2001,105(1):67.
    [63]A.G. Kalampounias, GN. Papatheodorou, S.N. Yannopoulos, A temperature dependence Raman study of the 0.1Nb(2)O(5)-0.9TeO(2), J Phys Chem Solids,2006,67(4):725.
    [64]H.C. Jiang, W.M. Lu, H.L. Wan, The effect of MoV0.3Te0.23PxOn catalysts with different phosphorus content for selective oxidation of propane to acrolein, J Mol Catal a-Chem,2004, 208(1-2):213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700