碳纳米管修饰电极对生物分子的电分离分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNT)独特的一维分子结构和奇特的物理、化学特性,成为世界范围内的研究热点之一。相对于其它的领域,CNT在分析化学中的应用研究起步较晚。本论文把这种新型的纳米材料用作修饰电极的界面材料,率先研究了它的电催化、电分离以及复合环糊精之后的分子认知功能。本工作对于进一步开拓纳米材料的应用基础研究具有较大的意义。
     本论文的工作分为四大部分:
     一、CNT涂层修饰电极(CNT/E)对神经递质的电分离及同时测定。
     以多巴胺(DA)和肾上腺素(EP)为模型化合物,研究其在多壁碳纳米管(MWNT)修饰电极上的直接电化学行为。结果表明,CNT/E对DA和EP的电化学行为有显著的增敏和电分离作用,还原峰电位差达△E_(pc)=390 mV,且性能稳定,利用DA和EP在修饰电极上阴极化过程峰电位的差异,实现了在AA共存时DA和EP的选择性测定。
     二、以超分子环糊精对CNT进行功能化,构置环糊精复合碳纳米管功能化电极(CD/CNT/CE)。
     CD水溶液对碳管有较好的‘溶解’行为。电镜(包括SEM和TEM)和FTIR表征,证实CD成功的系在了碳管表面或固定在集合孔中,显示了电极表面的微观形貌为立体的多孔界面层。碳管表面与环糊精之间的作用力为疏水的相互作用、范德华力以及空间阻力。
     碳纳米管与超分子结合,增加CNT的可溶性,优化修饰电极的性能。界面体现了新颖的建筑层—碳纳米管集合体大的孔隙充填小孔的环糊精,将碳纳米管的优良催化性能和CD的认知包络行为结合起来。
     三、CD/CNT/CE对生物分子、异构体的电分离、识别功能和选择性灵敏测定。
     1.研究AA在CD/CNT/CE的电化学行为,探讨采用不同碳纳米管生物兼容性的界面,对电活性物质电化学行为的影响。经碳纳米管修饰的电极可降低AA的氧化反应的过电势,复合α-CD后可显著提高AA的灵敏度,更重要的是可避免DA的干扰。氧化处理CNT,对分析测定AA是一不利因素。
     2.α-CD/CNT复合电极对CySH有较强的电催化行为,解决了电极对CySH氧化产物吸附而导致的信号逐渐减小的问题,实现了对L-CySH选择性灵敏测定。
     3.以邻、间、对位硝基酚异构体为模型化合物,研究了各种CD/CNT/CE对硝基酚异构体的电催化行为及分子识别能力。
    
    摘要
     4.研究了两嗓吟碱基一一A和G在p一CD功能化碳纳米管修饰电极的电化学
     氧化行为。利用p一cD/C NT尼实现了对A和G的高灵敏度选择性测定,并
     进行了酸变性鱼精子DNA中A和G组分的检测。本工作为免标记研究
     DNA杂交行为及其与小分子的相互作用提供了有效途径。
     四、CNT修饰电极的电催化、电分离及识别机理。
     CNT修饰电极优异的性能来源于碳纳米管的纳米尺寸、一维管状结构、电子特
    性及其集合体的立体空间结构;CNT修饰电极的立体界面孔性是对生物分子产生电
    化学催化的重要原因。CD附着在CNT表面,增加了修饰电极的分子识别能力。
Studies on carbon nanotubes (CNT) become a hot topic in the world due to the unique one-dimensional tubular structure and subtle physical and chemical properties of CNT. Compared with other area, the application of CNT in analytical chemistry has been studied recently. In the present dissertation, using CNT as interfacial material, the functionalized CNT electrodes were constructed; the electrocatalysis and separation of CNT-modified electrodes and its recognition ability after incorporating cyclodextrins (CD) were studied firstly. This work may be of great signification for applying nano-material further. The main achievements obtained in this research include:
    1. CNT-coated electrode was constructed with CNT as electrode material for the electro-separation and simultaneous detection of neurotransmitters.
