降钙素基因相关肽对大鼠运动性疲劳的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨CGRP对大鼠运动性疲劳的影响。
     方法:成年健康雄性SD大鼠,依据动物运动至力竭的时间剔除运动能力太差和运动能力太强的大鼠依据不同的预处理措施随机分成五组:空白对照组、PBS预处理组、CGRP预处理组(降钙素基因相关肽,calcitonin gene-related peptide, CGRP)、CAP预处理组(辣椒素,capsaicin, CAP)、CAP预处理+CGRP预处理组,各组动物在安静状态时、运动80分钟时和运动至力竭后即刻处死。然后用免疫组化和放射免疫方法检测上述条件下大鼠腓肠肌神经肌肉接头CGRP的表达变化;用HE染色观察上述条件下运动性疲劳大鼠骨骼肌形态结构的变化;用化学比色的方法检测上述条件下骨骼肌超氧化物歧化酶(superoxide dismutase, SOD)、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-PX)、过氧化氢酶(catalase, CAT)及丙二醛(malondialdehyde, MDA)的变化。
     结果:①给予CGRP预处理后,大鼠运动至力竭的时间明显缩短(P<0.05),而给予CAP预处理后大鼠运动至力竭的时间明显延长(P<0.05)。②CGRP免疫组织化学和放射免疫结果显示:CGRP的免疫阳性产物在肌纤维纵切面上,其形状为椭圆形或棒状,主要分布于肌纤维膜的表面。给予CGRP预处理后,大鼠腓肠肌神经肌肉接头CGRP的表达明显升高(P<0.05),而给予CAP预处理后,大鼠腓肠肌神经肌肉接头CGRP的表达明显下降(P<0.05)。③HE染色显示:安静状态下各组骨骼肌的形态结构未见明显改变;运动80min时与安静状态下相比,除CGRP预处理组骨骼肌的细胞核明显增多、增大外,其余各组均无明显改变;力竭运动后即刻与安静状态下相比除CAP预处理组无明显改变外,其余各组骨骼肌的细胞核均明显增多、增大。④化学比色结果显示:给予CGRP预处理后,大鼠骨骼肌中SOD、GSH-PX和CAT的活性明显下降(P<0.05), MDA的含量明显上升(P<0.05),而给予CAP预处理后大鼠骨骼肌中SOD、GSH-PX和CAT的活性明显上升(P<0.05),MDA的含量明显下降(P<0.05)。
     小结:CGRP加剧了运动性疲劳的产生。
     目的:检测CGRP对运动性疲劳大鼠AChE的影响,探讨CGRP对运动性疲劳的作用机制。
     方法:实验动物分组及处理同第一部分。通过免疫组化和组织化学的方法检测不同干预措施条件下运动性疲劳大鼠腓肠肌神经肌肉接头AChE的表达情况和活性变化,并用酶联免疫吸附分析和化学比色法对AChE的表达和活性改变进行定量分析。并对大鼠腓肠肌神经肌肉接头CGRP的浓度与AChE的表达和活性进行相关分析和回归分析。
     结果:①AChE免疫组织化学、酶联免疫吸附分析、组织化学和化学比色结果显示:给予CGRP预处理后,大鼠腓肠肌神经肌肉接头AChE的表达和活性显著降低(P<0.05)。而给予CAP预处理后大鼠腓肠肌神经肌肉接头AChE的表达和活性显著升高(P<0.05)。②相关分析显示大鼠腓肠肌神经肌肉接头CGRP的表达量与AChE的表达呈负性相关,其中安静状态组r=0.78(p=0.000),80分钟组r=0.92(p=0.000),力竭组r=0.88 (p=0.000);CGRP的表达量与AChE的活性也呈负性相关,其中安静状态组r=0.81(p=0.000),80分钟组r=0.92(p=0.000),力竭组r=0.89(p=0.000)。回归分析显示AChE表达的下降在安静状态组有61%(r2=0.61),在80分钟组有85%(r2=0.85),在力竭组有78%(r2=0.78)的可能是由CGRP的变化引起。AChE活性的下降在安静组有66%(r2=0.66),在80分钟组有84%(r2=0.84),在力竭组有79%(r2=0.79)的可能是由CGRP的变化引起。提示CGRP浓度的改变与大鼠腓肠肌神经肌肉接头AChE表达和活性的下降呈负相关。
     小结:CGRP通过调节大鼠腓肠肌神经肌肉接头AChE的表达和活性促进了运动性疲劳的产生。
Objective To study the effects of CGRP on the exercise-induced fatigue of rats.
     Methods Healthy adult male Sprague-Dawley rats were randomly divided into five groups according to the different pretreatment:the blank control group, the PBS pretreatment group, the CGRP pretreatment group, the CAP pretreatment group, the CAP pretreatment+CGRP pretreatment group. The rats were sacrificed at the resting state, the exercise to 80 min and the exercise to exhaustion, Then the immunohistochemistry and radioimmunoassay was used to detecting the expression of CGRP at the condition of the different pretreatment, the HE staining was used to detecting the change of morphous formation of skeletal muscle at the condition of the different pretreatment, the chemistry colorimetric method was used to detecting the change of superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde at the conditions of the different pretreatment.
     Results①the time of the treadmill exercise to exhaustion was significantly decurtated after CGRP pretreatment(P<0.05), and the time of the treadmill exercise to exhaustion was significantly prolonged after CAP pretreatment(P<0.05).②Immunohistochemistry and radioimmunoassay showed that CGRP immunopositive products were elliptical or rod-shape at longitudinal section of muscle fiber. The expression of CGRP was significantly increased after the CGRP pretreatment(P<0.05), and the expression of CGRP was significantly decreased after the CAP pretreatment(P<0.05).③HE staining showed that there were no obvious differences in morphous constitution of skeletal muscle in all groups at the resting state. There were also no obvious changes in morphous constitution of skeletal muscle at the other groups at the exercise to 80 min than at the resting state, excluding cell nucleus of skeletal muscle were significantly increased and augmented at the CGRP pretreatment group, Cell nucleus of skeletal muscle were significantly increased and augmented in all other groups, while there were no obvious changes in morphous constitution of skeletal muscle at the CAP pretreatment group at exercise to exhaustion than at the resting state.④The chemistry colorimetric showed that the content of MDA was significantly increased(P<0.05), and the activity of SOD, GSH-PX, CAT was significantly decreased after the CGRP pretreatment(P<0.05), While the content of MDA was significantly decreased(P<0.05), and the activity of SOD, GSH-PX, CAT was significantly increased after the CAP pretreatment(P<0.05).
     Conclusion The CGRP intensified the generation of exercise-induced fatigue
     Objective To explore the effects of CGRP on the AChE at exercise-induced fatigued rat neuromuscular junctions.
     Methods The animals and the experimental methods were the same as in the primary part. The immunohistochemistry and histochemistry was used to detecting the changes of the expression and activity of AChE. Then the expression and activity of AChE were also detected by enzyme linked immunoadsorbent assay and chemistry colorimetric method. Then linear correlation and linear regression were tested between the CGRP concentration and the expression or activity of AChE.
     Results①Immunohistochemistry, enzyme linked immunoadsorbent assay, histochemistry and chemistry colorimetric method showed that the expression and activity of AChE at the gastrocnemius neuromuscular junction of rat was significantly decreased after CGRP pretreatment(P<0.05), and the expression and activity of AChE of the gastrocnemius neuromuscular junction of rat was significantly increased after the CAP pretreatment(P<0.05).②The linear correlation and regression analysis showed there was negativity correlation between the CGRP concentration and the expression AChE or and activity of AChE (resting state r=0.78; exercise to 80 min r=0.92; exercise to exhaustion r=0.88 respectively).
