氧化应激对仔猪精氨酸代谢和需求特点的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化应激明显影响仔猪健康,降低生产性能,但对养分代谢和需要特点的影响还缺乏系统研究。本研究以断奶仔猪为试验动物,以diquat诱导的断奶仔猪氧化应激为模型,研究氧化应激对断奶仔猪精氨酸代谢和需要特点及其可能机制的影响,探明精氨酸的应激代谢和需求特点及其抗应激的效果,为丰富仔猪精氨酸营养原理积累资料,为缓解氧化应激的危害和合理使用精氨酸添加剂提供参考。主要研究内容及结果如下:
     试验一Diquat诱导的氧化应激对断奶仔猪精氨酸代谢的影响
     研究diquat诱导的氧化应激对仔猪生产性能和精氨酸代谢的影响。采用单因子试验设计,选用24头28±1日龄的断奶仔猪,分别饲养在24个猪栏中,经过预饲,排除断奶等应激因素后,按体重相近、性别对半的原则随机分成3个处理,每个处理8个重复,每个重复1头猪。氧化应激组:仔猪腹腔注射10mg/kg体重的Diquat,自由采食;正常对照组:仔猪腹腔注射无菌生理盐水,自由采食;采食配对组:仔猪腹腔注射无菌生理盐水,控制采食量与氧化应激组仔猪相同。所有仔猪自由饮水,试验期7天。结果显示:
     (1)与对照组和采食配对组相比,氧化应激显著降低仔猪的ADG和G/F,降低仔猪血清抗氧化酶的活性,显著增加血清丙二醛的含量,有效诱导了断奶仔猪氧化应激。
     (2)氧化应激提高仔猪空肠阳离子氨基酸转运载体CAT-1的mRNA水平,增加了精氨酸内源合成关键酶OAT的活性。
     (3)氧化应激增加了仔猪空肠精氨酸和瓜氨酸的浓度,但是降低血清精氨酸和瓜氨酸的浓度,降低了肝脏和肺的INOS和ENOS的mRNA的表达。
     本试验表明,氧化应激降低仔猪生产性能,降低仔猪的抗氧化能力,增加仔猪精氨酸转运、内源合成和分解代谢,降低循环中的精氨酸的有效性。
     试验二氧化应激对仔猪精氨酸需求特点的影响
     研究精氨酸在仔猪氧化应激中的作用。选择36头21日龄健康PIC断奶仔猪,分别饲养在36个猪笼中。经过一周的预饲,排除断奶等应激因素后,按体重相近、性别对半的原则随机分为3个处理,每个处理12个重复,每个重复1头猪,开始正式试验,分别饲喂3个不同精氨酸水平的日粮。在试验第8天,每个处理一分为二,分别注射diquat和生理盐水。正式试验期共11天。测定仔猪生产性能,应激前0h和应激后6h,24h,48h,96h的血浆抗氧化酶活力,TAOC和MDA的含量,血浆游离氨基酸水平和组织氨基酸水平。试验结果表明:
     (1)氧化应激降低仔猪ADG (P<0.001),ADFI(P<0.001),增加F/G(P<0.05)。在氧化应激状态下,补充精氨酸(Arg=2.79%)增加仔猪的ADFI(P<0.05)。
     (2)补充精氨酸(Arg=2.79%)显著增加6h、48h、96h仔猪血浆GPx和SOD的活性,显著增加6h、24h、48h血浆TAOC的含量,显著降低6h、48h、96h血浆MDA的浓度。
     (3)氧化应激降低血浆精氨酸、谷氨酸、赖氨酸、蛋氨酸、苏氨酸和酪氨酸的浓度,显著增加血浆异亮氨酸和缬氨酸的浓度。在氧化应激条件下,补充精氨酸显著的提高血浆赖氨酸的水平。
     (4)氧化应激显著增加空肠精氨酸和瓜氨酸水平,增加肾脏中精氨酸的含量,但是降低了肾脏瓜氨酸的水平,对肌肉中精氨酸和瓜氨酸水平无显著影响。补充精氨酸对组织中精氨酸和瓜氨酸无显著影响。
     本试验表明,补充精氨酸通过缓解仔猪氧化应激诱导的采食量下降,增加仔猪氧化应激下机体的抗氧化能力,改善血液循环中的氨基酸水平。在氧化应激条件下,仔猪对精氨酸的需求量增加。
     试验三精氨酸抗氧化应激作用的机理初探
     试验设计同试验二。探讨精氨酸抵抗仔猪氧化应激作用的机理。试验结果表明:
     (1)氧化应激显著降低仔猪空肠绒毛宽度、固有膜的厚度和隐窝深度,有降低空肠绒毛长度趋势。补充精氨酸,能缓解氧化应激诱导的空肠绒毛宽度的降低,显著抑制氧化应激引起的空肠固有膜厚度的降低。精氨酸与氧化应激对仔猪空肠隐窝深度有显著的交互效应。
     (2)氧化应激显著增加仔猪空肠CAT-1、CAT-2和CAT-3的相对基因表达量。补充精氨酸则显著抑制氧化应激诱导的CAT-1和CAT-2的基因表达的增加,而对于氧化应激诱导的CAT-3的表达无影响。
     (3)氧化应激对仔猪空肠和肾脏的ENOS的表达影响不显著,显著降低肝脏ENOS的表达,显著降低空肠和肝脏INOS的表达,增加肾脏INOS的表达。补充精氨酸则抑制氧化应激诱导的肾脏INOS表达量的增加,显著增加空肠和肾脏的ENOS的相对表达量。
     (4)氧化应激降低肝脏TNOS和INOS的酶活性和NO的产量,而显著增加应激后24h,48h的血浆INOS的酶活性,显著增加血浆48h和96h的NO的产量。补充精氨酸显著增加氧化应激仔猪肝脏TNOS和INOS的酶活性。
     (5)氧化应激显著增加仔猪应激后48h和96h的血浆皮质醇的浓度,显著降低仔猪血浆胰岛素和IGF-1的浓度。补充精氨酸显著增加氧化应激仔猪的血浆胰岛素水平和IGF-1的水平,降低血浆皮质醇的浓度。
     (6)氧化应激显著降低肝脏IGF-1、IGF-1R和IGFBP3的基因表达;而对肌肉中这三个生长相关基因的表达无显著影响。补充精氨酸显著增加肝脏IGF-1和IGFBP3的基因表达,对肝脏IGF-1R的基因表达无显著影响;显著增加肌肉IGF-1、IGF-1R和IGFBP3的基因表达。
     (7)氧化应激显著增加空肠IL-6和TNF-α的表达,而抑制肝脏IL-6和TNF-α的基因表达。精氨酸与氧化应激互作增加空肠IL-6的表达,抑制氧化应激活化的空肠TNF-α的表达,而对PPAR-γ的表达无显著影响。
     本试验表明,在应激条件下提高精氨酸添加量可以通过维持空肠组织结构、调控精氨酸的代谢、维持精氨酸内源稳定性,增加精氨酸的有效性,调控内分泌、促进蛋白质合成、降低炎症因子的表达等综合途径缓解仔猪氧化应激。
     通过本试验的研究表明,氧化应激可降低仔猪生产性能,增加仔猪精氨酸内源合成量和转运能力、降低循环中的精氨酸的有效性,改变精氨酸的分解代谢;在应激条件下提高精氨酸添加量可以缓解仔猪氧化应激诱导的采食量下降,增加仔猪氧化应激下机体的抗氧化能力,改善血液循环中的氨基酸水平,从而缓解氧化应激的危害;精氨酸抗氧化应激的作用机制与维持空肠组织结构、调控精氨酸的代谢、维持精氨酸内源稳定性、增加精氨酸的有效性,调控内分泌、促进蛋白质合成、降低炎症因子的表达等途径有关。
The health state was significantly influenced and performance was decreased by oxidative stress in piglets. However, there is little research about the effect of metabolism and the characteristic of requirement on nutrients in pigs. This research was conducted to study the effects of oxidative stress by diquat on arginine metabolism and requirement of piglets. We will try to find out the metabolism and requirement of arginine under oxidative stress and the effect of anti-oxidative stress by arginine in piglets. It will accumulate the data of arginine nutrition of piglets and provide the information for relieving the harm by oxidative stress and using arginine rationally.The main results were listed as following:
     Exp.l Effects of oxidative stress induced by diquat on arginine metabolism of piglets