    The electrochemical characteristics of dopamine (DA) and epinephrine (EP) at multi-wall carbon nanotube coated graphite electrode have been investigated. The result demonstrated that the modified electrode shows enhanced sensitivity and excellent electrochemical discrimination to DA and EP, the cathodic potential difference of DA and EP was about 390 mV. DA and EP can be determined simultaneously in the presence of AA by their cathodic potential difference.
    2. CNT was functionalized successfully with supermolecular CD and further CD incorporating CNT modified electrodes (CD/CNT/CE) were constructed and characterized
    CD solution has good dispersion behavior towards CNT. By SEM, TEM and FTIR characterization, we testified that CDs were adsorbed and attached to the surface of CNT due to hydrophobic interaction, van der Waals force and steric effect. It also shows the stereo-porous interface structure of electrode surface.
    CD can attach to the surface of CNT, which can enhance the solubility of CNT and be favorable to the properties of modified electrode. With the CD-CNT adduct, a novel interface architecture of electrode was constructed and it was characterized by a large aggregated pore of carbon nanotube captured CD with a small cavity. The perfect electrocatalytic properties of CNT coupled with the specific recognition properties of CD would indeed make for an ideal sensor.
    
    
    3. The voltammetric separation and recognition ability of CD/CNT/E for biomolecules and isomers were investigated systematically.
    (1). The electrochemical response of AA on CD/CNT/CE was investigated. The influence of different biocompatibility interfaces to electroactive analyte was discussed further. Modification of the electrode surface by carbon nanotubes reduced the overpotential for the redox process, and significantly increased the sensitivity of AA by incorporated a-CD. More importantly, the interference of DA can be avoided. Experiment results indicated that the oxidation treatment of CNT was unfavorable to the detection of AA.
    (2). a-CD/CNT/E exhibits perfect eletrocatalytic ability to CySH, which resolved the problem of electrochemical response reducing gradually due to oxidation products adsorption. The selective and sensitive determination of CySH was obtained.
    (3). Using neutral nitrophenol isomers as model compounds, the eletrocatalytic response and recognition ability of various cyclodextrins-incorporated carbon nanotube electrodes were firstly investigated and characterized systematically.
    (4). The electrochemical oxidation response of adenine and guanine on B-CD functionalized CNT modified electrode was described. The selective and sensitive determination of A and G was obtained and further estimate the contents of A and G in denaturing herring sperm DNA. Our work provides available approach to the amplified label-free electrochemical detection of DNA hybridization and the interaction with targeted agents.
    4. The electrocatalysis, separation and recognition mechanism of CNT modified electrode were investigated.
    The results suggest that the pronounced properties of CNT modified electrode come from its nano-dimension, subtle tubule structure and the spatial porous interfacial of aggregated
引文
[1] Singh H, Srivastava M. Fullerenes-Synthesis, Separation, Characterization, Reaction Chemistry, and Appllications-a Review. Energ. Source, 1995, 17 (6): 615-640
    [2] Iijima S. Helical microtubules of graphitie carbon. Nature, 1991, 354:56-58
    [3] Iijima S, Iehihashi T. Single-shell carbon nanotubes of l-nm diameter. Nature, 1993, 363:603~605
    [4] Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001, 61:1899-1912
    [5] Ebbesen T W, Hirua H, Fujita J, et al. Tanigaki K. Patterns in the bulk growth of carbon nanotubes.Chem.Phys. Lett. 1993, 209:83-90
    [6] Ebbesen T W, Ajayan P M. Large scale synthesis of carbon nanotubes. Nature, 1992, 358:220-222
    [7] Thess A, Lee R, Nikolaev P. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273:483-487
    [8] Cheng H M, Li F, Sun X. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett., 1998,289:602-610
    [9] Kong J, Cassel A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 1998, 292:567-574
    [10] Muller T E, Reid D G, Hsu W K. Synthesis of nanotubes via catalytic pyrolysis of acetylene: A SEM study. Carbon, 1997, 35:951-966
    [11] Ruckenstein E, Hu Y H. Catalytic preparation of narrow pore size distribution mesoporous carbon. Carbon, 1998, 36:269-275
    [12] 梁奇,刘宝春,唐水花.La2NiO4催化制备纳米碳管.化学学报,2000,58(11):1336-1339.