     Conclusion Our study suggests that CGRP promoted the production of exercise-induced fatigue through the regulation the expression of AChE at the gastrocnemius neuromuscular junction of rat.
引文
[1]Magal M, Dumke CL, Urbiztondo ZG, Cavill MJ, Triplett NT, Quindry JC, McBride JM, Epstein Y. Relationship between serum creatine kinase activity following exercise-induced muscle damage and muscle fibre composition. J Sports Sci.2010; 13:1-10.
    [2]Carmichael MD, Davis JM, Murphy EA, Carson JA, Van Rooijen N, Mayer E, Ghaffar A. Role of brain macrophages on IL-lbeta and fatigue following eccentric exercise-induced muscle damage. Brain Behav Immun.2010 Jan 4.
    [3]Murphy EA, Davis JM, Carmichael MD, Mayer EP, Ghaffar A. Benefits of oat beta-glucan and sucrose feedings on infection and macrophage antiviral resistance following exercise stress. Am J Physiol Regul Integr Comp Physiol.2009; 297(4): R1188-1194.
    [4]Banks L, Sasson Z, Busato M, Goodman JM. Impaired left and right ventricular function following prolonged exercise in young athletes:influence of exercise intensity and responses to dobutamine stress. J Appl Physiol.2010; 108(1): 112-119.
    [5]Kim SY, Jun TW, Lee YS, Na HK, Surh YJ, Song W. Effects of exercise on cyclooxygenase-2 expression and nuclear factor-kappaB DNA binding in human peripheral blood mononuclear cells. Ann N Y Acad Sci.2009; 1171:464-471.
    [6]Philippou A, Maridaki M, Bogdanis G, Halapas A, Koutsilieris M. Changes in the mechanical properties of human quadriceps muscle after eccentric exercise. In Vivo.2009; 23(5):859-865.
    [7]Roelands B, Meeusen R. Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med.2010; 40(3):229-246.
    [8]Matsubara Y, Shimizu K, Tanimura Y, Miyamoto T, Akimoto T, Kono I. Effect of acupuncture on salivary immunoglobulin A after a bout of intense exercise. Acupunct Med.2010; 28(1):28-32.
    [9]Hiura M, Mizuno T, Fujimoto T. Cerebral oxygenation in the frontal lobe cortex during incremental exercise tests:the regional changes influenced by volitional exhaustion. Adv Exp Med Biol.2010; 662:257-263.
    [10]Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev.2001; 81(4):1725-1789.
    [11]Sieck GC, Prakash YS. Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms. Adv Exp Med Biol.1995; 384: 83-100.
    [12]Pope C, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors:uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol.2005; (19):433-446.
    [13]Stephens J A, Taylor A. Fatigue of Maintained Voluntary Muscle contraction in Man. J Physiol.1972; 22(1):1-18.
    [14]殷劲,杨范昌,樊开明.疲劳时肌肉中的ACh量变.中国运动医学杂志.1987;6(1):11-15.
    [15]Ohshima T, Fujii Y, Toyooka H, Udagawa T, Yokoyama K, Amaha K. Impairment of neuromuscular transmission in fatigued canine diaphragm. Masui. 1990; 39(10):1288-1293.
    [16]Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison JF, Kelly JS, Evans RM, et al. Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and of eight other species. J. Neurosci.1984; 4(12):3101-3111.
    [17]Takami K, Hashimoto K, Uchida S, Tohyama M, Yoshida H. Effect of calcitonin gene-related peptide on the cyclic AMP level of isolated mouse diaphragm, Jpn. J. Pharmacol.1986; 42 (3):345-350.
    [18]Kashihara Y, Sakaguchi M, Kuno M. Axonal transport and distribution of endogenous calcitonin gene-related peptide in rat peripheral nerve. J Neurosci. 1989; 9(11):3796-3802.
    [19]Blesch A, Tuszynski MH. GDNF gene delivery to injured adult CNS motor neurons promotes axonal growth, expression of the trophic neuropeptide CGRP, and cellular protection. J Comp Neurol.2001; 436(4):399-410.
    [20]Poyner DR. Calcitonin gene-related peptide:multiple actions, multiple receptors. Pharmacol Ther.1992; 56(1):23-51.
    [21]Lu B, Fu WM.Regulation of postsynaptic responses by calcitonin gene related peptide and ATP at developing neuromuscular junctions. Can J Physiol Pharmacol.1995; 73(7):1050-1060.
    [22]Todd KJ, Robitaille R. Neuron-glia interactions at the neuromuscular synapse. Novartis Found Symp.2006; 276:222-229.
    [23]Van der Kloot W, Benjamin WB, Balezina OP. Calcitonin gene-related peptide acts presynaptically to increase quantal size and output at frog neuromuscular junctions. J Physiol.1998; 507 (Pt 3):689-695.
    [24]Caldero J, Tarabal O, Casanovas A, Ciutat D, Casas C, Llado J, Esquerda JE. Excitotoxic motoneuron disease in chick embryo evolves with autophagic neurodegeneration and deregulation of neuromuscular innervation. J Neurosci Res.2007; 85(12):2726-2740.
    [25]Naves LA, Van der Kloot W. Repetitive nerve stimulation decreases the acetylcholine content of quanta at the frog neuromuscular junction. J Physiol. 2001; 532(Pt 3):637-647.
    [26]Uchida S, Yamamoto H, Iio S, Matsumoto N, Wang XB, Yonehara N, Imai Y, Inoki R, Yoshida H. Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem.1990; 54 (3):1000-1003.
    [27]Fernandez HL, Ross GS, Nadelhaft I. Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles. Brain Research.1999; 844(1-2):83-97.
    [28]Ringer C, Weihe E, Schutz B. Pre-symptomatic alterations in subcellular betaCGRP distribution in motor neurons precede astrogliosis in ALS mice. Neurobiol Dis.2009; 35(2):286-295.
    [29]Lu JT, Son YJ, Lee J, Jetton TL, Shiota M, Moscoso L, Niswender KD, Loewy AD, Magnuson MA, Sanes JR, Emeson RB. Mice lacking alpha-calcitonin gene-related peptide exhibit normal cardiovascular regulation and neuromuscular development. Mol Cell Neurosci.1999; 14(2):99-120.
    [30]Gardiner SM, Compton AM, Kemp P A, Bennett T, Foulkes R, Hughes B. Haemodynamic effects of human a-calcitonin gene-related peptide following administration of endothelin-1 or N-nitro-Larginine methyl ester in conscious rats. Br J Pharmacology.1991; (103):1256-1262.
    [31]Homonko DA, Theriault E. Calcitonin gene-related peptide is increased in hindlimb motoneurons after exercise. Int J Sports Med.1997; 18:1-7.
    [32]Bell D, McDermott BJ. Calcitonin gene-related peptide in the cardio-vascular system:Characterization of receptor populations and their (patho) physiological significance. Pharmacol Rev.1996; 48(2):253-288.
    [33]Bedford T G, Tipton C M, Wilson N C, Oppliger R A, Gisolfi C V. Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol.1979; 47(6):1278-1283.
    [34]戚正本.多核细胞的形成机理及其运动医学意义.体育成人教育学刊.2007;23(6):49-51.
