轻金属超细/纳米晶块体材料的制备与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米材料具有独特的组织结构和物理、力学及化学性能,应用潜力极大,受到科学界的普遍关注。本文采用机械研磨法合成了镁基合金,并通过等通道转角挤压制备了纯铝及Al-3%Cu合金的超细晶块体材料。
     通过将Mg、Al、Ti元素粉末混以聚乙烯乙二醇进行研磨的机械化学研磨法合成了Mg-5w%Al-10.3w%Ti镁基纳米合金。与常规粉末冶金法相比,该法合成的材料力学性能呈现出奇异的应变软化现象。透射电子显微镜分析表明,合金晶粒尺寸大多为20~30nm,个别晶粒的尺寸约为90nm;此外,观察到许多直径约3~7nm的纳米管。
     采用等通道转角挤压(ECAE/ECAP)法对纯铝及Al-3%Cu合金进行挤压,对挤压过程中的组织演变规律,力学性能、组织稳定性以及影响组织演变的因素等进行了研究。结果表明,用ECAP技术将纯铝从初始晶粒尺寸约1.0mm细化到0.48μm;
    
     太原理工大学硕士学位论文
    8次挤压后晶粒细化达到饱和,硬度达到最大,在150OC退火
    lh后组织保持稳定;相对于未挤压试样,14次挤压试样经5%
    压缩后呈现出高的屈服强度和加工硬化速率;低温挤压加快晶
    粒细化,4次挤压后即形成大角度晶界分割的等轴状晶粒。对
    Al一3%Cu合金在固溶态和时效态进行了ECAP挤压。透射电镜
    观察和硬度测试结果表明,单相固溶体在挤压后存在大量共格
    的析出相颗粒,其晶粒细化效果不如双相合金明显。时效合金
    中大量非共格析出相颗粒的存在加快ECAP晶粒细化,提高加
    工硬化速率。
Nanostructured metallic materials attract great attention from scientific research field due to their peculiar microstructures and physical, mechanical and chemical properties and the great potential for practical applications. In this paper, nanostructured Mg-5w%Al-10.3w%Ti alloy has been fabricated by mechanical alloying and ultrafme-grained bulk pure Al and Al-3%Cu alloy by equal channel angular pressing(ECAP).
    Nanostructured Mg-5w%Al-10.3w%Ti alloy was prepared by mechanical alloying with the powder mixture of Mg. Al, Ti and process control agent of polyethylene-glycol (H(OCH2CH2)nOH). Compared to conventional powder metallurgy, the mechanical property of the sample synthesized by mechanical alloying shows peculiar strain-softening. TEM analysis shows that the average grain size of the alloy is 20-30nm. Besides, several grains about 90nm and many nanotubes about 3~7nm in diameter are observed.
    ECAP experiments were conducted on pure Al and Al-3%Cu alloy. The microstructural evolution during ECAP and the influence factors, mechanichal property and the stability of the microstructure of pure Al and Al-3%Cu were investigated. The pure Al was refined from 1.0mm to 0.48μm by ECAP. The refinement saturated after EGA Pressing for 8 passes, corresponding to a maximum hardness value. It was found that such a refined microstructure is stable even after annealing at 150℃ for 1 h. The conventional compression test showed that the as-ECA Pressed sample exhibits a much higher yield strength and a higher strain hardening rate than the unECA Pressed sample. Decreasing
    
    
    temperature of EGA pressing in pure Al promotes the refinement. Equiaxed grains with high angle grain boundaries are obtained just for 4 passes by EGA Pressing at the lower temperature, in contrast to 8 passes at room temperature. Al-3%Cu alloys as-solid-solutioned and as-aged are subjected to EGA Pressing. The results of TEM analysis and hardness test showed that quantities of coherent particles precipitated in the single-phase solid solution after ECAP for 6 passes, however, its refinement effect is not as significant as that of two-phase alloy after equal passes, in which a large number of incoherent precipitates promote the refinement of ECAP and the strain hardening rate.
引文
[1] 毕见强,孙康宁,高伟等,块体纳米材料的制备及其应用,金属成形工艺,2003,21(4),35-38.
    [2] 张振忠,宋广生,杨根仓等,块状金属纳米材料的制备技术进展及展望,兵器材料科学与工艺,1999,3(10),46—50.
    [3] 居志兰,戈晓岚,许晓静,块体纳米材料的研究现状与发展思路,江苏大学学报(自然科学版),2002,23(4),47-51.
    [4] Birringer R, Gleiter H, Kalein H P, etc, Nanocrystalline materials-an approach to a novel solid structure with gas-like disorder, Phys. Lett. A, 1984, 102A(8), 365-369.
    [5] Valiev R Z, lslamgaliev R K, Alexandrov I V, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 2000, 45(2), 103-189.
    [6] Alexandrov I V, Zhu Y T, Lowe T C, etc, Consolidation of nanometer sized powders using severe plastic torsional strai ning. Nanostructured Mater, 1998,10(1),45-54.
    [7] Alexandrov I V, Zhu Y, Lowe T, etc, Microstructures and properties of nanocomposites obtained through SPTS consolidation of powders. Metall Mater Trans A,1998, 29(9), 2253-2260.
    [8] Saito Y, Tsuji N, Utsunomiya H, etc, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding process, Scripta Mater, 1998, 39(9), 1221-1227.
    [9] Saito Y, Utsunomiya H, Tsuji N, Sakai T, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Mater, 1999, 47(2), 579-583.
    [10] Tsuji N, Saito Y, Utsunomiya H, etc, Ultra-fine grained bulk steel produced by accumulative roll-bonding process, Scripta Mater, 1999,40 (7), 795-800.
    [11] Lee S H, Saito Y, Sakai T, Utsunomiya H, Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding, Materials Science and Engineering A, 2002, 325(1-2), 228-235.
    [12] Huang J Y, Zhu Y T, Jiang H, etc, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta mater, 2001,49(9), 1497-1505.
    [13] Zhu Y T, Lowe T C. Observations and issues on mechanisms of grain refinement during ECAP process, Mater Sci Eng A, 2000. A291(1-2), 46-53.
    [14] Valiev R Z. lslamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science, 2000, 45(2), 103-189.
    