    [13] 梁奇,李庆,陈栋梁.甲烷部分氧化气氛制备碳纳米管.高等学校化学学报,2000,21(4):623-625
    [14] Matveev A T, Golberg D, Novikov V P. Synthesis of carbon nanotubes below room temperature.Carbon, 2001, 39:155-158
    [15] Fan S S, Liang W J, Dang H Y, et al. Carbon nanotube arrays on silicon substrates and their possible application. Physica E, 2000, 8:179-183
    [16] 李欢军,王贤宝,宋延林,等.超疏水多孔阵列碳纳米管薄膜.高等学校化学学报,2001,22(5):759-761
    [17] Pan Z W, Xie S S, Chang B H. Very long carbon nanotubes. Nature, 1998, 394:631-632
    [18] Sun L F, Xie S S, Liu W. Materials-Creating the narrowest carbon nanotubes. Nature, 2000,
    
    403:384-384
    [19] 杨占红,李新海,李晶,等.碳纳米管纯化技术研究.中南工业大学学报,1999,13(4):389-391
    [20] 李新海,杨占红,陈至国.炭纳米管的提纯-重铬酸钾氧化法.新型碳材料,1999,14(3):32-36
    [21] 杨占红,李新海,王红强,等.用空气氧化法高效纯化炭纳米管.新型碳材料,1999,14(2):67-70
    [22] Ajayan P M, Ebbesen T W, Ichihashi T. Opening carbon nanotubes with oxygen and implications for filling. Nature, 1993, 362:522-525
    [23] Colomer J F, Piedigrosso P, Fonseca A. Different purification methods of carbon nanotubes produced by catalytic synthesis. Synthetic Metals, 1999, 103:2482-2483
    [24] Mizoguti E, Nihey F, Yudasaka M. Purification of single-wall carbon nanotubes by using ultrafme gold particles. Chemical Physics Letters, 2000, 321:297-301
    [25] Zhang Y, Shi Z, Gu Z. Structure modification of single-wall carbon nanotubes. Carbon, 2000,38:2055-2059
    [26] 杨占红,吴浩青,李晶.碳纳米管的纯化—电化学氧化法.高等学校化学学报,2001,22(3):446-449
    [27] 杨翔,陈代璋,方勤方,等.纳米碳管分离提纯技术.地学前缘,2000,7(2):527-534
    [28] Dresselhaus M S. Nanotechnology-New tricks with nanotubes. Nature, 1998, 391:19-20
    [29] Collins P G, Zettl A, Bando H, et al. Nanotube nanodevice. Science, 1997, 278: 100-103
    [30] Saito R, Dresselhaus G, Dressehaus M S. Tunneling conductance of connected carbon nanotubes. Phys. Rev. B, 1996, 53 (4): 2044-2050
    [31] Zhu W, Bower C, Zhou O, et al. Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 1999, 75(6): 873-875
    [32] Ajayan P M, Iijima S. Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361:333-334.
    [33] Rinzler A G, Hafner J H, Nikolaev P, et al. Unraveling nanotubes-field-emission from an atomic wire. Science, 1995, 269:1550-1553
    [34] Pilip Ball著,徐俊培译。世界科学,1997,3:17
    [35] Hafner J H, Cheung C L, Lieber C M. Growth of nanotubes for probe microscopy tips. Nature, 1999, 398:761-762
    [36] Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286:1127-1129
    [37] Chen J, Hamm M A, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95-98
    [38] Jia Z J, Wang Z Y, Liang J, et al. Production of short multi-walled carbon nanotubes. Carbon,
    
    1999, 37:903-906
    [39] Pierard N, Fonseca A, Kenya Z, et al. Production of short carbon nanotubes with open tips by ball milling. Chemical Physics letters, 2001, 335:1-8
    [40] Liu J, Rinzler A G, Dai H J. Fullerene pipes. Science, 1998, 280:1253-1256
    [41] Tagmatarchis N, Georgakilas V, Prate M, et al. Sidewall functionalization of single-walled carbon nanotubos through electrophilic addition. Chem. Commun., 2002, 18:2010-2011
    [42] Hamon M A, Hui H, Bhowmik P, et al. Ester-functionalized soluble single-walled carbon nanotubes. Appl. Phys., 2002, 74(3): 333-338
    [43] Pompeo F, Resasco D E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine. Nano Lett., 2002, 2(4): 369-373
    [44] Kooi S E, Schlecht U, Burghard M, et al. Electrochemical modification of single carbon nanotube. Angew. Chem. Int. Ed., 2002, 41(8): 1353-1355
    [45] Guo Z J, Sadler P J, Tsang S C. Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv. Mater., 1998, 10(9): 701-703
    [46] Mickelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbon nanotubes.Chem. Phys. Lett., 1998, 296:188-194
    [47] Unger E, Graham A, Kreupl F, et al. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Current Applied Physics, 2002, 2:107-111
    [48] Hamon M A, Chen J, Hu H, et al. Dissolution of single-walled carbon nanotubes. Adv. Mater, 1999, 11:834-840
    [49] 李博,廉永福,施祖进.单壁碳纳米管的化学修饰.高等学校化学学报,2000,21(11):1633-1635