    [35]包克,曹建民,赵德岭,高联峰,祈兵,韩治国.中药对长期运动训练大鼠骨骼肌自由基代谢影响的研究.沈阳体育学院学报.2006;25(5):57-59.
    [36]刘晓锋,王蕴红,洪峰,赵明华,张露芬.针刺足三里对运动大鼠自由基代谢影响的研究.北京体育大学学报.2006;29(6):793-798.
    [37]任昭君.不同强度的运动训练对大鼠骨骼肌自由基的影响.中国应用生理学杂志.2006;22(3):367-368.
    [38]Liang Y, Fang JQ, Wang CX, Ma GZ. Effects of transcutaneous electric acupoint stimulation on plasma SOD and MDA in rats with sports fatigue. Zhen Ci Yan Jiu.2008;33(2):120-123.
    [39]Effect of exercise on blood oxidant/antioxidant markers in standardbred horses: comparison between treadmill and race track tests. Moffarts B, Kirschvink N, Art T, Pincemail J, Lekeux P. Equine Vet J Suppl.2006; (36):254-257.
    [40]Lu HK, Hsieh CC, Hsu JJ, Yang YK, Chou HN. Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. Eur
    J Appl Physiol.2006; 98(2):220-226.
    [40]Akova B, Surmen-Gur E, Gur H, Dirican M, Sarandol E, Kucukoglu S. Exercise-induced oxidative stress and muscle performance in healthy women: role of vitamin E supplementation and endogenous oestradiol. Eur J Appl Physiol.2001; 84(1-2):141-147.
    [41]Powers SK, Lennon SL. Analysis of cellular responses to free radicals:focus on exercise and skeletal muscle. Proc Nutr Soc.1999; 58(4):1025-1033.
    [42]Liang Y, Fang JQ, Wang CX, Ma GZ. Effects of transcutaneous electric acupoint stimulation on plasma SOD and MDA in rats with sports fatigue. Zhen Ci Yan Jiu.2008; 33(2):120-123.
    [43]Luczaj W, Zapora E, Szczepanski M, Wnuczko K, Skrzydlewska E. Polyphenols action against oxidative stress formation in endothelial cells. Acta Pol Pharm. 2009; 66(6):617-24.
    [44]Bayraktar N, Kilic S, Bayraktar MR, Aksoy N.Lipid peroxidation and antioxidant enzyme activities in cancerous bladder tissue and their relation with bacterial infection:a controlled clinical study. J Clin Lab Anal.2010; 24(1): 25-30.
    [45]Kim KC, Kang KA, Zhang R, Piao MJ, Heo YJ, Chae S, Kim GY, Moon JY, Yoo BS, Hyun JW. Risk reduction of ethyl acetate fraction of Empetrum nigrum var. japonicum via antioxidant properties against hydrogen peroxide-induced cell damage. J Toxicol Environ Health A.2009; 72(21-22):1499-508.
    [46]Naziroglu M, Cihangir Uguz A, Kocak A, Bal R. Acetaminophen at different doses protects brain microsomal Ca2+-ATPase and the antioxidant redox system in rats. J Membr Biol.2009; 231(2-3):57-64.
    [47]She F, Sun W, Mao JM, Wang X. Calcitonin gene-related peptide gene therapy suppresses reactive osygen species in the pancreas and prevents mice from autoimmune diabetes. Sheng Li Xue Bao.2003; 55(6):625-632.
    [48]Torgan CE, Kraus WE. Regulation of type Ⅱ adenylyl cyclase mRNA in rabbit skeletal muscle by chronic motor nerve pacing. Am. J. Physiol.1996; 271(2 Pt 1): E253-260.
    [49]Fleming NW, Lewis BK, White DA, Dretchen KL. Acute effects of calcitonin gene-related peptide on the mechanical and electrical responses of the rat hemidiaphragm. J Pharmacol Exp Ther.1993; 265(3):1199-1204.
    [50]Matsumoto N, Uchida S, Wang XB, Yoshida H. Effect of denervation of the phrenic nerve on the action of calcitonin gene-related peptide in rat diaphragm. Life Sci.1990; 47(6):547-555.
    [1]Tsim KW, Leung KW, Mok KW, Chen VP, Zhu KY, Zhu JT, Guo AJ, Bi CW, Zheng KY, Lau DT, Xie HQ, Choi RC. Expression and Localization of PRiMA-linked globular form acetylcholinesterase in vertebrate neuromuscular junctions. J Mol Neurosci.2010; 40(1-2):40-46.
    [2]Girard E, Bernard V, Minic J, Chatonnet A, Krejci E, Molgo J. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sci.2007; 80(24-25):2380-2385.
    [3]Blomstrand E. Amino acids and central fatigue. Amino Acids.2001; 20(1):25-34.
    [4]Gajsek N, Jevsek M, Mars T, Mis K, Pirkmajer S, Brecelj J, Grubic Z. Synaptogenetic mechanisms controlling postsynaptic differentiation of the neuromuscular junction are nerve-dependent in human and nerve-independent in mouse C2C12 muscle cultures. Chem Biol Interact.2008; 175(1-3):50-57.
    [5]Sigoillot SM, Bourgeois F, Lambergeon M, Strochlic L, Legay C. ColQ controls postsynaptic differentiation at the neuromuscular junction.J Neurosci.2010; 30(1):13-23.
    [6]Rotundo RL, Ruiz CA, Marrero E, Kimbell LM, Rossi SG, Rosenberry T, Darr A, Tsoulfas P.Assembly and regulation of acetylcholinesterase at the vertebrate neuromuscular junction. Chem Biol Interact.2008; 175(1-3):26-29.
    [7]Liu Y, Padgett D, Takahashi M, Li H, Sayeed A, Teichert RW, Olivera BM, McArdle JJ, Green WN, Lin W. Essential roles of the acetylcholine receptor gamma-subunit in neuromuscular synaptic patterning. Development.2008; 135(11):1957-1967.
    [8]Siow NL, Xie HQ, Choi RC, Tsim KW. ATP induces the post-synaptic gene expression in neuron-neuron synapses:Transcriptional regulation of AChE catalytic subunit. Chem Biol Interact.2005; 157-158:423-426.
    [9]Rotundo RL, Rossi SG, Kimbell LM, Ruiz C, Marrero E. Targeting acetylcholinesterase to the neuromuscular synapse. Chem Biol Interact.2005; 157-158:15-21.
    [10]Geng L, Qian YK, Madhavan R, Peng HB. Transmembrane mechanisms in the assembly of the postsynaptic apparatus at the neuromuscular junction. Chem Biol Interact.2008; 175(1-3):108-112.
    [11]Girard E, Bernard V, Camp S, Taylor P, Krejci E, Molgo J. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase. J Mol Neurosci.2006; 30(1-2):99-100.
    [12]Anglister L, Etlin A, Finkel E, Durrant AR, Lev-Tov A. Cholinesterases in development and disease. Chem Biol Interact.2008; 175(1-3):92-100.
    [13]Orndorff RL, Warnement MR, Mason JN, Blakely RD, Rosenthal SJ. Quantum dot ex vivo labeling of neuromuscular synapses. Nano Lett.2008; 8(3):780-785.
    [14]Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol,1993; 41(1):31-91.
    [15]Soreq H, Seidman S. Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci.2001; 2(4):294-302.
    [16]Pope C, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors:uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol.2005; (19):433-446.
