衰变加速因子在小鼠异体移植免疫中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衰变加速因子(dcay accelerating factor,DAF,CD55)是一种补体调节蛋白(CRP),主要功能是抑制细胞表面的C3转化酶形成并加速其衰变, C3转化酶是补体激活链中的中心放大酶,DAF通过限制C3转化酶保护细胞免于自身补体介导的损伤。
     在移植免疫的研究中,DAF缺乏可加重缺血再灌注损伤,影响抗体介导的排斥反应(AMR),它在异种移植器官的表达可延长移植器官的生存期,在移植肾组织中DAF表达与肾功能及移植肾的生存期呈正相关。
     我们应用小鼠腹腔异位心脏移植模型,以Dafl基因敲除小鼠(Daf1-/-)研究DAF缺乏对同种异体移植排斥反应的作用,并探讨其对T细胞免疫影响。主要方法、结果如下:
     1.成功地建立小鼠腹腔异位心脏移植模型。分别吻合供心主动脉与受体腹主动脉、供心肺动脉与受体下腔静脉。同基因移植心脏平均存活60d以上;同种异基因移植心脏平均存活时间9d,移植心脏组织病理切片HE染色显示,弥漫性单个核细胞浸润于血管周围,急性细胞性排斥反应。
     2.供体缺乏DAF加速移植物排斥,增强直接途径识别的、抗供体特异性T细胞免疫。雄性BALB/c(H-2d)小鼠作为受体,移植供体为Daf1-/-(n=7)或WT(n=6)或C3-/-(n=6)的雄性、C57BL/6(B6,H-2b)小鼠的心脏,观察移植心脏的存活时间,结果显示,供体为C3-/-的移植心脏存活时间最长(平均14d),WT次之(平均9.5d),而供体为DAF缺乏的移植心脏存活时间最短(平均7d)结果有统计学意义(P<0.05)。以C3H(H-2k)雄性小鼠为受体重复上述实验,的结果相似,Daf1-/-供体心脏平均生存8d,WT平均17d,C3-/-平均25d,其中2只超过60d。差异有显著性(P<0.01)。在移植心脏排斥当天,收集受体小鼠脾脏细胞,应用ELISPOT检测受体脾脏细胞中抗供体抗原的、产生INF-γ的T细胞频数。结果显示,接受Dafl-/-心脏的受体小鼠的脾脏细胞中含有2倍以上的抗供体抗原的、分泌INF-γ的T细胞(与接受WT心脏的受体比较,p<0.05),相反,接受心脏的受体小鼠的脾脏细胞中产生抗供体抗原的、分泌INF-γ的T细胞频数较低,产生INF-γ的T细胞频数分别为:Daf1-/--235.5±60、WT98.5±15.3、 C3-/-56.3±16.7(/5xl04, x±S)o
     移植术后第6d(移植物尚未排斥),ELISPOT检测受体脾T细胞反应显示,接受Daf1-/-心脏的受体小鼠的脾脏中抗供体抗原的、分泌INF-y的T细胞明显高于接受WT心脏的受体,结果为:Daf1-/-269.5±48.2. WT126.0±19.3(/5×104,x±S)(p<0.0.)
     3.受体缺乏DAF对心脏移植生存时间、抗供体特异性T细胞免疫无明显影响。雄性BALB/c (H-2d)小鼠为供体,受体分别为Daf1-/-(n=4)或WT(n=5)雌性B6(H-2b)小鼠,受体为DAF缺乏的移植心脏存活时间平均10.5d,WT组平均1Od,结果无统计学差异(P>0.05)o ELISPOT检测受体抗-供体抗原T细胞数分别为Dafl-/-266.8±16.9、WT206.0±13.5(/5×104,x±S),两组无显著性差异(P>0.05)。
     4.DAF对移植排斥反应的调节不依赖于抗供体特异性抗体启动的补体经典途径激活。雄性BALB/c (H-2d)小鼠作为受体,移植供体为Daf-/-(n=3)或WT(n=3)雄性B6(H-2b)小鼠的心脏,移植后第6d,以供体(B6小鼠)胸腺细胞为抗原,流式细胞法检测受体血清中抗-供体抗体。结果显示,受体血清中抗供体特异性抗体两组间差异无显著性(p>0.05)。重度联合免疫缺陷(SCID)小鼠,其体内T、B淋巴细胞均缺失。将WT(n=3)或Daf1-/-(n=3) B6(H-2b)小鼠的心脏移植到异源的SCID/C3H(H-2k)小鼠体内,10d后,经小鼠尾静脉给受体注入来自同源的C3H小鼠脾脏的、未激活的T细胞6×106/只,注射过继转移T细胞9d后,Daf1-/-的心脏排斥,而WT的心脏存活时间明显延长(其中之一于第12d排斥,其中之二超过20d)。在SCID小鼠血清中没有检测到抗-供体的抗体。
     5.DAF影响CD8+效应T细胞(TCL)功能。经尾静脉注射给C3H (H-2k)小鼠注射B6(H-2b)小鼠脾细胞(每只注射15×106个细胞),2周后分离被致敏的C3H小鼠脾脏CD8+T细胞,分别以Daf1-/-WT、C3-/-的B6(H-2b)小鼠脾细胞为刺激细胞(内含APC),以ELISPOT检测被致敏的C3H小鼠T细胞再次接触相同抗原的反应。结果显示,以Daf1-/-脾细胞刺激的C3H小鼠T细胞反应最为强烈,其分泌INF-γ细胞数最高,为WT脾细胞刺激的2倍,C3-/-的最低。结果分别为:Daf1-/-878.5±270.9、WT389.8±53.5、C3-/-264.3±27.1(/1×105, x±S)(WT与C3-/-比较P<0.01;Daf1-/-与C3-/-或WT比较P<0.001)。
     6.DAF影响抗原提呈细胞(APC)对抗原的处理能力。源自WT或Dafl-/-的B6小鼠腹腔的巨噬细胞作为APC,与CD4+T细胞株及卵白蛋白OVA多肽(OVA323-339)或卵白蛋白OVA(浓度5-30μM/well)共培养24Hr后,离心取上清液,以CTLL分析检测上清液中T细胞活化后产生的IL-2的相对单位。结果如图所示,与WT相比,源于Daf1-/1小鼠巨噬细胞摄取、处理卵白蛋白OVA并提呈特异性抗原给T细胞产生IL-2的量,显著增高(P<0.0001),但对于卵白蛋白OVA多肽(OVA323-339),两者差异无显著性(P>0.05)。同样,以CD8+T细胞株与卵白蛋白OVA多肽(OVA257-264)或不同浓度的卵白蛋白OVA共培养24Hr后,离心取上清液,以CTLL分析检测上清液中T细胞活化后产生的IL-2的量,结果与CD4+T细胞株的相似。
     结论
     1.供体缺乏DAF不仅加速移植排斥反应,且明显增强抗供体特异性的T细胞反应。
     2.受体缺乏DAF对心脏移植生存时间、抗供体特异性T细胞免疫无明显影响。
     3.DAF影响CD8+效应T细胞(TCL)功能。当APC与T细胞相互作用时,APC缺乏DAF(不是T细胞本身)增强T细胞功能。
     4.DAF缺乏的APC加工处理抗原能力增强。
     5.DAF对移植排斥反应的调节不依赖于抗供体特异性抗体启动的补体经典途径激活。
Decay-accelerating factor (DAF) is a cell surface complement regulatory protein that accelerates the dissociation of C3convertase, which plays a pivotal role in the ampification of complement activation, and thereby prevents the complement-mediated self-damaging effect on cell.