    [50] Shi Z J, Liu Y F, Zhou X H, et al. Single-wall carbon nanotube colloids in polar solvents. Chem.Commu., 2000, 6:461-462
    [51] Nguyen C V, Delzeit L, Casseii A M, et al. Preparation of nucleic acid functionalized carbon nanotube Arrays. Nano Lett., 2002, 2:1079-1081
    [52] Ang L M, Hor T S A, Xu G Q, et al. Decoration of activated carbon nanotubes with copper and nickel. Carbon, 2000, 38 (3): 363-372
    [53] Hazani M, Naaman R, Heonrich F, et al. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett., 2003, 3 (2): 153-155
    [54] Stevens J L, Huang A Y, Peng H, et al. Sidewall amino-functionalization of siugle-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett., 2003, 3 (3): 331-336
    [55] Saini R K, Chiang I W, Peng H, et al. Covalent sidewall functionalization of single wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125 (12): 3617-3621
    [56] Huang W J, Fernando S, Allard L F, et al. Solubilization of single-walled carbon nanotubes with
    
    diamine-terminated oligomeric poly(ethylene glycol) in different funetionalization reactions. Nano Lett., 2003, 3 (4): 565-568
    [57] Dyke C A, Tour J M. Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc.,2003, 125 (5): 1156-1157
    [58] O'Connell M J, Boul P, Ericson L M, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett., 2001, 342:265-271
    [59] Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by Nation toward the preparation of arnperometric biosensors. J. Am. Chem. Soc., 2003, 125 (9): 2408-2409
    [60] Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed., 2001, 40:1721-1725
    [61] Star A, Steuerman D W, Heath J R, et al. Starched carbon nanotubes. Angew. Chem. Int. Ed., 2002, 41: 2508-2512
    [62] Kim O-K, Je J, Baldwin J W, et al. Solubilization of single-wall carbon nanotuhes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc., 2003, 125 (15):4426-4427
    [63] Azarnian B R, Davis J J, Coleman K S, et al. Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc., 2002, 124:12664-12665
    [64] Dieckmann G R, Dalton A B, Johnson P A, et al. Controlled assembly of carbon nanptubes by designed amphiphilic peptide helices. J. Am. Chem. Soc., 2003, 125 (7): 1770-1777
    [65] Chen R J, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc., 2001, 123:3838-3839
    [66] Zhang J, Lee J K, Wu Y, et al. Photoluminescenee and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett., 2003, 3(3):403-407
    [67] Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater., 2001, 13(3): 733-737
    [68] Azamian B R, Coleman K S, Dvis J J, et al. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun., 2002, 4:366-367
    [69] Ellis A V, Vijayamohanan K, Goswami R, et al. Hydrophobic anchoring of monolayerprotected gold nanoclusters to carbon nanotuhes. Nano Lett., 2003, 3 (3): 279-282
    [70] Ravindran S, Chaudhary S, Colburn B. Covalent coupling of quantum dots to muifiwalled carbon nanotubes for electronic device applications. Nano Lett., 2003, 3 (4): 447-453
    [71] Dwyer C, Guthold M, Falvo M, et al. DNA-functionalized single-walled carbon nanotubes.Nanotechnology, 2002, 13 (5): 601-604
    [72] Baker S E, Cai W, Lasester T L, et al. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano
    
    Lett., 2002, 2:1413-1417
    [73] Pengfei Q E Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett., 2003, 3 (3):347-351
    [74] Chattopadhyay D, Galeska L, Papadimitrakopouios F. A route for hulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125(11): 3370-3375
    [75] Li Q W, Wang Y M, Luo G A. Voltammetric separation of dopamine and ascorbic acid with graphite electrodes modified with ultrafine TiO2. Mater. Sci. & Eng. C., 2000, 11:71-74
    [76] Li Q W, Luo G A. pH-response of nanosized MnO2 prepared with solid state reaction route at room temperature. Sens. Actuators B, 1999, 59(1): 42-49
    [77] Li Q W, Luo G A. Response of nanosized cobalt oxide electrodes as pH sensors. Anal. Chim. Acta, 2000, 379:134-137
