α晶体蛋白促进视网膜神经节细胞轴突再生的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
α晶体蛋白是晶状体来源的“神经保护物质”之一,它能有效地促进损伤后的视神经再生,但其作用机制不明。视神经损伤后RGCs的继发性死亡,是视神经难以再生的原因之一,但是,单纯保护RGCs存活并不能引起视神经的有效再生,因为损伤局部环境中的抑制性物质是阻碍视神经再生的另一关键因素。这些抑制性物质主要有髓鞘源性抑制物,胶质瘢痕来源的抑制物,以及生长锥导向抑制物。目前研究已证明:RhoA/Rock的表达与活性变化对中枢神经元轴突再生有着直接影响,是众多轴突再生抑制物信号传导的共同作用点。而α晶体蛋白不仅能促进RGCs存活,而且对RGCs轴突再生也具有明显促进作用。那么,阻碍轴突再生抑制物信号传导的关节点-----RhoA/Rock信号通路的传导,是否是α晶体蛋白促进视神经再生的机制?目前尚不清楚。
     目的:通过在髓鞘抑制物质包被的培养板上培养RGCs,研究α晶体蛋白是否能拮抗髓鞘抑制物的作用而促进RGCs突起生长。而后分别通过在体视神经不全损伤大鼠模型和离体RGCs培养,研究α晶体蛋白对RhoA、Rock的表达和活化情况,其下游物质磷酸化情况,RGCs轴突再生及生长锥萎缩情况的影响。从而探讨RhoA/Rock信号通路在α晶体蛋白促进视神经再生中的作用。为视神经损伤和再生的基础研究提供理论依据,为临床治疗视神经损伤探索可行方法。
     方法:1、从大鼠晶状体中提取混合晶体蛋白,用分子排阻凝胶色谱法纯化分离α晶体蛋白,肽指纹质谱法鉴定其纯度;从大鼠脑组织中提取髓鞘抑制物质,并对其成份及抑制神经元轴突生长的功能进行鉴定。2、在体实验:以成年Long Evans大鼠为研究对象,分为视神经损伤后玻璃体腔注射α晶体蛋白组、RhoA/Rock抑制剂组(阳性对照组),和牛血清白蛋白组(阴性对照组)。通过western blot分析统计视网膜中RhoA/Rock表达变化,亲和沉淀法研究RhoA活性变化,并进行统计学分析。同时视神经顺行示踪检测各组视神经再生长度。3、离体实验:在髓鞘抑制物包被的培养板上进行RGCs离体培养,分析比较培养1、3、5d,α晶体蛋白组与阳性和阴性对照组有突起的细胞数、最长突起长度及cofilin和MLC磷酸化程度的统计学差异。同时观察各组生长锥的萎缩情况。
     结果:1、从大鼠晶状体中提取并纯化的α晶体蛋白经肽质纹质谱分析为alphaA-crystalline和alphaB-crystalline的混合物。western blot检测提取的髓鞘抑制物中含有髓鞘抑制物NogoA和MAG;在RGCs培养液中加入髓鞘抑制物1小时后,细胞生长状态差,出现细胞碎片,生长锥的膨大明显缩小,板足回退;2h后生长锥萎缩消失,RGCs突起断裂。在髓鞘抑制物质包被的培养板上培养RGCs,培养1d、2d、3d、5d,α晶体蛋白组有突起的细胞数均较牛血清白蛋白组增多,突起长度也明显长于牛血清白蛋白组(P<0.01)。
     2、正常成年大鼠视网膜中,仅RGCs层可见少量RhoA和Rock表达;视神经损伤后1天,RhoA和Rock主要分布于RGCs层;损伤3天达内丛状层;损伤7天后,分布于RGCs、内丛状层、内核层及外丛状层。
     3、视神经损伤后1、3、7天,RhoA和Rock的表达均高于正常组(P<0.01~0.05),并且活化的RhoA均较正常组明显增多(P<0.01)。
     4、视神经损伤后,α晶体蛋白组、fasudil组及C3转移酶组,活化的RhoA均较牛血清白蛋白组明显减少(P<0.01~0.05)。但各组RhoA和Rock在视网膜中的表达量均无显著统计学差异。
     5、视神经损伤后2周,牛血清白蛋白组仅可见极少量的神经纤维长入损伤区。而α晶体蛋白组及fasudil组,不仅损伤区可见较多的神经纤维长入,而且,神经纤维越过损伤区长入损伤区的远端。
     6、在蛋白上样量基本一致的情况下,α晶体蛋白组和fasudil组磷酸化-cofilin和磷酸化-MLC占总cofilin和总MLC的比率,均明显少于牛血清白蛋白组(P<0.01),α晶体蛋白组和fasudil组比较无显著统计学差异。
     7、在髓鞘抑制物质包被的培养板上培养RGCs,培养1、3、5d,α晶体蛋白组和fasudil组有突起的RGCs数目均明显多于牛血清白蛋白组(P<0.01),细胞最长突起长度也显著增长(P<0.01)。与α晶体蛋白组比较,培养1d时,有突起的细胞数fasudil组明显增多(P<0.01);培养3d和5d时,两组无显著统计学差异。但fasudil组细胞最长突起长度,于培养1、3、5d均较α晶体蛋白组明显增长(P<0.01)。
     8、未加髓鞘的正常生长锥末端可见明显的膨大,并且可见较多的细小指状突起。加入髓鞘后,牛血清白蛋白组细胞突起末端膨大的生长锥消失,呈断裂状且未见细小分支;α晶体蛋白组和fasudil组细胞突起末端仍可见较小的膨大,并且可见少量的指状突起。
     结论:1、视神经损伤可显著增加RhoA、Rock在视网膜中的表达量,扩大其在视网膜中的分布范围,并显著增强RhoA活性。RhoA/Rock在视神经损伤后再生过程中发挥重要的作用。
     2、α晶体蛋白能拮抗髓鞘抑制物质的抑制作用促进RGCs轴突再生。
     3、抑制RhoA的激活,阻碍髓鞘抑制物质的信号传导,防止生长锥的萎缩是α晶体蛋白促进RGCs轴突再生的机制之一,RhoA/Rock信号通路在α晶体蛋白促进RGCs轴突再生中发挥着重要的作用。
As one of lentogenic factors, alpha-crystallin can promote axon regeneration after optic nerve injury. So far, the mechanism is still poorly defined. Subsequent death of retinal ganglion cells(RGCs) was one reason of the failure in axon regeneration. However, promoting RGCs survival only can ont result in long axon regeneration. Recent research on molecular inhibition in central nervous microenviroment have indicated the inhibitory microenviroment plays an important role in the failure of regeneration. There