    
    [15] Furukawa M, Ma Y, Horita Z, etc, In: Chandra T, Sakai T, editors. Proc. Int. Conf. On Thermomechanical Processing of Steels and Other Materials, 1997, p. 1875.
    [16] Korznikov A V, lvanisenko Yu V, Laptionok D V, etc, Influence of severe plastic deformation on structure and phase composition of carbon steel, Nanostructured Mater 1994, 4(2), 159-167.
    [17] Abdulov RZ, Valiev RZ, Krasilnikov NA, Formation of submicrometre-grained structure in magnesium alloy due to high plastic strains, J Mater Sci Lett, 1990, 9(12), 1445-1447.
    [18] Languillaume J, Chmelik F, Kapelski G. etc. Microstructures and hardness of ultrafine-grained Ni_3Al, Acta Metallurgica et Materiallia, 1993, 41(10), 2953-2962.
    [19] Korznikov A, Dimitrov O, Quivy A, etc, Influence of small amounts of boron on the structural evolution of nanocrystalline Ni_3Al during thermal treatmen, Journal de Physique IV (Colloque), 1995, 5(C7). 271-275.
    [20] Korznikov A, Dimitrov O, Korznikova G. Thermal evolution of the structure of ultra fine grained materials produced by severe plastic deformation, Annales de Chimie (Science des Materiaux), 1996, 21(6-7), 443-460.
    [21] Islamgaliev R K, Kuzel R, Obraztsova E D, etc. TEM, XRD and Raman scattering of germanium processed by severe deformation, Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 1998, A249(1-2), 152-157.
    [22] Islamgaliev R K, Kuzel R, Mikov S N, etc, Structure of silicon processed by severe plastic deformation, Mater Sci Eng A 1998;266(1-2), 205-210.
    [23] Alexandrov I V, Zhu Y, Lowe T, etc, Microstructures and properties of nanocomposites obtained through SPTS consolidation of powders, Metall Mater Trans, 1998, 29A(9), 2253-2260.
    [24] Valiev R Z, Islamgaliev R K, Kuzmina N F, etc, Strengthening and grain refinement in an Al-6061 metal matrix composite through intense plastic straining, Scripta Mater 1998, 409(1), 117-122.
    [25] Mishra R S, Valiev R Z, McFadden S X, etc, Severe plastic deformation processing and high strain rate superplasticity in an aluminum matrix composite, Scripta Mater 1999, 40(10), 1151-1155.
    [26] Agnew S R, Weertmann J R. Cylic softening of ultrafine copper, Mater Sci Eng A, 1998, 244(2), 145-153.
    [27] Vinogradov A, Kaneko Y, Kitagawa K. etc, Cyclic response of ultrafine-grained copper at constant plastic strain amplitude, Scripta Mater, 1997, 36(11 ), 1345-1351.
    [28] Galeev R M, Valiahmetov O R. Salishchev G A. Dynamic recrystallization of
    