    [78] Britto PJ, Santhanam K S V, Ajayan P M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem. Bioenerg., 1996, 41:121-125
    [79] Davis J J, Coles R J, Hill H AO. Protein electrochemistry at carbon nanotube electrodes. J. Electroanal. Chem., 1997, 440:279-282
    [80] Davis J J, Green M L H, Hill H A O, et al. The immobilisation of proteins in carbon nanotubes. Inorg. Chim. Acta, 1998, 272:261-266
    [81] Liu C Y, Bard A J, Wudl F, et al. Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors. Electrochem. Solid State Lett. 1999, 2:577-578
    [82] 罗红霞,施祖进,李南强,等.羧基化单层碳纳米管修饰电极的电化学表征及其电催化作用.高等学校化学学报,2000,21(9):1372-1374
    [83] Luo H X, Shi Z J, Li N Q, et al. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal. Chem., 2001, 73: 915-920
    [84] Wong S S, Joselevich E, Woolley A T. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature, 1998, 394:52-55
    [85] Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science,2000, 287:622-625
    [86] Ikeda T. Prospects of Bioelectrochemistry in 21 st century. Kyoto, Japan, 2000.
    [87] 董绍俊,车广礼.化学修饰电极.科学出版社,1995
    [88] Miller L L, Mark M R. A poly-p-nitrostyrene electrode surface, potential development at conducting and electrocatalytic properties. J. Am. Chem. Soc., 1978, 100:3223-3231
    [89] Walton D J, Hall O E. Characterization of poly(pyrroles) by cyclic voltammetry. Analyst, 1992,
    
    117:1305-1311
    [90] Ofer D, Crooks R M, Wrighton M S. Potential dependence of the conducting of highly oxidized polythiophenes, polypyroles and polyanilne. J. Am. Chem. Soc., 1990, 112:7869-7873
    [91] Sittamplama G, Wilson G S. Surface modified electrochemical detection for LC. Anal. Chem., 1983, 55:1608-1613
    [92] Cheek G, Wales C P. pH response of Pt and Vitreous carbon electrode modified with electropolymerical films. Anal. Chem., 1983, 55:380-388
    [93] Maskus M, Pariente F, Wu Q, et al. Eiectrocatalytic reduction of nitric oxide at electrodes modified with electropolymerized films of [Cr(v-tpy)(2)](3+) and their application to cellular NO determinations. Anal Chem., 1996, 68:3128-3134
    [94] Costa M. Special issue-conducting polymer on electrodes. Electrochim Acta, 1994, 39:171-171
    [95] Vicente F. Electrochemical reduction of the nitrite to ammomium ions in presence of [MoO2(O2CC(s) C6H5)2]2-. Electrochim Acta, 1995, 40:1121-1126
    [96] Rolison D R.In Advanced zeolite science and application series. Elsevier Amsterdam, 1994, 85:543-551
    [97] Rolison D R. Zeolite-modified electrodes and electrode-modified zeolites. Chem. Res., 1990, 90: 867-875
    [98] Dostal A, Meyer B. Electrochemical study of microerystailine solid prussian Blue partieles mechanically attached to graphite and gold electrode. J. Phys. Chem., 1995, 385:241-254
    [99] Bedioui F, Devynek J. Immobilization of metallopophyrins in electropolymerized film. Acc.Chem. Res, 1995, 28:30-36
    [100] Th. Wink, Zuilen S J van, Bult A. Self-assembly monolayers. Analyst, 1997, 122: 43R-51R
    [101] Li Q W, Gao H, Luo G A. Studies on self-assembly monolayers of cysteine on gold by XPS,QCM, and electrochemical techniques. Electroanalysis, 2001, 13(16): 1349-1346
    [102] Gao H, Luo G A, Feng J, et al. Fabrication and photoelectric properties of self-assembled bilayer lipid membranes on conducting glass. Journal of Photochemistry and Photobiology B:Biology, 2000, 59:87-91
    [103] Xue Qiming(薛启冥).Physiological and Pathological Chemistry of Nervous System(神经系统的生理和病理化学).Beijing(北京):Science Press(科学出版社),1978:102
    [104] Wightrnan R M,May L J,Michae A C.Detection of Dopamine Dynamics.Anal.Chem.,1988,60:769A-779A
    [105] Sun Yuanxi(孙元喜),Ye Baoxian(冶保献),Zhou Xingyao(周性尧).Chinese Jourllal of Analytical Chemistry(分析化学),1998,26(5):506~510
    [106] Editorial Committee of the Pharmacopeia of People's Republic of China(中华人民共和国药典委员会).Pharmacopoeia of the People's Repulic of China,Part 2(中华人民共和国药典,二部),Bejing(北京):Chemical Industry Press(化学工业出版杜),2000:3 85,592.