     A total of 24 crossbred postweaning pigs with 10.63±0.21kg BW were individually penned and assigned to three treatments to investigate the influences of diquat-induced oxidative stress on performance and arginine metabolism. Pigs of oxidative stress group were intraperitoneally injected with 10mg/kg BW of diquat and fed ad libitum, those of control group were injected with isotonic saline and fed ad libitum, and those of pair-fed group were injected with isotonic saline and fed the same amount of feed as stress group. The experiment lasted for 7 days. Results indicated that compared to control treatment, oxidative stress induced by diquat significantly decreased average daily gain, feed intake and efficiency of feed utilization, decreased activities of antioxidant enzymes, increased concentration of malondialdehyde in serum, increased cationic amino acid transporter-1 mRNA level and activities of ornithine aminotransferase and concentrations of arginine and citrulline in jejunum, decreased the concentrations of arginine in serum and kidney, decreased induced nitric oxide synthase mRNA level. It is concluded that oxidative stress induced by diquat can reduce performance, influence absorption and metabolism of arginine and consequently modify the requirement of arginine in postweaning pigs.
     Exp.2 Effects of oxidative stress induced by diquat on arginine requirement of piglets
     This study evaluated whether arginine (Arg) supplementation could attenuate oxidative stress induced by diquat in piglets. A total of 36 PIC postweaning pigs were individually penned and assigned to three treatments including:(1) Arg=1.19%(2) Arg=1.99%(3) Arg=2.79%. On day 8, pigs in each treatment were divided into two to intraperitoneally injected with diquat or sterile saline. At 96 h post-injection, pigs were killed for evaluation of performance, the activities of antioxidant enzymes and TAOC and malondialdehyde in plasma and liver, the concentrations of amid acid in plasma and tissue. The results indicated:
     (1) Oxidative stress induced by diquat significantly decreased average daily gain(P< 0.001), feed intake (P<0.001)and efficiency of feed utilization(P<0.05). Supplementation of arginine(Arg=2.79%) significantly increased average daily gain(P<0.05).
     (2) Supplementation of arginine (Arg=2.79%) significantly increased activities of antioxidant enzymes and TAOC, decreased concentration of malondialdehyde in liver.
     (3) Oxidative stress induced by diquat significantly decreased the concentrations of arginine, glutamic acid, lysine, methionine, threonine and tyrosine in plasma, increased the concentrations of isoleucine and valine in plasma. Supplementation of arginine significantly increased the concentration of lysine under oxidative stress.
     (4) Oxidative stress induced by diquat significantly decreased the concentrations of arginine and citrulline in jejunum, decreased the concentrations of citrulline in kidney, increased the concentrations of arginine in kidney.Supplementation of arginine have no significantly effect on the concentrations of arginine and citrulline in tissue.
     It is concluded that arginine can alleviate the growth depression and stress response induced by oxidative stress to some degree through depress the decreasing of food intake, increasing the ability of anti-oxidative stress, improving amino acid level in circulation in piglets. It illustrated that the requirement of arginine was increased under oxidative stress in piglets.
     Exp.3 The possible mechanism of arginine for anti-oxidative stress of piglets
     This study evaluated the mechanism of arginine (Arg) supplementation attenuate oxidative stress induced by diquat in piglets. A total of 36 PIC postweaning pigs were individually penned and assigned to three treatments including:(1) Arg=1.19%(2) Arg=1.99%(3) Arg=2.79%. On day 8, pigs in each treatment were divided into two to intraperitoneally injected with diquat or sterile saline. At 96 h post-injection, pigs were killed for evaluation of intestinal morphology, arginine metabolism, endocrine secretion, the gene relatively expression of growth factors and inflammatory cytokines. The results indicated:
     (1)Within 96 h of oxidative stress, oxidative stress induced by diquat significantly decreased villus width, membrane propria thickness and crypt depth in jejunum. Supplementation of arginine significantly mitigated jejunum morphology impairment (e.g. lower villus width and membrana propria thickness).
     (2) Oxidative stress induced by diquat significantly increased cationic amino acid transporter-1,2,3 mRNA level. Supplementation of arginine significantly suppressed the mRNA level of CAT-1 and CAT-2 induced by oxidative stress.