    coarse-grained titanium alloy in the ( alpha + beta )-region, Izvestiya Akademii Nauk SSSR, Metally, 1990, n4, 97-103.
    [29] Pavlov V A, Strong plastic deformation and nature of amorphization and dispersion of crystalline systems, Phys Met and Metallogr, 1989, 67(5), 924-944.
    [30] Imayev R M, Imayev V M. Salishchev G A. Formation of submicrocrystalline structure in TiAl intermetallic compound, Journal of Materials Science, 1992, 27(16), 4465-4471.
    [31] Salishchev G A, Valiakhmetov O R, Galeyev R M. Formation ofsubmicrocrystalline structure in the titanium alloy VT8 and its influence on mechanical properties, Journal of Materials Science, 1993, 28(11), 2898-2902.
    [32] Valiev R Z, Islamgaiev R K, Alexandrov I V, bulk nanostructured materials from severe plastic deformation, Progress in materials science, 2000, 45, 103-189.
    [33] Valiev R Z, editor. Ultrafine-grained materials prepared by severe plastic deformation, Annales de Chimie. Science des Materiaux, 1996.21, p. 369.
    [34] 魏伟,陈光,大塑性变形制备纳米结构金属,稀有金属,2003,27(3),361-365.
    [35] Zhernakov V S, Latysh V V, Stolyarov, V V etc. The developing of nanostructured SPD Ti for structural use. Scripta. Mater, 2001,44 (8),1771—1774.
    [36] Sega V M. Materials processing by simple shear[J]. Materials Science and Engineering A. 1995, 197(2): 157~164.
    [37] Ferrasse S, Segal V M, Hartwig K T, et al. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion[J]. Met Mater Trans. 1997, 28A(4), 1047~1057.
    [38] Wang J, Iwahashi Y, Horita Z, et al. An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size[J]. Acta Metall Mater. 1996, 44(7), 2973~2982.
    [39] Iwahashi Y, Horita Z, Nemoto M, et al. An investigation of microstructural evolution during equal-channel angular pressing, Acta Metall Mater, 1997, 45(11 ), 4733~4741.
    [40] Nakashaima K, Horita Z, Nemoto M, etc, Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing, Acta Metall Mater. 1998, 46(5), 1589~1599.
    [41] Iwahashi Y , Horita Z , Nemoto M . etc. The process of grain refinement in equal-channel angular pressing, Acta Metall Mater. 1998, 46(9): 3317~3331.
    [42] Segal V M. Hartwig K T. Goforth R E. In situ composites processed by simple shear, Materials Science and Engineering A. 1997, 224(1-2), 107~115.
    [43] Parasiris A, Hartwig K T. Consolidation of advanced WC-Co powders, International Journal Of Refractory Metal & Hard Materials. 2000, 18(1), 23~31.
    
    
    [44] Khan Z A,Chakkingai U,Venugopal P.Journal of Materials Processing Technology, 2003,135(1),59-67.
    [45] 张小明,ECAE在镁合金加工种的应用,稀有金属快报.2002,3:25.
    [46] Wang G, Wu S D, Zuo L, etc, Microstructure, texture, grain boundaries in recrystallization regions in pure Cu ECAE samples. Materials Science and Engineering:A. 2003, 346(1-2), 83~90.
    [47] Sun P L, Yu C Y, Kao P W, Microstructural characteristics of ultrafine-grained aluminum produced by equal channel angular extrusion, Scripta Materialia, 2002, 47(6), 377~381.
    [48] Semiatin S L, Delo D P. Equal channel angular extrusion of difficult-to-work alloys, Materials and Design. 2000, 21 (4), 311~322.
    [49] Iwahashi Y, Horita Z, Nemoto M,et al. An investigation of microstructural stability in an Al-Mg alloy with submicrometer grain size, Acta Metall Mater. 1997, 45(11), 4733~4741.
    [50] Valiev R Z. Structure and mechanical properties of ultrafine-grained metals[J]. Mater Sci EngA. 1997, 234(1), 59~66.
    [51] Azushima A, Aoki K, Properties of ultrafine-grained steel by repeated shear deformation of side extrusion process, Materials Science and Engineering. 2002, 337A(1-2), 45~49.
    [52] Semiatin S L, Segal V M, Goetz R L, et al. Workability of a gamma titanium aluminide alloy during equal channel angular extrusion, Scr Mater. 1995, 33(4): 535~540.
    [53] Valiev R Z, Islamgaliev R K, Kuzmina N F, et al. Strengthening and grain refinement in an Al-6061 metal matrix composite through intense plastic straining, Scr Mater, 1999, 40(1), 117~122.
    [54] Campbell B, Edward G.. Equal channel angular extrusion of polyalkenes, Plastics,Rubber and Composites, Inst of Materials. 1999, 28(10), 467~475.
    [55] Xia Z Y, Sue H J, Rieker T P, Morphological evolution of poly(ethylene terephthalate) during equal channel angular extrusion process, Macromolecules. ACS. 2000, 33(23): 8746~8755.
    [56] Wang Z C, Prangnell P B, Microstructure refinement and mechanical properties of severely deformed Al-Mg-Li alloys, Materials Science and Engineering A, 2002, 328(1-2), 87~97.
    [57] Zenji H, Fujimami, T, etc, Equal-channel angular pressing of commercial aluminum alloys:Grain refinement, thermal stability and tensile properties, Metallurgical and Materials Trans, 2000, 31A(3), 691~701.
    