    [17]Stephens JA, Taylor A. Fatigue of Maintained Voluntary Muscle contraction in Man. J. Physiol.1972; 22(1):1-18.
    [18]殷劲,杨范昌,樊开明.疲劳时肌肉中的ACh量变.中国运动医学杂志.1987;6(1):11-15.
    [19]Sieck G.C, Prakash Y S. Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms. Adv Exp Med Biol.1995; (384): 83-100.
    [20]Fontaine B, Klarsfeld A, Hokfelt T, Changeux JP. Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett.1986; 71(1):59-65.
    [21]Lu B, Fu WM, Greengard P, Poo MM. Calcitonin gene-related peptide potentiates synaptic responses at developing neuromuscular junction. Nature, 1993; 363(6424):76-79.
    [22]Mulle C, Benoit P, Pinset C, Roa M, Changeux JP. Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cells. Proc. Natl. Acad. Sci. USA.1988; 85(15):5728-32.
    [23]Torgan CE, Kraus WE. Regulation of type II adenylyl cyclase mRNA in rabbit skeletal muscle by chronic motor nerve pacing. Am. J. Physiol.1996; 271(2 Pt 1): E253-260.
    [24]Takami K, Kawai Y, Uchida S, Tohyama M, Shiotani Y, Yoshida H, Emson PC, Girgis S, Hillyard CJ, MacIntyre I. Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci Lett.1985; 60(2):227-230.
    [25]Fleming NW, Lewis BK, White DA, Dretchen KL. Acute effects of calcitonin gene-related peptide on the mechanical and electrical responses of the rat hemidiaphragm. J Pharmacol Exp Ther.1993; 265(3):1199-1204.
    [26]Takami K, Hashimoto K, Uchida S, Tohyama M, Yoshida H. Effect of calcitonin gene-related peptide on the cyclic AMP level of isolated mouse diaphragm, Jpn. J. Pharmacol.1986; 42 (3):345-350.
    [27]Boudreau-Larivier C, Jasmin BJ. Calcitonin gene-related peptide decreases expression of acetylcholinesterase in mammalian myotubes. FEBS Lett.1999; (444):22-26.
    [28]Fernandez HL, Hodges-Savola CA. Physiological regulation of G4 AChE in fast-twitch muscle:effects of exercise and CGRP. J Appl Physiol.1996; 80(1): 357-362.
    [29]Siow NL, Choi RC, Cheng AW, Jiang JX, Wan DC, Zhu SQ, Tsim KW. A cyclic AMP-dependent pathway regulates the expression of acetylcholinesterase during myogenic differentiation of C2C12 cells. J Biol Chem.2002; 277(39): 36129-36136.
    [30]Xie HQ, Choi RC, Leung KW, Siow NL, Kong LW, Lau FT, Peng HB, Tsim KW. Regulation of a transcript-encoding the proline-rich membrane anchor (prima) of globular muscle acetylcholinesterase:the suppressive roles of myogenesis and innervating nerves, the Journal of Biological Chemistry.2007; 282(16):1-18.
    [31]Choi RC, Yung LY, Dong TT, Wan DC, Wong YH, Tsim KW. The calcitonin gene-related peptide-induced acetylcholinesterase synthesis in cultured chick myotubes is mediated by cyclic AMP. J Neurochem.1998; 71(1):152-160.
    [32]Boudreau-Lariviere C, Jasmin BJ. Calcitonin gene-related peptide decreases expression of acetylcholinesterase in mammalian myotubes. FEBS Lett.1999; 444 (1):22-26.
    [33]Aldunate R, Casar JC, Brandan E, Inestrosa NC. Structural and functional organization of synaptic acetylcholinesterase. Brain Research.2004; 47(1-3): 96-104.
    [34]Mis K, Mars T, Jevsek M, Strasek H, Golicnik M, Brecelj J, Komel R, King M P, Miranda A F, Grubic Z. Expression and distribution of acetylcholinesterase among the cellular components of the neuromuscular junction formed in human myotube in vitro. Chem Biol Interact.2005; (157-158):29-35.
    [35]Rotundo RL. Expression and localization of acetylcholinesterase at the neuromuscular junction. J Neurocytol.2003; 32(5-8):743-766.
    [36]Taylor P, Radic Z. The cholinesterases:from genes to proteins. Annu Rev Pharmacol Toxicol.1994; 34:281-320.
    [37]Tsim KW, Barnard EA.The signaling pathways mediated by P2Y nucleotide receptors in the formation and maintenance of the skeletal neuromuscular junction. Neurosignals.2002; 11(1):58-64.
    [38]Nogueira A, Campos M, Soares-Oliveira M, Estevao-Costa J, Silva P, Carneiro F, Carvalho JL. Histochemical and immunohistochemical study of the intrinsic innervation in colonic dysganglionosis. Pediatr Surg Int.2001; 17(2-3):144-151.
    [39]Sketelj J, Crne-Finderle N, Strukelj B, Trontelj JV, Pette D. Acetylcholinesterase mRNA level and synaptic activity in rat muscles depend on nerve-induced pattern of muscle activation. J Neurosci.1998; 18(6):1944-1952.
    [40]Pregelj P, Sketelj J. Role of load bearing in acetylcholinesterase regulation in rat skeletal muscles. J Neurosci Res.2002; 67(1):114-121.
    [41]Lomo T, Massoulie J, Vigny M. Stimulation of denervated rat soleus muscle with fast and slow activity patterns induces different expression of acetylcholinesterase molecular forms. J. Neurosci.1985; 5(5):1180-1187.
    [42]Fernandez HL, Hodges-Savola CA. Physiological regulation of G4 AChe in fast-twitch muscle:effects of exercise and CGRP. J Appl Physiol.1996; 80(1): 357-362.
    [43]Rieger F, Koenig J, Vigny M. Spontaneous contractile activity and the presence of the 16 S form of acetylcholinesterase in rat muscle cells in culture:reversible suppressive action of tetrodotoxin. Dev Biol.1980; 76(2):358-365.
    [44]Fernandez HL, Patterson MR, Duell MJ. Neurotrophic control of 16S acetylcholinesterase from mammalian skeletal muscle in organ culture. J. Neurobiol.1980; 11(6):557-570.
    [45]Collins PL, Younkin SG. Effect of denervation on the molecular forms of acetylcholinesterase in rat diaphragm. J. Biol. Chem.1982; 257(22): 13638-13644.
    [46]Gupta RC, Misulis KE, Dettbarn WD. Changes in the cholinergic system of the rat sciatic nerve and skeletal muscle following suspension-induced disuse. Exp. Neural.1985; 89(3):622-633.
    [47]Duysen EG., Stribley GA, Fry DL, Hinrichs SH, Lockridge O. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet:phenotype of the adult acetylcholinesterase defcient mouse. Brain Res Dev Brain Res.2002; 137(1):43-54.
    [48]Xie W, Stribley JA, Chatonnet A, Wilder PJ, Rizzino A, Mccomb RD, Taylor P, Hinrichs SH, Lockridge O. Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. J. Pharmacol. Exp. Ther.2000; 293(3):896-902.
    [49]Ohno K, Engel AG., Brengman JM., Shen XM, Heiden-Reich F, Vincent A, Milone M, Tan E, Demirici M, Walsh P, Nakano S, Akiguchi I. The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann.Neurol.2000; 47(2):162-170.
    [50]Chau DT, Rada P, Kosloff RA, Taylor JL, Hoebel BG.. Nucleus accumbens muscarinic receptors in the control of behavioral depression:antidepressant-like effects of local M1 antagonist in the Porsolt swim test. Neuroscience.2001; 104(3):791-798.