    
    
    [107] Rao A M, Eklund P C, Bandow S,et al. Evidence for charge transfer in doped carbon nanotuhe bundles from Raman scattering. Nature, 1997, 388, 257-259
    [108] Pichler T, Sing M, Knupfer M, et al. Potassium intercalated bundles of single-wall carbon nanotubes: electronic structure and optical properties. Solid State Communications, 1999, 109,721-726
    [109] Claye A S, Nemes N M, Janossy A, et al. Structure and electronic properties of potassium-doped single-wall carbon nanotubes. Phys. Rev. B, 2000, 62:R4845-R4848
    [110] Adu C K W, Sumanasekera G U, Pradhan B K, et al. Carbon nanotubes: A thermoelectric nano-nose. Chemical Physics Letters, 2001, 337:31-35
    [111] Yang Q H, Hou P X, Bai S, et al. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem. Phys. Lett., 2001, 345:18-24
    [112] Szejtli J. Introduction and general overview of cyelodextrin chemistry. Chem. Rev., 1998, 98:1743-1753
    [113] Wenz G Cyclodextrins as building-blocks for supramolecular structures and fimctional units.Angew. Chem. Int. Ed. Engl., 1994, 33 (8): 803-822
    [114] Yanez C, Nunez-Vergara L J, Squella J A. Determination of nitrendipine with beta-cyclodextrin modified carbon paste electrode. Electroanalysis, 2002, 14:559-562
    [115] Almirall E, Fragoso A, Cao R. Molecular recognition of a self-assembled monolayer of a polydithiocarbamate derivative of beta-cyclodextrin on silver. Electrochemistry Communications, 1999, 1 (1): 10-13
    [116] Ferancova A, Korgova E, Miko R, et al. Determination of tricyelic antidepressants using a carbon paste electrode modified with beta-eyclodextrin. J. Electroanal. Chem., 2000, 492:74-77
    [117] Star A, Steuerman D W, Heath J R, et al. Starched carbon nanotubes. Angew. Chem. Int. Ed.,2002, 41(14): 2508-2512
    [118] Kim O K, Je J T, Baldwin J W, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc., 2003, 125 (15):4426-4427
    [119] Yang Q H, Hou P X, Bai S, et al. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem. Phys. Lett., 2001, 345:18-24
    [120] Chen J, Dyer M J, Yu M F. Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc., 2001, 123 (25): 6201-6202
    [121] Wightman R. M., May L. J. and Michael A. C. Detection of Dopamine Dynamics in the Brain.Anal. Chem. 1988, 60, 769A-779A.
    [122] Ciszewski A. and Milezarek G. Polyeugenol-Modified Platinum Electrode for Selective Detection of Dopamine in the Presence of Aseorbie Acid. Anal. Chem. 1999, 71, 1055-1061
    [123] Vijaykumar S. Ijeri, Priya V. Jaiswal, Ashwini K. Srivastava. Chemically modified electrodes
    
    based on macrocyclic compounds for dermination of Vitamin C by electrocatalytic oxidation. Analytic Chimica Acta, 2001,439, 291-297.