     (3) Oxidative stress induced by diquat significantly decreased mRNA level of ENOS and INOS in liver and INOS in jejunum, increased mRNA level of INOS in kidney. Supplementation of arginine significantly suppress the elevation of the mRNA level of INOS in kidney induced by oxidative stress, significantly increased the mRNA level of ENOS in jejunum and kidney suppressed by oxidative stress.
     (4) Oxidative stress induced by diquat significantly decreased activities of ENOS and INOS and the production of NO in liver, significantly increased activities of INOS in plasma at 24h and 48h. Supplementation of arginine significantly increased activities of TNOS in liver.
     (5) Oxidative stress induced by diquat significantly increased concentrations of cortisol in plasma at 48h,96h. Oxidative stress significantly decreased concentrations of insulin and IGF-1 in plasma. Supplementation of arginine significantly prevented the elevation of plasma cortisol induced by oxidative stress. Arginine significantly increased plasma insulin and IGF-1 suppressed by oxidative stress.
     (6) Supplementation of arginine significantly increased the mRNA level of IGF-1 and IGFBP3 in liver. Supplementation of arginine significantly increased the mRNA level of IGF-1, IGF-1R and IGFBP3 in muscle suppressed by oxidative stress.
     (7) Supplementation of arginine significantly suppressed the mRNA level of TNF-a in jejunum.
     These results indicate that Arg supplementation has beneficial effects in piglets induced by oxidative stress through keeping morphous of intestine, regulating endocrine section, increasing the availability of arginine, maintaining endogenous stability of arginine, promoting protein synthesis in muscle, depressing inflammatory cytokines.
     Conclusions
     These results indicate that oxidative stress induced by diquat can reduce performance, influence absorption and metabolism of arginine and consequently modify the requirement of arginine for postweaning pigs. Arginine can alleviate the growth depression and stress response induced by oxidative stress to some degree through depress the decreasing of food intake, increasing the ability of anti-oxidative stress, improving amino acid level in circulation in piglets. Arg supplementation has beneficial effects in piglets induced by oxidative stress through keeping morphous of intestine, regulating endocrine section, increasing the availability of arginine, maintaining endogenous stability of arginine, promoting protein synthesis in muscle, depressing inflammatory cytokines.
引文
1. Sohal, R.S. and Allen, R.G., Oxidative stress as a causal factor in differentiation and aging:a unifying hypothesis. Exp Gerontol.1990.25(6):499-522
    2. Barbul, A., Arginine:biochemistry, physiology and therapeutic implications. J. Parent. Enteral Nutr. 1986.10:227-238
    3. Barbul, A. and Dawson, H., Arginine and Immunity. In:Diet, Nutrition, and Immunity. CRC Press, Boca Raton.1994.199-216
    4. Cynober, L., Le Boucher, J., Vasson, M., Arginine metabolism in mammals. J. Nutr. Biochem. 1995.6:402-413
    5. Li, G., Regunathan, S., Barrow, C.J., et al., Agmatine:an endogenous clonidine-displacing substance in the brain. Science (Washington, DC) 1994.263:966-969
    6. Gupta, A., Chander, V., Sharma, S., et al., Sodium nitroprusside and 1-arginine attenuates ferric nitrilotriacetate-induced oxidative renal injury in rats. Toxicology.2007.232:183-191
    7. Gupta, V., Gupta, A., Saggu, S., et al., Anti-stress and Adaptogenic Activity of L-Arginine Supplementation. eCAM 2005.2(1):93-97
    8. Royes, L.F.F., Fighera, M.R., Furian, A.F.a., et al., The role of nitric oxide on the convulsive behavior and oxidative stress induced by methylmalonate:An electroencephalographic and neurochemical study. Epilepsy Research 2007.73:228-237
    9. Suschek, C.V., Schnorr, O., Hemmrich, K., et al., Critical Role of L-Arginine in Endothelial Cell Survival During Oxidative Stress. Circulation.2003.107:2607-2614
    10. Lin, C.-C., Tsai, W.-C., Chen, J.-Y., et al., Supplements of 1-arginine attenuate the effects of high-fat meal on endothelial function and oxidative stress. International Journal of Cardiology. 2008.127:337-341
    11. Bredt, D.S. and Snyder, S.H., Nitric oxide:a physiological messenger molecule. Annu. Rev. Biochem.1994.63:175-195
    12. Kohli, R., Meininger, C.J., Haynes, T.E., et al., Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr.2004. 134:600-608
    13. Laspiur, J.P. and Trottier, N.L., Effect of dietary arginine supplementation and environmental temperature on sow lactation performance. Livestock Production Science.2001.70:159-165
    14. Loscalzo, J., L-Arginine and atherothrombosis. J.Nutr.2004.134:2798S-2800S
    15. Soeters, P.B., Poll, M.C.G.v.d., Gemert, W.G.v., et al., Amino Acid Adequacy in Pathophysiological States. American Society for Nutritional Sciences.2004.134:1575S-1582S
    16. Wu, G., Flynn, N.E., Flynn, S.P., et al., Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats. J Nutr.1999.129:1347-1354
    17. Walker, C.D., McCormick, C.M., Donald, W.P., et al.,Development of the Stress Axis:Maternal and Environmental Influences.Hormones, Brain and Behavior.2009.1931-1973
    18. Padgett, D.A. and Glaser, R., How stress influences the immune response. Trends in Immunology. 2003.24:444-448
    19. Rhoads, M.L., Rhoads, R.P., VanBaale, M.J., et al., Effects of heat stress and plane of nutrition on lactating Holstein cows:Ⅰ. Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci.2009.92:1986-1997
    20. Spencer, J.D., Gaines, A.M., Berg, E.P., et al., Diet modifications to improve finishing pig growth performance and pork quality attributes during periods of heat stress. J Anim Sci.2005. 83:243-254
    21. McGlone, J.J., Salak, J.L., Lumpkin, E.A., et al., Shipping stress and social status effects on pig performance, plasma cortisol, natural killer cell activity, and leukocyte numbers. J Anim Sci.1993. 71:888-896
    22. Otten, W., Kanitz, E., Couret, D., et al., Maternal social stress during late pregnancy affects hypothalamic-pituitary-adrenal function and brain neurotransmitter systems in pig offspring. Domest Anim Endocrinol.2010.38(3):146-156
    23. Celi, P., Trana, A.D., Claps, S., Effects of plane of nutrition on oxidative stress in goats during the peripartum period. Vet J.2010.In Press.