    
    [58] Dupuy L, Blandin J J. Damage sensitivity in a commercial Al alloy processed by equal channel angular extrusion, Acta Mater, 2002, 50(12), 3251~3264.
    [59] Semiatin S L, DeLo D P, Shell E B, The effect on material properties and tooling design on deformation and fracture during equal channel angular extrusion, Acta Metall, 2000, 48(8), 1841~1851.
    [60] Segal V M. Slip line solutions,deformation mode and loading history during equal channel angular extrusion, Materials Science and Engineering A, 2002, 338(1-2), 1~11.
    [61] 吴世丁,李强,姜传斌等.铜单晶过程中的剪切特征,金属学报,2000,36(6),602~607.
    [62] Berbon P B, Furukawa M, Horita Z, etc, Examination of the deformation process in equal-channel angular pressing, 2000, 601,347~352.
    [63] Dupuy L, Rauch E E Deformation paths related to equal channel angular extrusion, Materials Science and Engineering A, 2002, 337(1-2), 241~247.
    [64] Gholinia A, Prangnell.B .R Markushev M V, The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE, Acta mater, 2000, 48(5), 1115~1130.
    [65] 毕大森,张建,崔宏祥等.等通道转角挤压模具挤压力计算[J].重型机械.2001,6,34~36.
    [66] Alkora J, Rombous M, De Messemaeker J, etc, On the impossibility of multi-pass equal-channel angular drawing, Scri Mater, 2002, 47(1), 13~18.
    [67] Zhu Y T, Jiang H, Huang J, etc, A new route to bulk nanostructured metals, Metallurgical and Materials Transactions A, 2001, 32(6), 1559~1562.
    [68] Mabuchi M, Kubota K, Higashi K, Elevated temperature mechanical properties of magnesium alloys containing Mg_2Si, Materials Science and Technology, 1996, 12(1), 35~39.
    [69] V. Laurent, P. Jarry, G. Regazzoni, etc, Processing-microstructure relationships in compocast magnesium/SiC, J. Mater. Sci, 1992, 27(16), 4447-4459.
    [70] Lu L., Lai M O, Toh Y H, etc, Structure and properties of Mg-Al-Ti-B alloys synthesized via mechanical alloying. Materials Science and Engineering A, 2001, 334(1-2), 163-172.
    [71] Nakashima K; Horita Z; Nemoto M; ect. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing, 1998, 46(5), 1589-1599.
    [72] Oh S J, Kang S B, Analysis of the billet deformation during equal channel angular pressing, Material Science and Engineering A, 2003, 343(1-2), 107-115.
    
    
    [73] 毕大森,张建,崔宏祥等,等通道转角挤压模具挤压力计算,重型机械,2001,6,34-36.
    [74] Chang J Y, Yoon J S, Kim G H, Development of submicron sized grain during cyclic equal channel angular pressing, Scripta Materialia, 2001, 45(3), 347-354.
    [75] Berbon P B, Furukawa M, Horita Z, etc, Influence of pressing speed on microstructural development in equal-channel angular pressing, Metallurgical and Materials Transactions, 1999, 30A(8). 1989-1997.
    [76] Terhune S D, Swisher D L. Oh-lshi K, etc. An investigation of microstructure and grain-boundary evolution during ECA Pressing of pure aluminium, Metallurgical and Materials Transactions, 2002, 33A(7), 2173-2184.
    [77] Iwahashi Y, Horita Z, Nemoto M,etc, The process of grain refinement in equal-channel angular pressing, Acta Mater, 1998, 46(9), 3317-3331.
    [78] 胡庚祥,钱苗根,金属学,上海交通大学,上海科学技术出版社,1980,288.
    [79] Humphreys F J, Hatherly M, Pergamon, Recrystalliztion and related annealing phenomenon, Materials Science and Engineering: A, 1997,224(1-2), 221-222.
    [80] Humphreys, F. J, Local lattice rotations at second phase particles in deformed metals. Acta Metallurgica, 1979, 27(12), 1801-1814.
    [81] Apps P J, Bowen J R, Prangnell P B, The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing, Acta Materialia, 2003, 51(10), 2811-2822.
    [82] 哈宽富,金属力学性质的微观理论,北京,科学出版社,1983,382—383.
    [83] 王笑天,金属材料学,北京,机械工业出版社,1987,250.
    [84] 胡庚祥,金属学,上海,上海科学技术出版社,1980,304—305.
    [85] Murayama M, Horita Z, Hono K, Microstructure of two-phase Al-1.7 at% Cu alloy deformed by equal-channel angular pressing, Acta mater, 2001, 49(I), 21-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700