     In the context of transplantation, the deficiency of DAF, which has been thought to regulate antibody-mediated rejection, was detected to aggravate ischemia-reperfusion injury. Inversely, increased expression of DAF in renal allograft was associated with better graft function and longer graft survival.
     In addition, DAF also play a role in regulating cellular immunity and humoral immunity. Absence of DAF in patient with paroxysmal nocturnal hemoglobinuria increase C3b on the surface of erythrocyte and hemolysis. In contrast, overexpression of DAF on tumor cell results in immune escape. In the context of transplantation, the deficiency of DAF, which has been thought to regulate antibody-mediated rejection, was detected to aggravate ischemia-reperfusion injury. Inversely, increased expression of DAF in renal allograft was associated with better graft function and longer graft survival.
     We construct a mouse ventral heterotopic heart transplant model and use Daf1deficiency mice to study the effect of DAF deficiency on allograft rejection and T cell immunity.
     Methods and Results
     1.Construct a mouse ventral heterotopic heart transplant model.
     Hearts were transplanted heterotopically by anastomosing the donor aorta and pulmonary artery to the recipient abdominal aorta and inferior vena cava. Syngeneic heart mean survival time (MST) of60days, allograft MST of9days. Microscopic examination of H&E-stained tissue sections obtained at cessation of heartbeats revealed diffuse mononuclear cell infiltration and perivascular inflammation in both groups, typical of acute cellular rejection.
     2.The absence of donor Dafl accelerates graft rejection through augmentation of direct pathway mediated direct anti-donor T cell responses.
     To delineate the role of donor DAF in T cell mediated rejection of a vascularized allograft, we examined the survival of Dafl deficient (Daf1-/-) hearts, WT hearts and C3deficient hearts from male C57BL/6(B6, H-2b) mice following transplantation into fully allogeneic recipients (male BALB/c (H-2d) mice). In H-2d recipients, B6H-2b Dafl-/-hearts were rejected on7days posttransplantation, faster than WT and C3deficient hearts which were rejected on9.5and14days posttransplantation respectively. Results were statistically significant. Similar results were observed with C3H (H-2k) male recipients.(Daf1-/-MST of8days, WT MST of17days, C3-/-MST of25days with two>60days, n=6/group, p<0.01).
     IFN-y ELISPOY assays of direct anti-donor T cell response performed at the time of rejection revealed that spleens of recipients of Daf1-/-allografts contained almost2-fold more donor-reactive IFN-y producers (p<0.05vs WT recipients). In contrast, the total number of anti-donor IFN-y producing T cells in recipients of C3-/-allografts was low.(Daf1-/-235.5±60.3、WT98.5±15.3、C3-/-56.3±16.7(/5×104, X±S))
     Direct anti-donor T cell responses in recipients of Dafl-/-B6hearts assessed by ELISPOT assay6days posttransplantation were significantly higher than those detected in recipients of WT B6hearts.(Dafl-/269.5±48.2, WT126.0±19.3(/5×104, x±S)(p<0,01)).
     3.Recipient DAF deficiency has no effect on graft survival nor anti-donor T cell immunity.
     To assess the role of recipient DAF deficiency in T cell mediated rejection of a vascularized allograft. We examined the survival of heart from BALB/c (H-2d) following transplantation into Daf1-/-(n=4) and WT (n=5) B6(H-2b) female recipients. In Dafl-/-recipients, allografts were rejected10.5days posttransplantation and the results was not significantly different from WT recipient on day10posttransplantation.(p>0.05). The frequency of recipient IFN-y-producing T cells in Daf1-/-recipients was266.8±16.9, and in WT recipients was206.0±13.5(/5×104, χ±S). The statistics was not significant.
     4.Dornor DAF deficiency accelerated graft rejection independent of antibody initiated, classic complement pathway.
     We transplanted WT or Daf1-/-B6heart into allogenic BALB/c (H-2d) recipients. On day6posttransplantation, flow cytometry was performed to detect the donor-reactive alloantibodies directed to donor thymocyte. The titer of Ab was low and was not significantly different between recipients of WT (n=3)and Daf1-/-B6(n=3) heart grafts (p>0.05).
     We transplanted WT or.Daf1-/-B6heart into allogeneic SCID/C3H (H-2k) recipients. Ten days later we adminstered6×106T cells from naive C3H mice thymus gland i.v. through the tail vein and followed graft survival by palpation. The adoptively transferred T cells caused acute rejection of the Dafl-/-B6hearts by day9, while WT hearts exhibited significantly prolonged survival (one survive12days, two>20days) despite transfer of the same number of WT T cells. Besides, no anti-donor antibody was detected in serum of SCID/C3H (H-2k) recipients of both groups.
     5.DAF enhances function of alloreactive CD8effector T cells.
     We administered15×106splenic cell from B6(H-2b) mice to C3H (H-2k) mice i.v. Through the tail vein. Two weeks later, CD8+effector T cell from spleen of C3H mice was isolated and stimulated with splenic cell (with APC) from Daf1-/-、WT、C3-/-B6(H-2b) mice. IFN-γ ELIDPOT assays were performed to test the T cell response when they reencounter their target Ags. IFN-γ production and CLT activity were significantly greater when the primed T cells were challenged with Daf1-/-splenic cells than those to WT and C3-/-stimulators(Daf1-/-878.5±270.9、WT389.8±53.5、C3-/-264.3±27.1(/1×105, χ±S)).(WT vs. C3-/-P<0.01;Daf1-/-vsC3-/-WT P<0.001).