    24. Moeser, A.J., Klok, C.V., Ryan, K.A., et al., Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol.2007. 292:G173-181
    25. Schwerin, M., Kurts-Ebert, B., Beyer, M., et al., Temporary consumption of diet with unbalanced amino acid pattern affects long-lasting growth retardation correlated with oxidative stress response associated gene expression in juvenile pigs. Clin Nutr.2008.27:781-789
    26. Coddens, A., Verdonck, F., Mulinge, M., et al., The possibility of positive selection for both F18(+)Escherichia coli and stress resistant pigs opens new perspectives for pig breeding. Vet Microbiol.2008.126:210-215
    27. Harman, D., Aging:a theory based on free radical and radiation chemistry. J of Gerontology 1956. 11(3):298-300
    28. Nappi, A.J. and Vass, E., Hydroxyl radical formation via iron-mediated fenton chemistry is inhibited by methylated catechols. Biochim. Biophys. Acta.1998.1425(1):159-167
    29. Askew, E.W., Environmental and physical stress and nutrient requirements. Am. J. Clin. Nutr 1995. 61(suppl):631S-637S
    30. Jang, H.Y., S., K.H., Oh, J.D., et al., Maintenance of Sperm Characteristics and In vitro Developmental Rate of Embryos against Oxidative Stress through Antioxidants in Pig Asian-Aust. J. Anim. Sci.2008.21(3):340-345
    31. Yang, Z.H. and Ming, X.F., Recent advances in understudy endothelial dysfunction in atherosclerosis. Clin. Med. Res.2006.4(1):53-65.
    32. Diplock, A.T., Antioxidant nutrients and disease prevention:an over-view. Am J Clin Nutr 1991. 53:1895-1935
    33. Wu, G. and Flynn, N.E., The activation of the arginine-citrulline cycle in macrophages from the spontaneously diabetic BB rat. Biochem J.1993.294 (Pt 1):113-118
    34. Young, J.F., Rosenvold, K., Stagsted, J., et al., Significance of vitamin E supplementation, dietary content of polyunsaturated fatty acids, and preslaughter stress on oxidative status in pig as reflected in cell integrity and antioxidative enzyme activities in porcine muscle. J. Agric Food Chem.2005.53:745-749
    35. Hernandez, A., Hansen, C.F., Mullan, B.P., et al.,1-arginine supplementation of milk liquid or dry diets fed to pigs after weaning has a positive effect on production in the first three weeks after weaning at 21 days of age. Animal Feed Science and Technology. In Press, Corrected Proof:
    36. Mateo, R.D., Wu, G., Moon, H.K., et al., Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci.2008.86:827-835
    37. Wu, G., Bazer, F.W., Cudd, T.A., et al., Maternal nutrition and fetal development. J Nutr.2004. 134:2169-2172
    38. Taha, M.O., Simas, M.J., Haddad, M.A., et al.,1-Arginine Supplementation Protects Against Hepatic Ischemia-Reperfusion Lesions in Rabbits. Transplantation Proceedings.2009.41:816-819
    39. Harrison, D.G., Gongora, M.C., Guzik, T.J., et al., Oxidative stress and hypertension. Journal of the American Society of Hypertension.2007.1:30-44
    40. Wu, G. and Meininger, C.J., Arginine nutrition and cardiovascular function. J Nutr.2000. 130:2626-2629
    41. Wu, G., Collins, J.K., Perkins-Veazie, P., et al., Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr.2007.137:2680-2685
    42. Chattopadhyay, P., Shukla, G., Wahi, K.A., Protective effect of L-arginine against necrosis and apoptosis induced by experimental ischemic and reperfusion in rat liver.2009.15(3):156-162
    43. Siasos, G., Tousoulis, D., Antoniades, C., et al.,1-Arginine, the substrate for NO synthesis:An alternative treatment for premature atherosclerosis? International Journal of Cardiology.2007. 116:300-308
    44. Webb, C. and Twedt, D., Oxidative Stress and Liver Disease. Veterinary Clinics of North America: Small Animal Practice.2008.38:125-135
    45. Cochran, R.C., Silva, M.H., Chernoff, G., et al., Diquat Dibromide Risk Characterization Document.1994.1-82
    46. Spalding, D.J.M., Mitchell, J.R., Jaeschke, H., et al., Diquat hepatotoxicity in the Fischer-344 rat: The role of covalent binding to tissue proteins and lipids. Toxicology and Applied Pharmacology. 1989.101:319-327
    47. Wolfgang, G.H.I., Jolly, R.A., Donarski, W.J., et al., Inhibition of diquat-induced lipid peroxidation and toxicity in precision-cut rat liver slices by novel antioxidants. Toxicology and Applied Pharmacology.1991.108:321-329
    48. Wolfgang, G.H.I., Jolly, R.A., Petry, T.W., Diquat-induced oxidative damage in hepatic microsomes:Effects of antioxidants. Free Radical Biology and Medicine.1991.10:403-411
    49. Bayol-Denizot, C., Daval, J.-L., Netter, P., et al., Xenobiotic-mediated production of superoxide by primary cultures of rat cerebral endothelial cells, astrocytes, and neurones. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research.2000.1497:115-126
    50. Benzick, A.E., Reddy, S.L., Gupta, S., et al., Diquat-and acetaminophen-induced alterations of biliary efflux of iron in rats. Biochemical Pharmacology.1994.47:2079-2085
    51. Blakeman, D.P., Ryan, T.P., Jolly, R.A., et al., Diquat-dependent protein carbonyl formation: Identification of lipid-dependent and lipid-independent pathways. Biochemical Pharmacology. 1995.50:929-935
    52. Liang, H., Ran, Q., Jang, Y.C., et al., Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radical Biology and Medicine.2009.47:312-320
    53. Liang, H., Remmen, H.V., Frohlich, V., et al., Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochemical and Biophysical Research Communications.2007.356:893-898
    54. Rogers, L.K., Bates, C.M., Welty, S.E., et al., Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice. Toxicology and Applied Pharmacology.2006.217:289-298
    55. Rytwo, G., Tropp, D., Serban, C., Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculations. Applied Clay Science.2002.20:273-282
    56. Yoshio, N., Cotgreave, I.A., Molds, P., Relationships between ascorbic acid and [alpha]-tocopherol during diquat-induced redox cycling in isolated rat hepatocytes. Biochemical Pharmacology.1991. 42:883-888
    57. Yuan, S.B., Chen, D.W., Zhang, K.Y., et al., Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs Asian-Aust. J. Anim. Sci.2007.20(10):1600-1605
    58. Grattagliano, I., Palmieri, V.O., Portincasa, P., et al., Oxidative stress-induced risk factors associated with the metabolic syndrome:a unifying hypothesis. The Journal of Nutritional Biochemistry.2008.19:491-504
    59. Wu, G. and Morris, S.M., Jr., Arginine metabolism:nitric oxide and beyond. Biochem J.1998.336 (Pt 1):1-17
    60. Gokce, N., L-Arginine and Hypertension. J. Nutr.2004.134:2807S-2811S
    61. King, N.E., Rothenberg, M.E., Zimmermann, N., Arginine in Asthma and Lung Inflammation. J. Nutr.2004.134:2830S-2836S
    62. Debats, I.B.J.G., Wolfs, T.G.A.M., Gotoh, T., et al., Role of arginine in superficial wound healing in man. Nitric Oxide. In Press.