    [51]马玉兰,胡利民,史丽萍等.“养肝柔筋方”对大鼠耐运动性疲劳能力和血清、股四头肌AChE活性的影响.天津中医.2002;19(2):46-48.
    [1]Vollestad N K. Measurement of human muscle fatigue. Journal of Neuroscience Methods.1997; (74):219-227.
    [2]Hiura M, Mizuno T, Fujimoto T. Cerebral oxygenation in the frontal lobe cortex during incremental exercise tests:the regional changes influenced by volitional exhaustion. Adv Exp Med Biol.2010; 662:257-263.
    [3]Roelands B, Meeusen R. Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med.2010; 40(3):229-246.
    [4]Dehner C, Schmelz A, Volker HU, Pressmar J, Elbel M, Kramer M.Intramuscular pressure, tissue oxygenation, and muscle fatigue of the multifidus during isometric extension in elite rowers with low back pain. J Sport Rehabil.2009; 18(4): 572-581.
    [5]Nybo L. CNS fatigue provoked by prolonged exercise in the heat. Front Biosci (Elite Ed).2010; 2:779-792.
    [6]Huang CC, Lin TJ, Lu YF, Chen CC, Huang CY, Lin WT. Protective effects of L-arginine supplementation against exhaustive exercise-induced oxidative stress in young rat tissues. Chin J Physiol.2009; 52(5):306-315.
    [7]Wen G, Hui W, Dan C, Xiao-Qiong W, Jian-Bin T, Chang-Qi L, De-Liang L, Wei-Jun C, Zhi-Yuan L, Xue-Gang L. The effects of exercise-induced fatigue on acetylcholinesterase expression and activity at rat neuromuscular junctions. Acta Histochem Cytochem.2009; 42(5):137-142.
    [8]Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Endurance exercise causes mitochondrial and oxidative stress in rat liver:effects of a combination of mitochondrial targeting nutrients.Life Sci.2010; 86(1-2):39-44.
    [9]Banks L, Sasson Z, Busato M, Goodman JM. Impaired left and right ventricular function following prolonged exercise in young athletes:influence of exercise intensity and responses to dobutamine stress. J Appl Physiol.2010; 108(1): 112-119.
    [10]Ljubicic V. Acute and chronic contractile activity-induced adaptations in muscle and mitochondrial function. Appl Physiol Nutr Metab.2009; 34(4):799-800.
    [11]Kim SY, Jun TW, Lee YS, Na HK, Surh YJ, Song W. Effects of exercise on cyclooxygenase-2 expression and nuclear factor-kappaB DNA binding in human peripheral blood mononuclear cells. Ann N Y Acad Sci.2009; 1171:464-71.
    [12]Jammes Y, Steinberg J G, Delliaux S, Bregeon F. Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med.2009; 266(2):196-206.
    [13]Yatabe Y, Miyakawa S, Ohmori H, Mishima H, Adachi T. Effects of taurine administration on exercise. Adv Exp Med Biol.2009; 643:245-252.
    [14]Balthazar CH, Leite LH, Ribeiro RM, Soares DD, Coimbra CC. Effects of blockade of central dopamine D(1) and D(2) receptors on thermoregulation, metabolic rate and running performance. Pharmacol Rep.2010; 62(1):54-61.
    [15]Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, Marcos RL, Ramos L, Bjordal JM. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med.2009; 41(8):572-577.
    [16]Kim SY, Jun TW, Lee YS, Na HK, Surh YJ, Song W. Effects of exercise on cyclooxygenase-2 expression and nuclear factor-kappaB DNA binding in human peripheral blood mononuclear cells. Ann N Y Acad Sci.2009; 1171:464-471.
    [17]Davies RC, Rowlands AV, Eston RG. Effect of exercise-induced muscle damage on ventilatory and perceived exertion responses to moderate and severe intensity cycle exercise. Eur J Appl Physiol.2009;107(1):11-19.
    [18]Murphy EA, Davis JM, Carmichael MD, Mayer EP, Ghaffar A. Benefits of oat beta-glucan and sucrose feedings on infection and macrophage antiviral resistance following exercise stress. Am J Physiol Regul Integr Comp Physiol. 2009; 297(4):R1188-1194.
    [19]Jammes Y, Steinberg JG, Delliaux S, Bregeon F. Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med.2009; 266(2):196-206.
    [20]Noakes TD, St Clair Gibson A. Logical limitations to the "catastrophe"models of fatigue during exercise in humans. Br J SportsMed,2004,38:648-649.
    [21]马丽玲,张万山,沈玲华.大鼠神经肌肉接点N型乙酰胆碱受体密度测定的ELISA法.井冈山医专学报.2004(6):65-67.
    [22]Ollivier-Lanvin K, Lemay MA, Tessler A, Burns AS. Neuromuscular transmission failure and muscle fatigue in ankle muscles of the adult rat following spinal cord injury. J Appl Physiol.2009; 107:1190-1194.
    [23]Ollivier-Lanvin K, Lemay MA, Tessler A, Burns AS. Neuromuscular transmission failure and muscle fatigue in ankle muscles of the adult rat after spinal cord injury. J Appl Physiol.2009; 107(4):1190-1194.
    [24]Kaja S, van de Ven RC, van Dijk JG, Verschuuren JJ, Arahata K, Frants RR, Ferrari MD, van den Maagdenberg AM, Plomp JJ. Severely impaired neuromuscular synaptic transmission causes muscle weakness in the Cacnala-mutant mouse rolling Nagoya. Eur J Neurosci.2007; 25(7):2009-2020.
    [25]Trotta N, Rodesch CK, Fergestad T, Broadie K. Cellular bases of activity-dependent paralysis in Drosophila stress-sensitive mutants. J Neurobiol. 2004; 60(3):328-347.
    [26]Pope C, Karanth S, Liu J. Pharmacology and toxicology of cholinesterase inhibitors:uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol.2005; (19):433-446.
    [27]Stephens JA, Taylor A. Fatigue of Maintained Voluntary Muscle contraction in Man. J. Physiol.1972; 22(1):1-18.
    [28]殷劲,杨范昌,樊开明.疲劳时肌肉中的ACh量变.中国运动医学杂志.1987;6(1):11-15.
    [29]Sieck G.C, Prakash YS. Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms. Adv Exp Med Biol.1995; (384): 83-100.
    [30]Ohshima T, Fujii Y, Toyooka H, Udagawa T, Yokoyama K, Amaha K. Impairment of neuromuscular transmission in fatigued canine diaphragm. Masui. 1990; 39(10):1288-1293.
    [31]Loizzo MR, Tundis R, Menichini F, Menichini F. Natural products and their derivatives as cholinesterase inhibitors in the treatment of neurodegenerative disorders:an update. Curr Med Chem.2008; 15(12):1209-28.
    [32]Wszelaki N, Kuciun A, Kiss AK. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm.2010; 60(1):119-128.
    [33]Bernardi CC, Ribeiro Ede S, Cavalli IJ, Chautard-Freire-Maia EA, Souza RL. Amplification and deletion of the ACHE and BCHE cholinesterase genes in sporadic breast cancer. Cancer Genet Cytogenet.2010; 197(2):158-165.