     6. DAF affects the antigen presentation ability of APCs.
     Peritoneal microphages (APC) from WT or Daf1-/-B6mice was co-cultured with CD+4effector T cells and ovoalbumin (OVA) or ovoalbumin polypeptide (OVA323-339) for24Hs. After centrifugation, supernatant was assessed by CTLL assay for IL-2produced by activated T cell. The production of IL-2was significantly greater by Daf1-/-originated macrophagy than WT when co-cultered with CT4+effector T cell and OVA (P<0.0001). However, there was not discernible difference in IL-2production between Daf1-/-originated and WT originated macrophagy when co-cultered with CT4+effector T cell and OVA323-339(p>0.05). Similar results were found in CT8+effector T cells when co-cultrured with peritoneal macrophagy and OVA/OVA323-339.
     Conclusion
     1. Donor DAF deficiency augment graft rejection and anti-donor T cell response.
     2. Recipient DAF deficiency has no effect on graft survival nor anti-donor T cell immunity.
     3. DAF enhances function of alloreactive CD8effector T cells. When APC interacts with T cell, APC DAF deficiency (not T cell DAF deficiency) enhance T cell function.
     4. APCs DAF deficiency enhance the antigen presentation ability.
     5. Dornor DAF deficiency accelerated graft rejection independent of antibody initiated, classic complement pathway.
引文
1. Ricklin, D., G Hajishengallis, K. Yang, et al., Complement:a key system for immune surveillance and homeostasis. Nat Immunol,2010.11(9):p.785-97.
    2. Baldwin, W.M., H. Ota, and E.R. Rodriguez, Complement in transplant rejection:diagnostic and mechanistic considerations. Springer Semin Immunopathol,2003.25(2):p.181-97.
    3.Wehner, J., C.N. Morrell, T. Reynolds, et al., Antibody and complement in transplant vasculopathy. Circ Res,2007.100(2):p.191-203.
    4. Carpio, V.N., C. Rech, E.I. Eickhoff, et al., Clinical and pathological correlations of C4d immunostaining and its influence on the outcome of kidney transplant recipients. J Bras Nefrol,2011.33(3):p.329-37.
    5. Colvin, R.B., Antibody-mediated renal allograft rejection:diagnosis and pathogenesis. J Am Soc Nephrol,2007.18(4):p.1046-56.
    6. Qian, Z., B.A. Wasowska, E. Behrens, et al., C6 produced by macrophages contributes to cardiac allograft rejection. Am J Pathol,1999.155(4):p.1293-302.
    7. Stegall, M.D., T. Diwan, S. Raghavaiah, et al., Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant,2011.11(11):p.2405-13.
    8. Nicholson-Weller, A., J.P. March, S.I. Rosenfeld, et al., Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc Natl Acad Sci U S A,1983.80(16): p.5066-70.
    9. Pangburn, M.K., R.D. Schreiber, and H.J. Muller-Eberhard, Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci U S A,1983.80(17):p.5430-4.
    10. Miwa, T., M.A. Maldonado, L. Zhou, et al., Deletion of decay-accelerating factor (CD55) exacerbates autoimmune disease development in MRL/lpr mice. Am J Pathol, 2002.161(3):p.1077-86.
    11. Mead, R.J., J.W. Neal, M.R. Griffiths, et al., Deficiency of the complement regulator CD59a enhances disease severity, demyelination and axonal injury in murine acute experimental allergic encephalomyelitis. Lab Invest,2004.84(1):p.21-8.
    12. Diaz, T.M., R. Manez, I. Moscoso, et al., The serum level of xenoantibodies, and hDAF or alphaGAL expression on pig cells, modulate in vitro the protection given by hDAF to primate complement-mediated damage. Transplant Proc,2005.37(1):p. 510-1.
    13. Fecke, W., J. Long, A. Richards, et al., Protection of hDAF-transgenic porcine endothelial cells against activation by human complement:role of the membrane attack complex. Xenotransplantation,2002.9(2):p.97-105.
    14. Iwasaki, K., Y. Miwa, H. Ogawa, et al., Comparative study on signal transduction in endothelial cells after anti-a/b and human leukocyte antigen antibody reaction: implication of accommodation. Transplantation,2012.93(4):p.390-7.
    15. Bayer, A.L., P. Baliga, and J.E. Woodward, Differential effects of transferrin receptor blockade on the cellular mechanisms involved in graft rejection. Transpl Immunol, 1999.7(3):p.131-9.
    16. Brikci-Nigassa, L., M. Matsuyama, T. Hase, et al., Prope tolerance to heart allografts in mice associated with persistence of donor interleukin-10-transduced stem cells. Transplantation,2012.93(8):p.761-8.
    17. Judd, K.P. and J.J. Trentin, Cardiac transplantation in mice. I. Factors influencing the take and survival of heterotopic grafts. Transplantation,1971.11(3):p.298-302.
    18. Corry, R.J., H.J. Winn, and P.S. Russell, Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation, 1973.16(4):p.343-50.
    19. Tomita, Y., Q.W. Zhang, M. Yoshikawa, et al., Improved technique of heterotopic cervical heart transplantation in mice. Transplantation,1997.64(11):p.1598-601.
    20. Chen, Z.H., A technique of cervical heterotopic heart transplantation in mice. Transplantation, 1991.52(6):p.1099-101.
    21. Matsuura A, Abe T, Yasuura K. Simplified mouse cervical heart transplantation using a
    cuff technique.Transplantation.1991 Apr;51(4):896-8.
    22.周景师.窦科峰.孙凯.两种小鼠异位心脏移植模型的复制及比较.医学研究生学报.2003.16(9):653-656
    23. Doenst, T., C. Schlensak, J.L. Kobba, et al., A technique of heterotopic, infrarenal heart transplantation with double anastomosis in mice. J Heart Lung Transplant,2001. 20(7):p.762-5.
    24. Uchiyama, M., X. Jin, Q. Zhang, et al., Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells. J Cardiothorac Surg,2012.7:p.26.
    25. Vieyra, M., S. Leisman, H. Raedler, et al., Complement regulates CD4 T-cell help to CD8 T cells required for murine allograft rejection. Am J Pathol,2011.179(2):p. 766-74.