    63. Wu, G., Davis, P.K., Flynn, N.E., et al., Endogenous Synthesis of Arginine Plays an Important Role in Maintaining Arginine Homeostasis in Postweaning Growing Pigs. J. Nutr.1997.127:2342-2349
    64. Levillain, O., Hus-Citharel, A., Morel, F., et al., Arginine synthesis in mouse and rabbit nephron: localization and functional significance. Am. J. Physiol.1993.264:F1038-F1045
    65. Levillain, O., Hus-Citharel, A., Morel, F., et al., Localization of arginine synthesis along rat nephron. Am. J. Physiol.1990.259:F916-F923
    66. Dhanakoti, S.N., Brosnan, J.T., Herzberg, G.R., et al., Renal arginine synthesis:studies in vitro and in vivo. Am. J.Physiol.1990.259:E437-E442
    67. Windmueller, H.G.and Spaeth, A.E., Source and fate of circulating citrulline. Am. J. Physiol.1981. 241:E473-E480
    68. Dhanakoti, S., Brosnan, J.T., Brosnan, M.E., et al., Net renal arginine flux in rats is not affected by dietary arginine or dietary protein intake. J. Nutr.1992.122:1127-1134
    69. Castillo, L., Ajami, A., Branch, S., et al., Plasma arginine kinetics in adult man:response to an arginine-free diet. Metabolism 1994.43:114-122
    70. Meijer, A.J., Lamers, W.H., Chamuleau, R.A.F.M., Chamuleau Nitrogen metabolism and ornithine cycle function. Physiol. Rev.1990.70:701-748
    71. Cheung, C.W., Cohen, N.S., Raijman, L., Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J. Biol. Chem.1989.264:4038-4044
    72. Watford, M., The urea cycle:a two-compartment system. Essays Biochem.1991.26:49-58
    73. Coman, D., Yaplito-Lee, J., Boneh, A., New indications and controversies in arginine therapy. Clinical Nutrition.2008.27:489-496
    74. Wu, G.and Sidney M. Morris, J., Arginine metabolism:nitric oxide and beyond.Biochem. J. 1998.336:1-17
    75. Cederbaum, S.D., Yu, H., Grody, W.W., et al., Arginases I and II:do their functions overlap?. Iyer R K. Mol Genet Metab 2004.81:S38-S44.
    76. Ishizaka, M., Nagai, A., Iwanaga, M., et al., Possible involvement of enhanced arginase activity due to up-regulated arginases and decreased hydroxyarginine in accelerating intimal hyperplasia with hyperglycemia. Vascular Pharmacology 2007.47:272-280
    77. Flynn, N.E. and Wu, G., Glucocorticoids Play an Important Role in Mediating the Enhanced Metabolism of Arginine and Glutamine in Enterocytes of Postweaning Pigs.. J. Nutr.1997. 127:732-737
    78. Erbas, H., Aydogdu, N., Usta, U., et al., Protective role of carnitine in breast cancer via decreasing arginase activity and increasing nitric oxide Cell Biology International.2007.31:1414-1419
    79. Gray, M.J., Poljakovic, M., Kepka-Lenhart, D., et al., Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBP. Gene.2005.353:98-106
    80. Erbas, H., Aydogdu, N., Usta, U., et al., Protective role of carnitine in breast cancer via decreasing arginase activity and increasing nitric oxide. Cell Biology International 2007.31:1414-1419
    81. Alderton, W.K., Cooper, C.E., Knowles, R.G., Nitric oxide synthases:structure, function and inhibition. J. Biochem.2001.357:593-615
    82. Gath, I., Closs, E.I., Godtel-Armbrust, U., et al., Inducible NO synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: implications for contractile function. FASEB J.1996.10:1614-1620
    83. Morris, S.M., Jr Enzymes of Arginine Metabolism. J. Nutr.2004.134:2743S-2747S
    84. Guix, F.X., Uribesalgo, I., Coma, M., et al., The physiology and pathophysiology of nitric oxide in the brain Progress in Neurobiology.2005.76:126-152
    85. Gookin, J.L., Chiang, S., Allen, J., et al., NF-KB-mediated expression of iNOS promotes epithelial defense against infection by Cryptosporidium parvum in neonatal piglets Am J Physiol Gastrointest Liver Physiol.2006.290:G164-G174
    86. Cardounel, A.J., Xia, Y., Zweier, J.L., Endogenous Methylarginines Modulate Superoxide as Well as Nitric Oxide:Generation from Neuronal Nitric-oxide Synthase The Journal of Biological Chemistry.2005.280:7540-7549
    87. Wang,A.S.S.,Wang,X.L., D.E.L.W., L-arginine regulates asymmetric dimethylarginine metabolism by inhibiting dimethylarginine dimethylaminohydrolase activity in hepatic (HepG2) cells. J. Cell. Mol. Life Sci.2006.1-9
    88. Rainer, H.B.g., Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase,Explains the "L-Arginine Paradox" and Acts as a Novel Cardiovascular Risk Factor. J.Nutr.2004.134:2842S-2847S
    89. Lee, J., Ryu, H., Ferrante, R.J., et al., Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. PNAS.2003.100:4843-4848
    90. Stuehr, D.J., Enzymes of the L-Arginine to Nitric Oxide Pathway. J. Nutr.2004.134:2748S-2751S
    91. Laufs, U., Gertz, K., Dirnag, U., et al., Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Research 2002.942:23-30
    92. Meininger, C.J., Kelly, K.A., Li, H., et al., Glucosamine Inhibits Inducible Nitric Oxide Synthesis. Biochemical and Biophysical Research Communications 2000.279:234-239
    93. Walker, J.B., Creatine:biosynthesis, regulation, and function Adv Enzymol Relat Areas Mol Biol.. 1979.50:177-242
    94. Alessandri, M.G, Celati, L., Battini, R., et al., Gas chromatography/mass spectrometry assay for arginine:Glycine-amidinotransferase deficiency. Analytical Biochemistry 2005.343:356-358
    95. O'sullivan, D., Brosnan, J.T., Brosnan, M.E., Hepatic zonation of the catabolism of arginine and ornithine in the perfused rat liver. J. Biochem.1998.330:627-632
    96. Zhu, M.-Y., Iyo, A., Piletz, J.E., et al., Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochimica et Biophysica Acta (BBA)-Bioenergetics.2004. 1670:156-164