    [34]Alptuzun V, Prinz M, Horr V, Scheiber J, Radacki K, Fallarero A, Vuorela P, Engels B, Braunschweig H, Erciyas E, Holzgrabe U. Interaction of (benzylidene-hydrazono)-1,4-dihydropyridines with beta-amyloid, acetylcholine, and butyrylcholine esterases. Bioorg Med Chem.2010; 18(5):2049-2059.
    [35]Gajsek N, Jevsek M, Mars T, Mis K, Pirkmajer S, Brecelj J, Grubic Z. Synaptogenetic mechanisms controlling postsynaptic differentiation of the neuromuscular junction are nerve-dependent in human and nerve-independent in mouse C2C12 muscle cultures. Chem Biol Interact.2008; 175(1-3):50-57.
    [36]Sigoillot SM, Bourgeois F, Lambergeon M, Strochlic L, Legay C.ColQ controls postsynaptic differentiation at the neuromuscular junction.J Neurosci.2010; 30(1):13-23.
    [37]Dori A, Soreq H. ARP, the cleavable C-terminal peptide of "readthrough" acetylcholinesterase, promotes neuronal development and plasticity. J Mol Neurosci.2006; 28(3):247-55
    [38]Li Y, Camp S, Rachinsky T L, Getman D, Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue specific expression. J Biol Chem.1991; 266:23083-23090.
    [39]Ruiz CA, Rotundo RL. Limiting role of protein disulfide isomerase in the expression of collagen-tailed acetylcholinesterase forms in muscle. J Biol Chem. 2009; 284(46):31753-31763.
    [40]Rotundo RL, Ruiz CA, Marrero E, Kimbell LM, Rossi SG, Rosenberry T, Darr A, Tsoulfas P. Assembly and regulation of acetylcholinesterase at the vertebrate neuromuscular junction. Chem Biol Interact.2008; 175(1-3):26-29.
    [41]Perrier A L, Massoulie J, Krejci E. PRiMA:the membrane anchor of acetylcholinesterase in the brain. Neuron,2002; 33:275-285.
    [42]Tsim KW, Leung KW, Mok KW, Chen VP, Zhu KY, Zhu JT, Guo AJ, Bi CW, Zheng KY, Lau DT, Xie HQ, Choi RC. Expression and Localization of PRiMA-Linked Globular Form Acetylcholinesterase in Vertebrate Neuromuscular Junctions. J Mol Neurosci.2010; 40(1-2):40-46.
    [43]Kronman C, Chitlaru T, Elhanany E, Velan B, Shafferman A. Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins. Demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J Biol Chem.2000; 275:29488-29502.
    [44]Legay C, Huchet M, Massoulie J, Changeux J P. Developmental regulation of acetylcholinesterase transcripts in the mouse diaphragm:alternative splicing and focalization. Eur J Neurosci.1995; 7:1803-1809.
    [45]Kaufer D, Friedman A, Seidman S, Soreq H. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 1998; 393:373-377
    [46]Meshorer E, Erb C, Gazit R, Pavlovsky L, Kaufer D, Friedman A, Glick D, Ben-Arie N, Soreq H. Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science.2002; 295:508-512.
    [47]Newman J R, Virgin J B, Younkin L H, Younkin S G. Turnover of acetylcholinesterase in innervated and denervated rat diaphragm. J Physiol.1984; 352:305-318.
    [48]Kasprzak H, Salpeter M M. Recovery of acetylcholinesterase at intact neuromuscular junctions after in vivo inactivation with diisopropylfluorophosphate. J. Neurosci.1985;5,951-955.
    [49]Leung KW, Xie HQ, Chen VP, Mok MK, Chu GK, Choi RC, Tsim KW. Restricted localization of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase at the neuromuscular junctions-contribution and expression from motor neurons. FEBS J.2009; 276(11):3031-3042.
    [50]Rossi SG, Rotundo RL. Localization of "non-extractable" acetylcholinesterase to the vertebrate neuromuscular junction. J Biol Chem.1993; 268(25): 19152-19159.
    [51]Soreq H, Seidman S. Acetylcholinesterase--new roles for an old actor. Nat Rev Neurosci.2001; 2:294-302.
    [52]Ruiz CA, Rotundo RL. Dissociation of transcription, translation, and assembly of collagen-tailed acetylcholinesterase in skeletal muscle. J Biol Chem.2009; 284(32):21488-21495.
    [53]Camp S, De Jaco A, Zhang L, Marquez M, De la Torre B, Taylor P. Acetylcholinesterase expression in muscle is specifically controlled by a promoter-selective enhancesome in the first intron. J Neurosci.2008; 28(10): 2459-2470.
    [54]Tsim KW, Choi RC, Xie HQ, Zhu JT, Leung KW, Lau FT, Chu GK, Chen VP, Mok MK, Cheung AW, Bi CW. Transcriptional control of different subunits of AChE in muscles:signals triggered by the motor nerve-derived factors. Chem Biol Interact.2008; 175(1-3):58-63.
    [55]Shapira M, Tur-Kaspa I, Bosgraaf L, Livni N, Grant A D, Grisaru D, Korner M, Ebstein RP, Soreq H. A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet.2000; 9:1273-1281.
    [56]Camp S, De Jaco A, Zhang L, Marquez M, De la Torre B, Taylor P. Acetylcholinesterase expression in muscle is specifically controlled by a promoter-selective enhancesome in the first intron. J Neurosci.2008; 28(10): 2459-2470.
    [57]Plageman L R, Pauletti G. M, Skau K A. Characterization of acetylcholinesterase in Caco-2 cells. Exp Biol Med (Maywood).2002; 227:480-486.
    [58]Coleman B A, Taylor P. Regulation of acetylcholinesterase expression during neuronal differentiation. J Biol Chem.1996; 271:4410-4416.
    [59]Xie HQ, Choi RC, Leung KW, Chen VP, Chu GK, Tsim KW. Transcriptional regulation of proline-rich membrane anchor (PRiMA) of globular form acetylcholinesterase in neuron:an inductive effect of neuron differentiation. Brain Res.2009; 1265:13-23.
    [60]Galyam N, Grisaru D, Grifman M, Melamed-Book N, Eckstein F, Seidman S, Eldor A, Soreq H. Complex host cell responses to antisense suppression of ACHE gene expression. Antisense Nucleic Acid Drug Dev.2001; 11:51-57.
    [61]Rotundo RL, Ruiz CA, Marrero E, Kimbell LM, Rossi SG, Rosenberry T, Darr A, Tsoulfas P. Assembly and regulation of acetylcholinesterase at the vertebrate neuromuscular junction. Chem Biol Interact.2008; 175(1-3):26-9.
    [62]Gralewicz S. Possible consequences of acetylcholinesterase inhibition in organophosphate poisoning. Discussion continued. Med Pr.2006; 57(3): 291-302. Review. Polish.
    [63]Fuentes M E, Taylor P. Control of acetylcholinesterase gene expression during myogenesis. Neuron.1993; 10:679-687.
    [64]Chan R Y, Adatia F A, Krupa A M, Jasmin B J. Increased expression of acetylcholinesterase T and R transcripts during hematopoietic differentiation is accompanied by parallel elevations in the levels of their respective molecular forms. J Biol Chem.1998; 273:9727-9733.
    [65]Rotundo R L. Biogenesis of acetylcholinesterase molecular forms in muscle. Evidence for a rapidly turning over, catalytically inactive precursor pool. J Biol Chem.1988; 263:19398-19406.
    [66]Brockman S K, Usiak M F, Younkin S G. Assembly of monomeric acetylcholinesterase into tetrameric and asymmetric forms. J Biol Chem.1986; 261:1201-1207.