    26. Nicholson-Weller, A., J. Burge, and K.F. Austen, Purification from guinea pig erythrocyte stroma of a decay-accelerating factor for the classical c3 convertase, C4b,2a. J Immunol,1981.127(5):p.2035-9.
    27. Medof, M.E., T. Kinoshita, and V. Nussenzweig, Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med,1984.160(5):p.1558-78.
    28. Medof, M.E., E.I. Walter, W.L. Roberts, et al., Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry,1986. 25(22):p.6740-7.
    29. Kim, D.D. and W.C. Song, Membrane complement regulatory proteins. Clin Immunol,2006.118(2-3):p.127-36.
    30. Nonaka, M., T. Miwa, N. Okada, et al., Multiple isoforms of guinea pig decay-accelerating factor (DAF) generated by alternative splicing. J Immunol,1995. 155(6):p.3037-48.
    31. Kinoshita, T., M.E. Medof, and V. Nussenzweig, Endogenous association of decay-accelerating factor (DAF) with C4b and C3b on cell membranes. J Immunol, 1986.136(9):p.3390-5.
    32. Fujita, T., T. Inoue, K. Ogawa, et al., The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb. J Exp Med,1987.166(5):p.1221-8.
    33. Bao, L., M. Haas, A.W. Minto, et al., Decay-accelerating factor but not CD59 limits experimental immune-complex glomerulonephritis. Lab Invest,2007.87(4):p. 357-64.
    34. Bao, L., M. Haas, J. Pippin, et al., Focal and segmental glomerulosclerosis induced in mice lacking decay-accelerating factor in T cells. J Clin Invest,2009.119(5):p. 1264-74.
    35. Pacheco, L.D., G.D. Hankins, M.M. Costantine, et al., The role of human decay-accelerating factor in the pathogenesis of preterm labor. Am J Perinatol,2011. 28(7):p.565-70.
    36. Zhang, J., W. Hu, W. Xing, et al., The protective role of CD59 and pathogenic role of complement in hepatic ischemia and reperfusion injury. Am J Pathol,2011.179(6):p. 2876-84.
    37. Yamada, K., T. Miwa, J. Liu, et al., Critical protection from renal ischemia reperfusion injury by CD55 and CD59. J Immunol,2004.172(6):p.3869-75.
    38. Tan, C.D., G.G. Sokos, D.J. Pidwell, et al., Correlation of donor-specific antibodies, complement and its regulators with graft dysfunction in cardiac antibody-mediated rejection. Am J Transplant,2009.9(9):p.2075-84.
    39. Brodsky, S.V., GM. Nadasdy, R. Pelletier, et al., Expression of the decay-accelerating factor (CD55) in renal transplants-a possible prediction marker of allograft survival. Transplantation,2009.88(4):p.457-64.
    40. Heeger, P.S., P.N. Lalli, F. Lin, et al., Decay-accelerating factor modulates induction of T cell immunity. J Exp Med,2005.201(10):p.1523-30.
    41. Lalli, P.N., M.G Strainic, F. Lin, et al., Decay accelerating factor can control T cell differentiation into IFN-gamma-producing effector cells via regulating local C5a-induced IL-12 production. J Immunol,2007.179(9):p.5793-802.
    42. Liu, J., F. Lin, M.G. Strainic, et al., IFN-gamma and IL-17 production in experimental autoimmune encephalomyelitis depends on local APC-T cell complement production. J Immunol,2008.180(9):p.5882-9.
    43. Fang, C., T. Miwa, H. Shen, et al., Complement-dependent enhancement of CD8+T cell immunity to lymphocytic choriomeningitis virus infection in decay-accelerating factor-deficient mice. J Immunol,2007.179(5):p.3178-86.
    44. Liu, J., T. Miwa, B. Hilliard, et al. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J. Exp. Med.2005;201:567-577.
    45. Lin, F., Y. Fukuoka, A. Spicer, et al., Tissue distribution of products of the mouse decay-accelerating factor (DAF) genes. Exploitation of a Dafl knock-out mouse and site-specific monoclonal antibodies. Immunology,2001.104(2):p.215-25.
    46. Miwa, T. and W.C. Song, Membrane complement regulatory proteins:insight from animal studies and relevance to human diseases. Int Immunopharmacol,2001.1(3):p. 445-59.
    47. Medof, M.E., T. Kinoshita, R. Silber, et al., Amelioration of lytic abnormalities of paroxysmal nocturnal hemoglobinuria with decay-accelerating factor. Proc Natl Acad Sci U S A,1985.82(9):p.2980-4.
    48. Cheung, N.K., E.I. Walter, W.H. Smith-Mensah, et al., Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro. J Clin Invest,1988.81(4):p.1122-8.
    49. McCurry, K.R., D.L. Kooyman, C.G. Alvarado, et al., Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med, 1995.1(5):p.423-7.
    50.Auchincloss, H., Jr. and D.H. Sachs, Xenogeneic transplantation. Annu Rev Immunol, 1998.16:p.433-70.
    51. Schmoeckel, M., F.N. Bhatti, A. Zaidi, et al., Splenectomy improves survival of HDAF transgenic pig kidneys in primates. Transplant Proc,1999.31(1-2):p.961.
    52. Pavlov, V., H. Raedler, S. Yuan, et al., Donor deficiency of decay-accelerating factor accelerates murine T cell-mediated cardiac allograft rejection. J Immunol,2008. 181(7):p.4580-9.
    53. Shimizu, I., N.R. Smith, G Zhao, et al., Decay-accelerating factor prevents acute humoral rejection induced by low levels of anti-alphaGal natural antibodies. ransplantation,2006.81(1):p.95-100.
    54. Raedler, H., M. Yang, P.N. Lalli, et al., Primed CD8(+) T-cell responses to allogeneic endothelial cells are controlled by local complement activation. Am J Transplant,2009.9(8):p.1784-95.
    55. Singer, A., T.I. Munitz, H. Golding, et al., Recognition requirements for the activation, differentiation and function of T-helper cells specific for class I MHC alloantigens. Immunol Rev,1987.98:p.143-70.
    56. Bolton, E.M., H.E. Armstrong, J.D. Briggs, et al., Cellular requirements for first-set renal allograft rejection. Transplant Proc,1987.19(1 Pt 1):p.321-3.