    97. Sastre, M., Galea, E., Feinstein, D., et al., Metabolism of agmatine in macrophages:modulation by lipopolysaccharide and inhibitory cytokines. Biochem J.1998.330:1405-1409
    98. Battaglia, V., Rossi, C.A., Colombatto, S., et al., Different behavior of agmatine in liver mitochondria:Inducer of oxidative stress or scavenger of reactive oxygen species? Biochimica et Biophysica Acta (BBA)-Biomembranes.2007.1768:1147-1153
    99. Morris, S.M., Jr, Arginine:beyond protein. Am J Clin Nutr.2006.83(suppl):508S-512S
    100. Mori, M. and Gotoh., T., Arginine metabolic enzymes, nitric oxide and infection. J. Nutr.2004. 134:2820S-2825S
    101. Closs, E.I., A. Simon, N. Vekony, et al., Plasma membrane transporters for arginine. J Nutr.2004. 134:2752s-2759s
    102. Pan, M., H. A. Choudry, M. J. Epler, et al., Arginine transport in catabolic disease states. J. Nutr. 2004.134:2826S-2829S.
    103. Pan, M., Karinch, A.M., Lin, C.M., et al., Interferon-g stimulates arginine transport in intestinal epithelium. Surg. Forum.2001.52:159-162.
    104. Wiesinger, H., Arginine metabolism and the synthesis of nitric oxide in the nervous system. Progress in Neurobiology.2001.64:365-391
    105. Venardos, K., Enriquez, C., Marshall, T., et al., Protein kinase C mediated inhibition of endothelial l-arginine transport is mediated by MARCKS protein. Journal of Molecular and Cellular Cardiology.2009.46:86-92
    106. Horton, R.A., Ceppi, E.D., Knowles, R.G., et al., Inhibition of hepatic gluconeogenesis by nitric oxide:a comparison with endotoxic shock. Biochem J.1994.299:735-739
    107. Sprangers, F., Sauerwein, H.P., Romijn, J.A., et al., Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes. Biochem J.1998.330:1045-1049
    108. Balon, T.W. and Nadler, J.L., Evidence that nitric oxide increases glucose transport in skeletal muscle. J. Appl. Physiol 1997.82:359-363
    109. Bradley, S.J., Kingwell, B.A., McConell, G.K., Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes.1999.48:1815-1821
    110. Balon, T.W., Jasman, A.P., Young, J.C., Effects of chronic N(omega)-nitro-l-arginine methyl ester administration on glucose tolerance and skeletal muscle glucose transport in the rat. Nitric Oxide 1999.3:312-320
    111. Baron, A.D., Zhu, J.S., Marshall, S., et al., Insulin resistance after hypertension induced by the nitric oxide synthesis inhibitor 1-NMMA in rats. Am J Physiol.1995.269:E709-E715
    112. Laakso, M., Edelman, S.V., Brechtel, G., et al., Impaired insulinmediated skeletal muscle blood flow in patients with INDDM. Diabetes.1992.41:1076-1083
    113. Roy, D., Perreault, M., Marette, A., Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am. J. Physiol.1998.274.E692-E699
    114. Kohli, R., Meininger, C.J., Haynes, T.E., et al., Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J. Nutr.2004.134:600-608
    115. Tanaka, T., Nakatani, K., Morioka, K., et al., Nitric oxide stimulates glucose transport through insulin-independent GLUT4 translocation in 3T3-L1 adipocytes. Eur. J. Endocrinol 2003.149:61-67
    116. Jessen, N. and Goodyear, L.J., Contraction signaling to glucose transport in skeletal muscle. J.Appl. Physiol 2005.99:330-337
    117. Matsumoto, A., Hirata, Y., Momomura, S., et al., Increased nitric oxide production during exercise. Lancet.1994.343:849-850
    118. Patil, R.D., DiCarlo, S.E., Collins, H.L., Acute exercise enhances nitric oxide modulation of vascular response to phenylephrine. Am. J. Physiol.1993.265:H1184-H1188
    119. Balon, T.W. and Nadler, J.L., Evidence that nitric oxide increases glucose transport in skeletal muscle. J.Appl. Physiol.1997.82:359-363
    120. Roberts, C.K., Barnard, R.J., Jasman, A., et al., Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am. J. Physiol.1999.277:E390-E394
    121. Sessa, W.C., Pritchard, K., Seyedi, N., et al., Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ. Res.1994. 74:349-353
    122. Roberts, C.K., Barnard, R.J., Scheck, S.H., et al., Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent. Am. J. Physiol.1997.273:E220-E225
    123. Shearer, J., Fueger, P.T., Vorndick, B., et al., AMP Kinase-Induced Skeletal Muscle Glucose But Not Long-Chain Fatty Acid Uptake Is Dependent on Nitric Oxide. Diabetes.2004.53:1429-1435
    124. Young, M.E. and Leighton, B., Fuel oxidation in skeletal muscle is increased by nitric oxide/cGMP-evidence for involvement of cGMP-dependent protein kinase. FEBS Lett 1998. 424:79-83
    125. Young, M.E., Radda, G.K., Leighton, B., Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. J.Biochem 1997.322:223-228
    126. Monti, L.D., Valsecchi, G., Costa, S., et al., Effects of endothelin-1 and nitric oxide on glucokinase activity in isolated rat hepatocytes. Metabolism 2000.49:73-80
    127. Engeli, S., Janke, J., Gorzelniak, K., et al., Regulation of the nitric oxide system in human adipose tissue. J. Lipid Res.2004.45:1640-1648
    128. Lincova, D., Misekova, D., Kmonickova, E., et al., Effect of nitric oxide donors on isoprenaline-induced lipolysis in rat epididymal adipose tissue:studies in isolated adipose tissues and immobilized perfused adipocytes. Physiol Res.2002.51:387-394
    129. Fu, W.J., Haynes, T.E., Kohli, R., et al., Dietary 1-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 2005.135:
    130. Garcia-Villafranca, J., Guillen, A., Castro, J., Involvement of nitric oxide/cyclic GMP signaling pathway in the regulation of fatty acid metabolism in rat hepatocytes. Biochem Pharmacol.2003. 65:807-812