    [67]Chatel J M, Grassi J, Frobert Y, Massoulie J, Vallette F M. Existence of an inactive pool of acetylcholinesterase in chicken brain. Proc Natl Acad Sci U S A 1993; 90:2476-2480.
    [68]Eichler J, Silman I. The activity of an endoplasmic reticulum-localized pool of acetylcholinesterase is modulated by heat shock. J Biol Chem.1995; 270: 4466-4472.
    [69]Massoulie J, Millard CB. Cholinesterases and the basal lamina at vertebrate neuromuscular junctions. Curr Opin Pharmacol.2009; 9(3):316-325.
    [70]Ohno K, Ito M, Masuda A.Molecular bases and therapeutic strategies in defective neuromuscular transmissions:lessons learned from a prototypical synapse. Nihon Shinkei Seishin Yakurigaku Zasshi.2009; 29(4):145-151.
    [71]Ruiz CA, Rotundo RL. Dissociation of transcription, translation, and assembly of collagen-tailed acetylcholinesterase in skeletal muscle.J Biol Chem.2009; 284(32):21488-21495.
    [72]Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y. Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice, Nat. Neurosci.2002; 5:119-123.
    [73]Liang D, Blouet JP, Borrega F, Bon S, Massoulie J. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase. FEBS J.2009; 276(1):94-108.
    [74]Kimbell LM, Ohno K, Engel AG, Rotundo RL. C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J. Biol. Chem.2004; (19):10997-11005.
    [75]Cartaud A, Strochlic L, Guerra M, Blanchard B, Lambergeon M, Krejci E, Cartaud J, Legay C. MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction. J. Cell Biol.2004; (165):505-515.
    [76]Punga AR, Stalberg E. Acetylcholinesterase inhibitors in MG:to be or not to be? Muscle Nerve.2009; 39(6):724-728.
    [77]Sanes JR, Lichtman JW. Induction, ssembly, maturation and maintenance of a postsynaptic apparatus, Nat. Rev. Neurosci.2..001; (2):791-805.
    [78]Koenig J, Bauche S, Ben Ammar A, Nicolle D, Rigoard P, Eymard B, Hantai D. Experimental and pathological changes of the neuromuscular junction. Neurochirurgie.2009; 55 Suppl 1:S104-109.
    [79]Girija AS, Ashraf VV. Neuromuscular junctional disorders. Indian J Pediatr.2008; 75(7):699-702.
    [80]Marouf W, Sieb JP. Myasthenia gravis and myasthenic syndromes. Z Rheumatol. 2009; 68(6):465-470.
    [81]Ihmsen H, Schmidt J, Schwilden H, Schmitt HJ, Muenster T. Influence of disease progression on the neuromuscular blocking effect of mivacurium in children and adolescents with Duchenne muscular dystrophy. Anesthesiology.2009; 110(5): 1016-1019.
    [82]Ihmsen H, Viethen V, Forst J, Schwilden H, Schmitt HJ, Muenster T. Pharmacodynamic modelling of rocuronium in adolescents with Duchenne muscular dystrophy. Eur J Anaesthesiol.2009; 26(2):105-110.
    [83]Nieto-Ceron S, del Campo LF, Munoz-Delgado E, Vidal CJ, Campoy FJ. Muscular dystrophy by merosin deficiency decreases acetylcholinesterase activity in thymus of Lama2dy mice. J Neurochem.2005; 95(4):1035-1046.
    [84]Ishigaki K, Murakami T, Ito Y, Yanagisawa A, Kodaira K, Shishikura K, Suzuki H, Hirayama Y, Osawa M. Treatment approach to congenital myasthenic syndrome in a patient with acetylcholine receptor deficiency. No To Hattatsu. 2009; 41(1):37-42.
    [85]Wang M, Wen H, Brehm P. Function of neuromuscular synapses in the zebrafish choline-acetyltransferase mutant bajan. J Neurophysiol.2008; 100(4): 1995-2004.
    [86]Ohno K, Ito M, Masuda A. Molecular bases and therapeutic strategies of defective neuromuscular transmissions:lessons learned from a prototypical synapse. Nihon Shinkei Seishin Yakurigaku Zasshi.2009; 29(4):145-151.
    [87]Pope C, Karanth S, Liu J:Pharmacology and toxicology of cholinesterase inhibitors:uses and misuses of a common mechanism of action. Environ Toxicol Pharmacol.2005; 19:433-446.
    [88]Stephens JA. Fatigue of Maintained Voluntary Muscle contraction in Man. J. Physiol.1972; (1220):1-5.
    [89]殷劲,杨范昌,樊开明.疲劳时肌肉中的ACh量变.中国运动医学杂志,1987;(01):11-15.
    [90]Kurosawa M, Okada K, Sato A, Uchida S. Extracellular release of acetylcholine moradrenaline and serotonin increases in the cerebral cortex during walking in conscious rats. Nerroscience Letters,1993; (16):73-76.
    [91]Sieck GC, Prakash YS. Fatigue at the neuromuscular junction. Branch point vs. presynaptic vs. postsynaptic mechanisms. Adv Exp Med Biol.1995; (384): 83-100.
    [92]马玉兰,胡利民,史丽萍等.“养肝柔筋方”对大鼠耐运动性疲劳能力和血清、股四头肌AChE活性的影响.天津中医,2002;19(2):46-48.
    [93]郭文,罗学港,王慧,李昌琪,黄依柱.运动性疲劳对大鼠神经肌肉接头乙酰胆碱脂酶活性的影响.体育科学,2008;28(10):63-65.
    [94]Chau DT, Rada P, Kosloff RA, Taylor JL, Hoebel BG Nucleus accumbens muscarinic receptors in the control of behavioral depression:antidepressant-like effects of local Ml antagonist in the Porsolt swim test. Neuroscience,2001 (3): 791-8.
    [95]Benemei S, Nicoletti P, Capone JG, Geppetti P. CGRP receptors in the control of pain and inflammation. Curr Opin Pharmacol.2009; 9(1):9-14.
    [96]Durham P L, Russo A F. Stimulation of the calcitonin gene-related peptide enhancer by mitogen-activated protein kinases and repression by an antimigraine drug in trigeminal ganglia neurous. J Neurosci.2003; 23 (3):807-815.
    [97]Recober A, Russo AF. Calcitonin gene-related peptide:an update on the biology. Curr Opin Neurol.2009; 22(3):241-246.
    [98]Yu LC, Hou JF, Fu FH, Zhang YX. Roles of calcitonin gene-related peptide and its receptors in pain-related behavioral responses in the central nervous system. Neurosci Biobehav Rev.2009; 33(8):1185-1191.
    [99]Zhang XN, Chen DZ, Zheng YH, Liang JG, Yang HX, Lin XW, Zhuang J. Gene transfer of calcitonin gene-related peptide suppresses development of allograft vasculopathy. Transplant Proc.2009; 41(5):1900-1905.
    [100]Hong Y, Liu Y, Chabot JG, Fournier A, Quirion R. Upregulation of adrenomedullin in the spinal cord and dorsal root ganglia in the early phase of CFA-induced inflammation in rats. Pain.2009; 146(1-2):105-113.
    [101]Sixt ML, Messlinger K, Fischer MJ. Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus. Brain.2009; 132(Pt 11):3134-3141.