    57. Bolton, E.M., J.A. Gracie, J.D. Briggs, et al., Cellular requirements for renal allograft rejection in the athymic nude rat. J Exp Med,1989.169(6):p.1931-46.
    58. Zerrahn, J., W. Held, and D.H. Raulet, The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell,1997.88(5):p.627-36.
    59. Bittencourt, H., V. Funke, L. Fogliatto, et al., Imatinib mesylate versus allogeneic BMT for patients with chronic myeloid leukemia in first chronic phase. Bone Marrow Transplant,2008.42(9):p.597-600.
    60. Golshayan, D., J.C. Wyss, M. Buckland, et al., Differential role of naive and memory CD4 T-cell subsets in primary alloresponses. Am J Transplant,2010.10(8):p. 1749-59.
    61. Strainic, M.G., J. Liu, D. Huang, et al., Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+T cells. Immunity,2008.28(3):p.425-35.
    62. Liu, J., T. Miwa, B. Hilliard, et al., The complement inhibitory protein DAF (CD55) suppresses Tcell immunity in vivo. J Exp Med,2005.201(4):p.567-77.
    63. Czerkinsky, C.C., L.A. Nilsson, H. Nygren, et al., A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods,1983.65(1-2):p.109-21.
    64. Kalyuzhny, A.E., Chemistry and biology of the ELISPOT assay. Methods Mol Biol, 2005.302:p.15-31.
    65. Lakkis, F.G., A. Arakelov, B.T. Konieczny, et al., Immunologic'ignorance'of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med,2000.6(6):p.686-8.
    66. Lechler RI, Batchelor JR. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 1982; 155(1):31-41.
    67. Larsen CP, Morris PJ, Austyn JM. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med 1990; 171(1):307-314.
    68. Benichou G, Takizawa PA, Olson CA, et al. Donor major histocompatibility complex (MHC) peptides are presented by recipient MHC molecules during graft rejection. J Exp Med 1992; 175 (1):305-308.
    69. Demaria, S. and Y. Bushkin, Soluble HLA proteins with bound peptides are released from the cell surface by the membrane metalloproteinase. Hum Immunol,2000. 61(12):p.1332-8.
    70. Denton, M.D., C.S. Geehan, S.I. Alexander, et al. Endothelial cells modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated CD4(+) T cell alloactivation. J Exp Med,1999.190(4):p.555-66.
    71. Zhai, Y., L. Meng, F. Gao, et al., Allograft rejection by primed/memory CD8+T cells is CD154 blockade resistant:therapeutic implications for sensitized transplant recipients. J Immunol,2002.169(8):p.4667-73.
    72. Rolls, H.K., K. Kishimoto, V.M. Dong, et al., T-cell response to cardiac myosin persists in the absence of an alloimmune response in recipients with chronic cardiac allograft rejection. Transplantation,2002.74(7):p.1053-7.
    73. Heeger, P.S., T-cell allorecognition and transplant rejection:a summary and update. Am J Transplant,2003.3(5):p.525-33.
    74. Peng, Q., K. Li, K. Anderson, et al. Local production and activation of complement up-regulates the allostimulatory function of dendritic cells through C3a-C3aR interaction. Blood 2008(111):2452-61
    75. Connelly MA, Moulton RA, Smith AK, et al. Mycobacteria-primed macrophages and dendritic cells induce an up-regulation of complement C5a anaphylatoxin receptor (CD88) in CD3+murine T cells. J Leukoc Biol. Jan 2007;81(1):212-220.
    76. Lalli, P.N., M.G. Strainic, M. Yang, et al., Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood,2008.112(5):p.1759-66.
    77. Li, K., K.J. Anderson, Q. Peng, et al., Cyclic AMP plays a critical role in C3a-receptor-mediated regulation of dendritic cells in antigen uptake and T-cell stimulation. Blood,2008.112(13):p.5084-94.
    78. Peng, Q., K. Li, N. Wang, et al., Dendritic cell function in allostimulation is modulated by C5aR signaling. J Immunol,2009.183(10):p.6058-68.
    79. McGregor CG, Ricci D, Miyagi N, Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts. Transplantation.2012;93(7):686-92.
    80.龚非力.医学免疫学.第2版.北京:人民卫生出版社,2010.76-92
    81. Pfeifer, J. D., M. J. Wick, R. L. Roberts, et al. Phagocytic processing of bacterial antigens for class I presentation to T cells. Nature.1993; 361:359.
    82. Harding, C.V. Techniques for studying phagocytic processing of bacteria for class I and II MHC-restricted antigen recognition by T lymphocytes. Methods Cell Biol.1994; 45:307.
    83. Pratt JR, Basheer SA, Sacks SH. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med.2002 Jun;8(6):582-7
    1. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement:a key system for immune surveillance and homeostasis. Nat Immunol. Sep 2010;11(9):785-797.
    2. Baldwin WM, Ota H, Rodriguez ER. Complement in transplant rejection: diagnostic and mechanistic considerations. Springer Semin Immunopathol. Sep 2003;25(2):181-197.
    3. Wehner J, Morrell CN, Reynolds T, Rodriguez ER, Baldwin WM,3rd. Antibody and complement in transplant vasculopathy. Circ Res. Feb 2 2007; 100(2):191-203.
    4. Qian Z, Wasowska BA, Behrens E, et al. C6 produced by macrophages contributes to cardiac allograft rejection. Am J Pathol. Oct 1999;155 (4): 1293-1302.
    5. Stegall MD, Diwan T, Raghavaiah S, et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant. Nov 2011;11(11):2405-2413.
    6. Walport MJ. Complement. Second of two parts. N Engl J Med. Apr 12 2001;344(15):1140-1144.
    7. Walport MJ. Complement. First of two parts. N Engl J Med. Apr 5 2001;344(14):1058-1066.
    8. Helmy KY, Katschke KJ, Jr., Gorgani NN, et al. CRIg:a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell. Mar 10 2006; 124(5):915-927.
    9. Selander B, Martensson U, Weintraub A, et al. Mannan-binding lectin activates C3 and the alternative complement pathway without involvement of C2. J Clin Invest. May 2006;116(5):1425-1434.
    10. Huber-Lang M, Sarma JV, Zetoune FS, et al. Generation of C5a in the absence of C3:a new complement activation pathway. Nat Med. Jun 2006;12(6):682-687.
    11. Kang YS, Do Y, Lee HK, et al. A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with Clq. Cell. Apr 7 2006;125(1):47-58.