    [124] Zhang Guorong, Wang Xiaolei, Shi Xingwang, Sun Tianling. β-Cyclodextrin-ferrocene inclusion complex modified carbon paste electrode for amperometric determination of ascorbic acid. Talanta, 2000, 51(5), 1019-1025.
    [125] Jianguo Ren, Hongxia Zhang, Qiulei Ren, Changkun Xia, Jie Wan, Zibin Qin. Study of the catalytic electro-oxidation of ascorbic acid on an electrode modified macrocyclic compounds of Fe(Ⅲ), Mn(Ⅲ), Ni(Ⅱ), and Co(Ⅱ) with TBP. Journal of Electroanalytical Chemistry, 2001,504,59-63
    [126] Lei Zhang, Yugang Sun and Xiangqin Lin. Separation of anodic peaks of ascorbic acid and dopamine at an α-alanine covalently modified glassy carbon electrode. Analyst, 2001, 126,1760-1763
    [127] Li, Q W; Wang, Y M; Luo G A. Voltammetric separation of dopamine and ascorbic acid with graphite electrodes with ultrafine TiO2. Materials science & engineering C., 2000, 11:71-74.
    [128] Zhang Y., Shi Z., Gu Z., Iijima S.. Structure modification of single-wall carbon nanotubes.Carbon, 2000, 38, 2055-2059.
    [129] JIA Z. J., WANG Z. Y. and LIANG J. Production of short multi-walled carbon nanotubes.Carbon, 1999, 37, 903-906.
    [130] Manzanares M.I., Soils V. and Rossi R. H. de. Effect of cyclodextrins on the electrochemical behavior of ascorbic acid on platinum electrodes in acidic and neutral solutions. Journal of Electroanalytical Chemistry, 1997, 430, 163-168.
    [131] Shouguo Wu, Longzhen Zheng, Lei Rui and Xiangqin Lin. Electrochemical Studies on the Oxidation of Thymine at β-Cyclodextrin Modified Electrode. Electroanalysis, 2001, 13(11),967-970.
    [132] Longzhen Zheng, Shouguo Wu, Xiangqin Lin, Lei Nie and Lei Rui. Selective Determination of Uric Acid by Using a β-Cyclodextrin Modified Electrode. Electroanalysis, 2001, 13(16),1351-1354.
    [133] Yang Q. H., Hou P. X., Bai S., Wang M. Z. and Cheng H. M. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chemical Physics Letters, 2001, 345,18-24.
    [134] Prest, W.M. and Mosher, R.A. In colloids and Surfaces in Reprographic Technology, eds M.Hair and M.Croucher. American Chemical Society, Washington, 1982, p.225
    [135] Chwatko G, Bald E. Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta, 2000, 52:509-515
    [136] Halbert M K, Baldwin R P. Electrocatalytic and analytical response of cobalt phthalocyanine
    
    containing carbon paste electrodes toward sulfhydryl compounds. Anal. Chem., 1985, 57: 591-595
    [137] Chen X M, Xia B, He P. Dynamics of the electrocatalytic oxidation of cysteine at nafion film coated electrodes. J. Electroanal. Chem., 1990, 281:185-198
    [138] Fawcett W R, Fedurco M, Kovacova Z, et al. Oxidation of cysteine, cysteinesulfinic acid and cysteic acid on a polycrystalline gold electrode. J. Electroanal. Chem., 1994, 368:265-274
    [139] Zagal J H, Aguirre M J, Parodi C G. Electrocatalytic activity of vitamin B12 adsorbed on graphite electrode for the oxidation of cysteine and glutathione and the reduction of cystine. J. Electroanal. Chem., 1994, 374:215-222
    [140] Li H M, Li T, Wang E A. Electrocatalytic oxidation and flow detection of cysteine at an aquocobalamin adsorbed glassy-carbon electrode. Talanta, 1995, 42:885-890
    [141] Perez E F, Kubota K T, Tanaka A A, et al. Anodic oxidation of cysteine catalysed by nickel tetrasulphonated phthalocyanine immobilized on silica gel modified with titanium(Ⅳ) oxide.Electrochim. Acta., 1998, 43:1665-1673
    [142] Zen J M, Kumar A S, Chen J C. Electrocatalytic oxidation and sensitive detection of cysteine on a lead ruthenate pyrochlore modified electrode. Anal. Chem., 2001, 73:1169-1175
    [143] Spataru N, Sarada B V, Popa E, et al. Voltammetric determination of L-cysteine at conductive diamond electrodes. Anal. Chem., 2001, 73: 514-519
    [144] Ralph T R, Hitchman M L, Millington J P, et al. The electrochemistry of-cystine and-cysteine:Part 1: Thermodynamic and kinetic studies. J. Electroanal. Chem., 1994, 375:1-15
    [145] Almirall E, Fragoso A, Cao R. Molecular recognition of a self-assembled monolayer of a polydithiocarbamate derivative of beta-cyclodextrin on silver. Electrochemistry Communications, 1999, 1: 10-13.