    131. Khedara, A., Kawai, Y., Kayashita, J., et al., Feeding rats the nitric oxide synthase inhibitor, 1-NN-nitroarginine, elevates serum triglycerides and cholesterol and lowers hepatic fatty acid oxidation. J Nutr.1996.126:2563-2567
    132. Khedara, A., Goto, T., Morishima, M., et al., Elevated body fat in rats by the dietary nitric oxide synthase inhibitor,1-N omega nitroarginine. Biosci Biotechnol Biochem.1999.63:698-702
    133. Buck, M. and Chojkier, M., Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J.1996.15:1753-1765
    134. Ignarro, L.J., Buga, G.M., Wei, L.H., et al., Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc. Natl. Acad. Sci. USA.2001. 98:4202-4208
    135. Marinos, R.S., Zhang, W., Wu, G., et al., Tetrahydrobiopterin levels regulate endothelial cell proliferation. Am. J. Physiol 2001.281:H482-H489
    136. Baynes, J.W. and Thorpe, S.R., Role of Oxidative Stress in Diabetic Complications:A New Perspective on an Old Paradigm. Diabetes.1999.48:1-9
    137. Zhang, W., Venardos, K., Chin-Dusting, J., et al., Adverse Effects of Cigarette Smoke on NO Bioavailability Role of Arginine Metabolism and Oxidative Stress. Hypertension.2006. 48:278-285
    138. Akifusa, S., Kamio, N., Shimazaki, Y., et al., Globular adiponectin-induced RAW 264 apoptosis is regulated by a reactive oxygen species-dependent pathway involving Bcl-2. Free Radical Biology and Medicine.2009.46:1308-1316
    139. Aris, A., Benali, S., Ouellet, A., et al., Potential Biomarkers of Preeclampsia:Inverse Correlation between Hydrogen Peroxide and Nitric Oxide Early in Maternal Circulation and at Term in Placenta of Women with Preeclampsia. Placenta.2009.30:342-347
    140. Yang, Z.H. and Ming, X.F., Recent Advances in Understanding Endothelial Dysfunction in Atherosclerosis. Clinical Medicine & Research.2006.4:53-65
    141. Dasgupta, T., Hebbel, R.P., Kaul, D.K., Protective effect of arginine on oxidative stress in transgenic sickle mouse models. Free Radical Biology & Medicine.2006.41 (12):1771-1780
    142. Payabvash, S., Ghahremani, M.H., Goliaei, A., et al., Nitric oxide modulates glutathione synthesis during endotoxemia. Free Radical Biology & Medicine 2006.41:1817-1828
    143. Granik, V.G., Metabolism of l-arginine.Pharmaceutical Chemistry Journal.2003.37:3-20
    144. Wu, G., Bazer, F.W., Hu, J.B., et al., Polyamine synthesis from proline in the developing porcine placenta. Biol. Report 2005.72:842-850
    145. Wu, G. and Knabe, D.A., Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol.1995. 269:R621-629
    146. Wu, G. and Meininger, C.J., Analysis of citrulline, arginine, and methylarginines using high-performance liquid chromatography. Methods Enzymol.2008.440:177-189
    147. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.2001.29:2002-2007
    148. Rawlings, J.M., Wyatt, I., Heylings, J.R., Evidence for redox cycling of diquat in rat small intestine. Biochemical Pharmacology.1994.47:1271-1274
    149. Slaughter, M.R., Thakkar, H., O'Brien, P.J., Effect of Diquat on the Antioxidant System and Cell Growth in Human Neuroblastoma Cells. Toxicology and Applied Pharmacology.2002.178:63-70
    150. Andreazza, A.C., Kauer-Sant'Anna, M., Frey, B.N., et al., Oxidative stress markers in bipolar disorder:A meta-analysis. Journal of Affective Disorders.2008.111:135-144
    151. Peled-Kamar M., J. Lotem, I. Wirguin, et al., Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wild-type Cu/Zn superoxide dismutase.. Proc. Natl. Acad. Sci. U.S.A.1997.94:3883-3887
    152. White, M.F., The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochem. Biophys. Acta.1985.822:355-374.
    153. Aulak, K.S., R. Mishra, L. Zhou, et al., Post-transcriptional regulation of the arginine transporter Cat-1 by amino acid availability. J Biol Chem.1999.274:30424-30432
    154. Fernandez, J., A.B. Lopez, C. Wang, et al., Transcriptional control of the arginine/lysine transporter, cat-1, by physiological stress. J Biol Chem.2003.278:50000-50009
    155. Wu, G., Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol.1997.272:G1382-1390
    156. Wang, T., Lawler, A.M., Steel, G., et al., Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat. Genet..1995. 11(2):185-190
    157. El-Gayar S., H. Thuring-Nahler, J. Pfeilschifter, et al., Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J Immunology. 2003.171:4561-4568
    158. Wu, G., Bazer, F.W., Davis, T.A., et al., Important roles for the arginine family of amino acids in swine nutrition and production. Livestock Science.2007.112:8-22
    159. Kim, S.W. and Wu, G., Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr.2004.134:625-630
    160. Liu, Y., Huang, J., Hou, Y., et al., Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br. J. Nutr.2008. 100:552-560
    161. Chirino, Y.I. and Pedraza-Chaverri, J., Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Experimental and Toxicologic Pathology.2009.61:223-242
    162. Coyle, C.H., Martinez, L.J., Coleman, M.C., et al., Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radic Biol Med.2006.40:2206-2213
    163. Malmlof, K., Amino acid in farm animal nutrition metabolism,partition and consequences of imbalance. Journal of Agriculture Research.1988.18 (4):191-193
    164. Elia, M., Farrell, R., Ilie, V., et al., The removal of infused leucine after injury, starvation and other conditions in man. Clin Sci (Lond).1980.59:275-283
    165. Odessey, R., Khairallah, E.A., Goldberg, A.L., Origin and possible significance of alanine production by skeletal muscle. J Biol Chem 1974.249:7623-7629.