    12. Damman J, Schuurs TA, Ploeg RJ, Seelen MA. Complement and renal transplantation:from donor to recipient. Transplantation. Apr 15 2008;85 (7):923-927.
    B.Vieyra MB, Heeger PS. Novel aspects of complement in kidney injury. Kidney Int. Mar 2010;77(6):495-499.
    14. Farrar CA, Zhou W, Lin T, Sacks SH. Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J. Feb 2006;20 (2):217-226.
    15. Patel H, Smith RA, Sacks SH, Zhou W. Therapeutic strategy with a membrane-localizing complement regulator to increase the number of usable donor organs after prolonged cold storage. J Am Soc Nephrol. Apr 2006;17(4):1102-1111.
    16. Thurman JM, Royer PA, Ljubanovic D, et al. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J Am Soc Nephrol. Mar 2006;17(3):707-715.
    17. Zhang J, Hu W, Xing W, et al. The protective role of CD59 and pathogenic role of complement in hepatic ischemia and reperfusion injury. Am J Pathol. Dec 2011;179(6):2876-2884.
    18. Yamada K, Miwa T, Liu J, Nangaku M, Song WC. Critical protection from renal ischemia reperfusion injury by CD55 and CD59. J Immunol. Mar 15 2004;172(6):3869-3875.
    19. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL. Delayed graft function: risk factors and implications for renal allograft survival. Transplantation. Apr 15 1997;63(7):968-974.
    20. Salahudeen AK, Haider N, May W. Cold ischemia and the reduced long-term survival of cadaveric renal allografts. Kidney Int. Feb 2004;65(2):713-718.
    21. Shoskes DA, Shahed AR, Kim S. Delayed graft function. Influence on outcome and strategies for prevention. Urol Clin North Am. Nov 2001;28(4):721-732.
    22. Naesens M, Li L, Ying L, et al. Expression of complement components differs between kidney allografts from living and deceased donors. J Am Soc Nephrol. Aug 2009;20(8):1839-1851.
    23. Carroll MC. The complement system in B cell regulation. Mol Immunol. Jun 2004;41(2-3):141-146.
    24. Pratt JR, Basheer SA, Sacks SH. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med. Jun 2002;8(6):582-587.
    25. Lalli PN, Strainic MG, Lin F, Medof ME, Heeger PS. Decay accelerating factor can control T cell differentiation into IFN-gamma-producing effector cells via regulating local C5a-induced IL-12 production. J Immunol. Nov 1 2007;179(9):5793-5802.
    26. Peng Q, Li K, Anderson K, et al. Local production and activation of complement up-regulates the allostimulatory function of dendritic cells through C3a-C3aR interaction. Blood. Feb 15 2008;111(4):2452-2461.
    27. Peng Q, Li K, Patel H, Sacks SH, Zhou W. Dendritic cell synthesis of C3 is required for full T cell activation and development of a Thl phenotype. J Immunol. Mar 15 2006;176(6):3330-3341.
    28. Zhou W, Patel H, Li K, Peng Q, Villiers MB, Sacks SH. Macrophages from C3-deficient mice have impaired potency to stimulate alloreactive T cells. Blood. Mar 15 2006;107(6):2461-2469.
    29. Heeger PS. T-cell allorecognition and transplant rejection:a summary and update. Am J Transplant. May 2003;3(5):525-533.
    30. Zhou W, Peng Q, Li K, Sacks SH. Role of dendritic cell synthesis of complement in the allospecific T cell response. Mol Immunol. Jan 2007;44(1-3):57-63.
    31. Pavlov V, Raedler H, Yuan S, et al. Donor deficiency of decay-accelerating factor accelerates murine T cell-mediated cardiac allograft rejection. J Immunol. Oct 1 2008;181(7):4580-4589.
    32. Heeger PS, Lalli PN, Lin F, et al. Decay-accelerating factor modulates induction of T cell immunity. J Exp Med. May 16 2005;201 (10):1523-1530.
    33. Esposito A, Suedekum B, Liu J, et al. Decay accelerating factor is essential for successful corneal engraftment. Am J Transplant. Mar 2010;10(3):527-534.
    34. Strainic MG, Liu J, Huang D, et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+T cells. Immunity. Mar 2008;28(3):425-435.
    35. Connelly MA, Moulton RA, Smith AK, et al. Mycobacteria-primed macrophages and dendritic cells induce an up-regulation of complement C5a anaphylatoxin receptor (CD88) in CD3+ murine T cells. J Leukoc Biol. Jan 2007;81(1):212-220.
    36. Lalli PN, Strainic MG, Yang M, Lin F, Medof ME, Heeger PS. Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood. Sep 12008;112(5):1759-1766.
    37. Li K, Anderson KJ, Peng Q, et al. Cyclic AMP plays a critical role in C3a-receptor-mediated regulation of dendritic cells in antigen uptake and T-cell stimulation. Blood. Dec 15 2008;112(13):5084-5094.
    38. Peng Q, Li K, Wang N, et al. Dendritic cell function in allostimulation is modulated by C5aR signaling. J Immunol. Nov 15 2009;183(10):6058-6068.
    39. Baruah P, Dumitriu IE, Malik TH, et al. Clq enhances IFN-gamma production by antigen-specific T cells via the CD40 costimulatory pathway on dendritic cells. Blood. Apr 9 2009;113(15):3485-3493.
    40. Raedler H, Yang M, Lalli PN, Medof ME, Heeger PS. Primed CD8(+) T-cell responses to allogeneic endothelial cells are controlled by local complement activation. Am J Transplant. Aug 2009;9(8):1784-1795.
    41. Gueler F, Rong S, Gwinner W, et al. Complement 5a receptor inhibition improves renal allograft survival. J Am Soc Nephrol. Dec 2008;19(12):2302-2312.
    42. Raedler H, Vieyra MB, Leisman S, et al. Anti-complement component C5 mAb synergizes with CTLA4Ig to inhibit alloreactive T cells and prolong cardiac allograft survival in mice. Am J Transplant. Jul 2011;11 (7):1397-1406.
    43. Li Q, Peng Q, Xing G, et al. Deficiency of C5aR prolongs renal allograft survival. J Am Soc Nephrol. Aug 2010;21(8):1344-1353.
    44. Li K, Fazekasova H, Wang N, et al. Expression of complement components, receptors and regulators by human dendritic cells. Mol Immunol. May 2011;48 (9-10):1121-1127.