    [146] Yanez C, Nunez-Vergara L J, Squella J A. Determination of nitrendipine with beta-cyclodextrin modified carbon paste electrode. Electroanalysis, 2002, 14:559-562
    [147] 杨桂朋,戚佳琳.硝基酚类化合物在海水中的化学氧化研究.高等学校化学学报,2002,23 (6):1180-1182
    [148] Ito T, Radecka H, Tohda K, et al. On the mechanism of unexpected potentiometric response to neutral phenols by liquid membranes based on quaternary ammonium salts-Systematic experimental and theoretical approaches. J. Am. Chem. Soc., 1998, 120:3049-3059
    [149] Piotrowski T, Radecka H, Radecki J. Potentiometric response of calix[4]pyrrole liquid membrane electrode towards neutral nitrophenols. Electroanalysis, 2001, 13 (4): 342-346
    [150] Piotrowski T, Radecka H, Radecki J, et al. Effect of the symmetry of the calix[4]pyrrole cavity on sensitivity and selectivity of potentiometric sensors for neutral nitrophenols. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2001, 18:223-228
    [151] Hu S S, Xu C L, Wang G P, et al. Voltammetric determination of 4-nitrophenol at a sodium
    
    montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta, 2001, 54:115-123
    [152] Buvari-Bareza A, Bareza L. Influence of the guests, the type and degree of substitution on inclusion complex formation of substituted beta-cyclodextrins. Talanta, 1999, 49:577-585
    [153] Wenrui Jin, Huiying Wei, Xin Zhao, Adsorption-voltarnmetric determination of guanine,guanosine, adenine and adenosine with capillary zone electrophoresis separation, Analytica Chimica Aeta, 1997, 347: 269-274.
    [154] Gang Chen, Xiaohui Han, Luyan Zhang, Jiannong Ye, Determination of purine and pyrimidine bases in DNA by micellar electrokinetie capillary chromatography with electrochemical detection, Journal of Chromatography A, 2002, 954:267-276
    [155] Dan-Ke Xu, Lin Hua, Hong-Yuan Chen, Determination of purine bases by capillary zone electrophoresis with wall-jet amperometric detection, Analytiea Chimica Aeta, 1996, 335:95-101.
    [156] Bryan Todd, Jian Zhao, Graham Fleet, HPLC measurement of guanine for the determination of nucleic acids (RNA) in yeasts, Journal of Microbiological Methods, 1995, 22: 1-10
    [157] Huai-Sheng Wang, Huang-Xian Ju, Hong-Yuan Chen, Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode, Analytica Chimica Acta, 2002, 461:243-250
    [158] Jyh-Myng Zen, Ming-Ren Chang and Govindasamy Ilangovan, Simultaneous determination of guanine and adenine contents in DNA, RNA and synthetic oligonucleotides using a chemically modified electrode, Analyst, 1999, 124:679-684
    [159] Joseph Wang, Abdel-Nasser Kawde and Mustafa Musameh, Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization,Analyst, 2003, 128:912-916
    [160] Zhenxin Wang, Dianjun Liu, Shaojun Dong, In situ infrared spectroelectrochemical studies on adsorption and oxidation of nucleic acids at glassy carbon electrode, Bioelectrochemistry, 2001,53:175-181
    [161] Oliveira-Brett E A.M., Dieulescu V., Piedade J.A.P., Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode, Bioelectrochemistry, 2002, 55: 61-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700