    [102]Lassen LH, Jacobsen VB, Haderslev PA, Sperling B, Iversen HK, Olesen J, Tfelt-Hansen P. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients. J Headache Pain.2008; 9(3):151-157.
    [103]Kruuse C, Iversen HK, Jansen-Olesen I, Edvinsson L, Olesen J. Calcitonin gene-related peptide (CGRP) levels during glyceryl trinitrate (GTN)-induced headache in healthy volunteers. Cephalalgia.2009 Aug 11.
    [104]张志坚.偏头痛病人血中神经肽含量的观察.临床神经病学杂志.2001;14(2):67-70.
    [105]匡培根.有关偏头痛发病机制的研究进展.新医学,1998,29(6):283-284.
    [106]Benemei S, Nicoletti P, Capone JG, Geppetti P. CGRP receptors in the control of pain and inflammation. Curr Opin Pharmacol.2009; 9(1):9-14.
    [107]Peng J, Li YJ. New insights into nitroglycerin effects and tolerance:role of calcitonin gene-related peptide. Eur J Pharmacol.2008; 586(1-3):9-13.
    [108]Link AS, Kuris A, Edvinsson L. Treatment of migraine attacks based on the interaction with the trigemino-cerebrovascular system. J Headache Pain.2008; 9(1):5-12.
    [109]Bulloch K, Milner TA, Prasad A, et al. Induction of calcitonin gene-related pep tide-like immunoreactivity in hippocampal neurons following ischemia:a putative regional modulator of the CNS injure/immune response [J]. Exp Neurol,1998; 150 (2):195-205.
    [110]金大成,王铁民,方秀斌.CGRP和NGF短暂性全脑缺血后再灌注大鼠纹皮质caspase-3蛋白表达的影响.神经解剖学杂志.2004;20(3):296-300.
    [111]Waston A, Eiler A, Lallemand D, Kyriakis J, Rubin LL, Ham J. Phosphorylation of c-jun is necessary for apoptosis induced by survival singnal withdrawal in cerebellar granule neurons. J Neurosci.2003; 18(2):751.
    [112]Kilic E, Kilic U, Soliz J, Bassetti C L, Gassmann M, Hermann D M. Brain-derived erythropoiet protects fromfocal cerebral ischemia by dual activation of ERK1/2 and Akt pathways. FASEBJ,2005; 19 (14):2026-2028.
    [113]Bhat RV, Budd Haeberlein SL, Avila J. Glycogen synthase kinase3:a drug target for CNS therapies. J Neurochem.2004; 89:1313-1317.
    [114]陈道文.CGRP与脑血管病.国外医学:脑血管病分册.1996;4(4):206.
    [115]Harada N, Narimatsu N, Kurihara H, Nakagata N, Okajima K. Stimulation of sensory neurons improves cognitive function by promoting the hippocampal production of insulin-like growth factor-I in mice. Transl Res.2009; 154(2): 90-102.
    [116]Zhang YQ, Guo N, Peng G, Han M, Raincrow J, Chiu CH, Coolen LM, Wenthold RJ, Zhao ZQ, Jing N, Yu L. Role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain. Pain.2009; 146(1-2):130-140.
    [117]Caldero J, Tarabal O, Casanovas A, Ciutat D, Casas C, Llado J, Esquerda JE. Excitotoxic motoneuron disease in chick embryo evolves with autophagic neurodegeneration and deregulation of neuromuscular innervation. J Neurosci Res.2007; 85(12):2726-2740.
    [118]Homonko DA, Theriault E. Downhill running preferentially increases CGRP in fast glycolytic muscle fibers. J Appl Physiol.2000; 89(5):1928-1936.
    [119]Blanco CE, Popper P, and Micevych PE. a-CGRP mRNA levels in motoneurons innervating specific rat muscles. Mol Brain Res 44:253-261,1997.
    [120]Valter Luiz da Costa Jr, Antonio JoseA Lapa, Rosely O. Godinho. Short- and long-term influences of calcitonin gene-related peptide on the synthesis of acetylcholinesterase in mammalian myotubes. British Journal of Pharmacology,2001; (133):229-236.
    [121]Torgan CE, Kraus WE. Regulation of type Ⅱ adenylyl cyclase mRNA in rabbit skeletal muscle by chronic motor nerve pacing. Am. J. Physiol,1996; (271): E253-E260.
    [122]Vega AV, Avila G. CGRP, a Vasodilator Neuropeptide that Stimulates Neuromuscular Transmission and EC Coupling. Curr Vasc Pharmacol.2010 Jan
    [123]Fleming N W, Lewis B K, White D A, Dretchen K L.Acute effects of calcitonin gene-related peptide on the mechanical and electrical responses of the rat hemidiaphragm. L Pharmacol. Exp. Ther.1993; (265):1199-1204.
    [124]Sala C, Andreose JS, Fumagalli G, Lomo T. Calcitonin gene-related peptide: possible role in formation and maintenance of neuromuscular junction. J. Neurosci.1995; (15):520-528.
    [125]Uchida S, Yamamoto H, Iio S, Matsumoto N, Wang XB, Yonehara N, Imai Y, Inoki R, Yoshida H. Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem.1990; (54):1000-1003.
    [126]Xie HQ, Choi RC, Leung KW, Siow NL, Kong LW, Lau FT, Peng HB, Tsim KW. regulation of a transcript-encoding the proline-rich membrane anchor (prima) of globular muscle acetylcholinesterase:the suppressive roles of myogenesis and innervating nerves. J Biol Chem,2007; 282(16):11765-11775.
    [127]Choi RC, Yung LY, Dong TT, Wan DC, Wong YH, Tsim KW. The calcitonin gene-related peptide-induced acetylcholinesterase synthesis in cultured chick myotubes is mediated by cyclic AMP. J. Neurochem,1998; (71):152-160.
    [128]Boudreau-Lariviere C, Jasmin, BJ. Calcitonin gene-related peptide decreases expression of acetylcholinesterase in mammalian myotubes. FEBS Lett,1999; (444):22-26.
    [129]Homonko DA, Theriault E. Calcitonin gene-related peptide is increased in hindlimb motoneurons after exercise. Int J Sports Med 1997; 18:1-7.
    [130]李昭波,高云秋,李维根等.运动性肥大心脏心肌和血浆降钙素基因相关肽含量变化.中国运动医学杂志.1999;18(1):7-8.
    [131]常芸,孙迎,陈小同等.运动心脏内分泌功能可复性的研究.中国运动医学杂志.1999;18(1):3-6.
    [132]刘晓岩,王银叶,陈世忠等.实验性心肌缺血时内源性ET, CGRP和NO水平的变化及心舒平的调节作用.中国中药杂志.2002;27(7):534-537.
    [133]Du YH, Peng J, Huang ZZ, et al. Delayed cardioprotection afforded by nitroglycerin is mediated by alpha-CGRP via activation of inducible nitric oxide synthase. Int J Cardiol,2004; 93(1):49-5.4.
    [134]谭建新,李岩松,黄宇戈等.降钙素基因相关肽对大鼠心肌损伤的影响.中国病理生理杂志.2000;16(3):226-228.
    [135]张华.急性心肌梗死患者血浆ET、CGRP的动态变化及临床意义.医学理论与实践.2002;15(8):871-872.
    [136]Hasbak P, Lundby C, Olsen N, Schifter S, Kanstrup I. Calcitonin gene-related peptide and adrenomedullin release in humans:effects of exercise and hypoxia. Regul Pept.2002; 108(2-3):89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700