    45. Li K, Fazekasova H, Wang N, et al. Functional modulation of human monocytes derived DCs by anaphylatoxins C3a and C5a. Immunobiology. Jan 2012;217 (1):65-73.
    46. Ghannam A, Pernollet M, Fauquert JL, et al. Human C3 deficiency associated with impairments in dendritic cell differentiation, memory B cells, and regulatory T cells. J Immunol. Oct 1 2008; 181 (7):5158-5166.
    47. Keslar K, Rodriguez ER, Tan CD, Starling RC, Heeger PS. Complement gene expression in human cardiac allograft biopsies as a correlate of histologic grade of injury. Transplantation. Nov 15 2008;86(9):1319-1321.
    48. Collins AB, Schneeberger EE, Pascual MA, et al. Complement activation in acute humoral renal allograft rejection:diagnostic significance of C4d deposits in peritubular capillaries. J Am Soc Nephrol. Oct 1999;10(10):2208-2214.
    49. Feucht HE. Complement C4d in graft capillaries-the missing link in the recognition of humoral alloreactivity. Am J Transplant. Jun 2003;3(6):646-652.
    50.Herzenberg AM, Gill JS, Djurdjev O, Magil AB. C4d deposition in acute rejection: an independent long-term prognostic factor. J Am Soc Nephrol. Jan 2002; 13 (1):234-241.
    51. Carpio VN, Rech C, Eickhoff EI, et al. Clinical and pathological correlations of C4d immunostaining and its influence on the outcome of kidney transplant recipients. J Bras Nefrol. Jul-Sep 2011;33(3):329-337.
    52. Colvin RB. Antibody-mediated renal allograft rejection:diagnosis and pathogenesis. J Am Soc Nephrol. Apr 2007; 18(4):1046-1056.
    53. Kayler LK, Kiss L, Sharma V, et al. Acute renal allograft rejection:diagnostic significance of focal peritubular capillary C4d. Transplantation. Mar 27 2008;85(6):813-820.
    54. Kieran N, Wang X, Perkins J, et al. Combination of peritubular c4d and transplant glomerulopathy predicts late renal allograft failure. J Am Soc Nephrol. Oct 2009;20(10):2260-2268.
    55. Gonzalez-Stawinski GV, Tan CD, Smedira NG, Starling RC, Rodriguez ER. Decay-accelerating factor expression may provide immunoprotection against antibody-mediated cardiac allograft rejection. J Heart Lung Transplant. Apr 2008;27(4):357-361.
    56. Tan CD, Sokos GG, Pidwell DJ, et al. Correlation of donor-specific antibodies, complement and its regulators with graft dysfunction in cardiac antibody-mediated rejection. Am J Transplant. Sep 2009;9(9):2075-2084.
    57. Brodsky SV, Nadasdy GM, Pelletier R, et al. Expression of the decay-accelerating factor (CD55) in renal transplants-a possible prediction marker of allograft survival. Transplantation. Aug 27 2009;88(4):457-464.
    58. Jordan SC, Peng A, Vo AA. Therapeutic strategies in management of the highly HLA-sensitized and ABO-incompatible transplant recipients. Contrib Nephrol. 2009;162:13-26.
    59. Bohmig GA, Bartel G, Regele H, Wahrmann M. Prospects and limitations of post-transplantation alloantibody detection in renal transplantation. Hum Immunol. Aug 2009;70(8):640-644.
    60. Griesemer AD, Okumi M, Shimizu A, et al. Upregulation of CD59:potential mechanism of accommodation in a large animal model. Transplantation. May 15 2009;87(9):1308-1317.
    61. Iwasaki K, Miwa Y, Ogawa H, et al. Comparative study on signal transduction in endothelial cells after anti-a/b and human leukocyte antigen antibody reaction: implication of accommodation. Transplantation. Feb 27 2012;93(4):390-397.
    62. Lewis AG, Kohl G, Ma Q, Devarajan P, Kohl J. Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin Exp Immunol. Jul 2008;153(1):117-126.
    63. Zheng X, Zhang X, Feng B, et al. Gene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury. Am J Pathol. Oct 2008;173(4):973-980.
    64. Kelly R, Richards S, Hillmen P, Hill A. The pathophysiology of paroxysmal nocturnal hemoglobinuria and treatment with eculizumab. Ther Clin Risk Manag. 2009;5:911-921.
    65. Locke JE, Magro CM, Singer AL, et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am J Transplant. Jan 2009;9(1):231-235.
    66. Biglarnia AR, Nilsson B, Nilsson T, et al. Prompt reversal of a severe complement activation by eculizumab in a patient undergoing intentional ABO-incompatible pancreas and kidney transplantation. Transpl Int. Aug 2011;24(8):e61-66.
    67. Chandran S, Baxter-Lowe L, Olson JL, Tomlanovich SJ, Webber A. Eculizumab for the treatment of de novo thrombotic microangiopathy post simultaneous pancreas-kidney transplantation--a case report. Transplant Proc. Jun 2011;43 (5):2097-2101.
    68. Ghebremariam YT, Engelbrecht G, Tyler M, et al. Vaccinia virus complement control protein (VCP) improves kidney structure and function following ischemia/reperfusion injury in rats. J Surg Res. Apr 2010;159(2):747-754.
    69. McGregor CG, Ricci D, Miyagi N, Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts. Transplantation.2012 Apr 15;93(7):686-92.
    [1]Medof, ME, Kinoshita T, and Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J.Exp,Med.1984; 160:1558-1578.
    [2]Medof ME, Walter El, Roberts WL, et al. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry 1986;25:6740-6747.
    [3]Nonaka M, Miwa T, Okada N, et al. Multiple isoforms of guinea pig decay-accelerating factor (DAF) generated by alternative splicing. J Immunol.1995;155:3037-48.
    [4]Kwan WH, van der Touw W, Heeger PS. Complement regulation of T cell immunity.Immunol Res.2012 Apr 5. [Epub ahead of print].
    [5]Fang C, Miwa T, Song WC. Decay-accelerating factor regulates T-cell immunity in the context of inflammation by influencing costimulatory molecule expression on antigen-presenting cells.Blood.2011;118(4):1008-14.
    [6]Chongyun Fang,Takashi Miwa,Hao Shen.Complement-Dependent Enhancement of CD8+T Cell Immunity to Lymphocytic Choriomeningitis Virus Infection in Decay-Accelerating Factor-Deficient Mice. J Immunol.2007; 179(5):3178-8.