    166. Blachier, F., M'Rabet-Touil, H., Posho, L., et al., Intestinal Glutamate Metabolism. Eur. J. Biochem.1993.216:109-117
    167. Wu, G and Knabe, D.A., Arginine synthesis in enterocytes of neonatal pig.. Am. J. Physiol.1995. 269:R621-R629
    168. Wu, G., Knabe, D.A., Flynn, N.E., Synthesis of citrulline from glutamine in pig enterocytes. Biochem.J.1994.299:115-121
    169. Herningtyas, E.H., Okimura, Y., Handayaningsih, A.E., et al., Branched-chain amino acids and arginine suppress MaFbx/atrogin-1 mRNA expression via mTOR pathway in C2C12 cell line. Biochimica et Biophysica Acta (BBA)-General Subjects.2008.1780:1115-1120
    170. Maarsingh, H., Zaagsma, J., Meurs, H., Arginine homeostasis in allergic asthma. European Journal of Pharmacology.2008.585:375-384
    171. Yeh, C.-L., Pai, M.-H., Li, C.-C., et al., Effect of arginine on angiogenesis induced by human colon cancer:in vitro and in vivo studies. The Journal of Nutritional Biochemistry. In Press.
    172. Ijaz, S., Winslet, M.C., Seifalian, A.M., The effect of consecutively larger doses of 1-arginine on hepatic microcirculation and tissue oxygenation in hepatic steatosis. Microvascular Research.2009. 78:206-211
    173. Jeyabalan, G., Klune, J.R., Nakao, A., et al., Arginase blockade protects against hepatic damage in warm ischemia-reperfusion. Nitric Oxide.2008.19:29-35
    174. Viana, M.L., Santos, R.G.C., Generoso, S.V., et al., Pretreatment with arginine preserves intestinal barrier integrity and reduces bacterial translocation in mice. Nutrition. In Press.
    175. Boger, R.H., Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase, Explains the "L-Arginine Paradox" and Acts as a Novel Cardiovascular Risk Factors. Nutr.2004. 134:2842S-2847S
    176. Nijveldt, R.J., Teerlink, T., M.P.C.Siroen, et al., The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA). Clinical Nutrition 2003.22(1):17-22
    177. Anter, E., Thomas, S.R., Schulz, E., et al., Activation of endothelial nitric-oxide synthase by the p38 MAPK in response to black tea polyphenols. J Biol Chem.2004.279:46637-46643
    178. Kig, T., Bogdan, C., Schleicher, U., Translational repression of inducible NO synthase in macrophages by 1-arginine depletion is not associated with an increased phosphorylation of eIF2[alpha]. Immunobiology.2009.214:822-827
    179. Gulati, K., Chakraborti, A., Ray, A., Differential role of nitric oxide (NO) in acute and chronic stress induced neurobehavioral modulation and oxidative injury in rats. Pharmacology Biochemistry and Behavior.2009.92:272-276
    180. Wright, K.J., Balay, R., Hill, C.M., et al., Integrated adrenal, somatotropic, and immune responses of growing pigs to treatment with lipopolysaccharide. J. Anim. Sci.2000.78:1892-1899.
    181. Zhao, J.P., Jiao, H.C., Song, Z.G., et al., Effects of 1-arginine supplementation on glucose and nitric oxide (NO) levels and activity of NO synthase in corticosterone-challenged broiler chickens (Gallus gallus). Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology. In Press.
    182. Zhao, J.P., Lin, H., Jiao, H.C., et al., Corticosterone suppresses insulin-and NO-stimulated muscle glucose uptake in broiler chickens (Gallus gallus domesticus). Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology.2009.149:448-454
    183. Saleri, R., Baratta, M., Mainardi, G.L., et al., IGF-1 IGFBP-2 and-3 but not GH concentration are different in normal and poor growing piglets. Reprod. Nutr. Rev.2001.41:163-172
    184. Weigert, C., Hennige, A., Brodbeck, K., et al., Interleukin-6 acts as insulin sensitizer on glycogen synthesis in human skeletal muscle cells by phosphorylation of Ser473 of Akt. Am J Physiol Endocrinol Metab.2005.289:E251-E257
    185. Senn, J., Klover, P., Nowak, I., et al., Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependentbinsulin resistance in hepatocytes. J Biol Chem.2003. 278:13740-13746
    186. Gabay, C., IL-6 and chronic inflammation. Arthritis Res. Ther.2006.8:1-6
    187. Silverman, M.N., Miller, A.H., Biron, C.A., et al., Characterization of an interleukin-6-and adrenocorticotropin-dependent, immune-to-adrenal pathway during viral infection. Endocrinology. 2004.145:3580-3589
    188. Zarkovic, M., Ignjatovic, S., Dajak, M., et al., Cortisol response to ACTH stimulation correlates with blood interleukin 6 concentration in healthy humans. Eur J Endocrinol.2008.159:649-652
    189. Furukawa, S., Fujita, K., Shimabukuro, M., et al., Increased oxidative stress in obesity and its impact onmetabolic syndrome. J Clin Invest.2006.114:1752-1761
    190. Maggio, M., Guralnik, J.M., Longo, D.L., et al., Interleukin-6 in aging and chronic disease:a magnificent pathway. J Gerontol A Biol Sci Med Sci.2006.61.575-584
    191. Xing, Z., Gauldie, J., Cox, G., et al., IL-6 is an antiinflammatory cytokin required for controlling local or systemic acute inflammatory responses. J Clin Invest.1998.101:311-320
    192. Hopps, E., Noto, D., Caimi, G., et al., A novel component of the metabolic syndrome:The oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases. In Press, Corrected Proof:
    193. Robinson, E. and Grieve, D.J., Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacology & Therapeutics.2009.122:246-263

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700