    [7]Kim C, Bergelson JM. Echovirus 7 entry into polarized intestinal epithelial cells requires clathrin and rab7. mBio.2012;3(2):e00304-11.
    [8]Toomey CB, Cauvi DM, Song WC,et al. Decay-accelerating factor 1 (Daf1) deficiency exacerbates xenobiotic-induced autoimmunity.Immunology.2010; 131 (1):99-106.
    [9]Bani-Ahmad M, El-Amouri IS, Ko CM, et al.The role of decay accelerating factor in the immunopathogenesis of cytomegalovirus infection. Clin Exp Immunol. 2011,163(2):199-206.
    [10]Le Bas-Bernardet S, Tillou X, Poirier N,et al..notransplantation of galactosyl-transferase knockout, CD55, CD59, CD39, and fucosyl-transferase transgenic pig kidneys into baboons. Transplant Proc.2011;43(9):3426-30.
    [11]刘秉乾,武玉东,魏金星,等.1,2一岩藻糖苷转移酶和衰变加速因子基因转移克服异种移植急性血管排斥反应的研究.中华实验外科杂志,2009;9:780-782
    [12]McGregor CG, Ricci D, Miyagi N, Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts. Transplantation.2012,;93(7):686-92.
    [13]Iwasaki K, Miwa Y, Ogawa H,et al. Comparative study on signal transduction in endothelial cells after anti-a/b and human leukocyte antigen antibody reaction:accommodation.Transplantation.2012;93(4):390-7.
    [14]Gonzalez-Stawinski GV, Tan CD, Smedira NG, et al. Decay-accelerating factor expression may provide immunoprotection against antibody-mediated cardiac allograft rejection. J Heart Lung Transplant.2008;27(4):357-61.
    [15]Tan CD, Sokos GG, Pidwell DJ, et al. Correlation of donor-specific antibodies, complement and its regulators with graft dysfunction in cardiac antibody-mediated rejection. Am J Transplant.2009; 9(9):2075-84.
    [16]Carpio VN, Rech C, Eickhoff El, et al.Clinical and pathological correlations of C4d immunostaining and its influence on the outcome of kidney transplant recipients. J Bras Nefrol.2011;33(3):329-37.
    [17]Brodsky SV, Nadasdy GM, Pelletier R, et al. Expression of the decay-accelerating factor (CD55)in renal transplants -a possible prediction marker of allograft survival. Transplantation.2009; 88(4):457-64.
    [18]Parker C.Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet.2009, 28;373(9665):759-67.
    [19]Kaiafa G, Papadopoulos A, Ntaios G. Detection of CD55-and CD59-deficient granulocytic populations in patients with myelodysplastic syndrome. Ann Hematol.2008;87(4):257-62.
    [20]Gwamaka M, Fried M, Domingo G, et al. Early and extensive CD55 loss from red blood cells supports a causal role in malarial anaemia. Malar J. 2011;29;10:386.
    [21]Guo B, Ma ZW, Li H. Mapping of binding epitopes of a human decay-accelerating factor monoclonal antibody capable of enhancing rituximab-mediated complement-dependent ytotoxicity. Clin Immunol.2008; 128(2):155-63.
    [22]Pacheco LD, Hankins GD, Costantine MM, et al. Am J Perinatol. The role of human decay-accelerating factor in the pathogenesis of preterm labor. Amer J Perinatol 2011; 28(7):565-570.
    [23]Nowicki S, Izban MG, Pawelczyk E, et al.Preterm labor:CD55 in maternal blood leukocytes. Am J Reprod Immunol.2009;61(5):360-7.
    [24]Wirstlein P, Mikolajczyk M, Skrzypczak J. Assessment of the transcription levels for the complement activation control system in eutopic endometrium in women with two or more consecutive miscarriages of unknown etiology. Folia Histochem Cytobiol.2010;48(3):328-32.
    [25]Garcia-Valladares I, Atisha-Fregoso Y, Richaud-Patin Y. Diminished expression of complement regulatory proteins (CD55 and CD59) in lymphocytes from systemic lupus erythematosus patients with lymphopenia.Lupus.2006;15(9):600-5.
    [26]Soltys J, Halperin JA, Xuebin Q. DAF/CD55 and Protectin/CD59 modulate adaptive immunity and disease outcome in experimental autoimmune myasthenia gravis. J Neuroimmunol.2012;244(1-2):63-9.
    [27]Song C, Xu Z, Miao J, Xu J,et al.Protective effect of scFv-DAF fusion protein on the complement attack to acetylcholine receptor:A possible option for treatment of myasthenia gravis. Muscle Nerve.2012;45(5):668-75.
    [28]Lihua Bao, Mark Haas, Jeffrey Pippin,Focal and segmental glomerulosclerosis induced in mice lacking decay-accelerating factor in T cells.J Clin Invest. 2009;119(5):1264-1274.
    [29]Sakuma M, Morooka T, Wang Y, et al. The intrinsic complement regulator decay-accelerating factor modulates the biological response to vascular injury.Arterioscler Thromb Vasc Biol.2010;30(6):1196-202.
    [30]Diaz TM, Manez R, Moscoso I, et al. The serum level of xenoantibodies, and hDAF or alphaGAL expression on pig cells, modulate in vitro the protection given by hDAF to primate complement-mediated damage, Transplant Proc. 2005;37:510-1.
    [31]W. Fecke, J. Long, A. Richards, R. et al. Protection of hDAF-transgenic porcine endothelial cells against activation by human complement:role of the membrane attack complex, Xenotransplantation 2002;9(2):97-105.
    [32]S. Menoret, M. Plat, G. Blancho, et al. Characterization of human CD55 and CD59 transgenic pigs and kidney xenotransplantation in the pig-to-baboon combination, Transplantation.2004;77 (9):1468-1471.
    [33]Loveland BE, Milland J, Kyriakou P, et al. Character-ization of a CD46 transgenic pig and protection of transgenic kidneys against hyperacute rejection in non-immunosuppressed baboons, Xeno-transplantation.2004; 11 (2):171-183.
    [34]S.H. Li, P.E. Szmitko, R.D. Weisel, et al. C-reactive protein upregulates complement-inhibitory factors in endothelial cells, Circulation.2004; 109: 833-836.
    [35]Tulamo R, Frosen J, Paetau A, Seitsonen S, Hernesniemi J, Niemela M, Jarvela I, Meri S. Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am J Pathol. 2010;177(6):3224-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700