are many inhibitors of regeneration, such as Nogo, myelin associated glycoprotein,oligodendrocyte myelin glcoprotein, chondroitin sulfate proteoglycans, ephexin and so on. Rencent studies on molecular inhibition in central nervous microenviroment have indicated a common crucial signaling event for all axonal inhibitors and repellents is the activation of RhoA/Rock signaling pathway. Alpha-crystallin can not only promote RGCs survival, but also stimulate axon regeneration. Then, can alpha-crystallin stimulate axon regeneration through RhoA/Rock signaling pathway?
     Objective: To study the antagonism effect of alpha-crystaliin on myelin and stimulate RGCs axon regeneration . And to study whether alpha-crystallin can stimulate axon regeneration through RhoA/Rock signaling pathway or not by analysing the expression and activation of RhoA and Rock, the phosphorylation of cofilin and myosin light chain(MLC), RGCs axon regeneration and cone growth collapse in vivo and in vitro.
     Methods: 1. Extracted and identified the myelin and alpha-crystallin from rats. 2. Alpha-crystallin, bovine serum albumin(BSA) and the inhibitor of RhoA/Rock were injected into vitreous cavity respectively. The expression of RhoA and Rock were analysed by western blot and the activation of RhoA assayed by affinity precipitation. At the same time, the regeneration length of optic nerve were measured by anterograde tracing using cholera toxin subunit B (CTB). 3. RGCs were cultured on myelin-coated dishes with DMEM containing alpha-crystallin , BSA, and the inhibitor of RhoA/Rock. The density of RGCs with neurite and the longest neurite of the cells were measured on day 1,,3 and 5. The phosphorylation of cofilin and MLC were assayed by western blot. And the morphology of growth cone was observed by scanning electron microscope.
     Results: 1. Peptide mass fingerprinting analysis showed that alpha-crystallin was composed of alphaA-crystallineand alphaB-crystalline. The results of western blot showed that myelin contained NogoA and myelin associated glycoprotein.And myelin could induced RGCs growth cone retraction.
     2. In normal retina, RhoA and Rock were only distributed in RGCs layer. One day after optic nerve injury, the distribution of RhoA and Rock was the same as that in normal retina. After 3 days, RhoA and Rock existed in both the RGCs and inner plexiform layers. Its immunoreactivity was abundant in RGCs layers, inner plexiform layers, inner nuclear layers and outer plexiform layers 7 days after optic nerve injury.
     3. Compared to the normal retina, the expression of RhoA and Rock and RhoA activation were enhanced significantly 1, 3 and 7 days after optic nerve injury.
     4. Compared to BSA, treatment of alpha-crystallin, C3 transferase and fasudil resulted in significant decrease in GTP-RhoA after optic nerve injury. However, the expression of RhoA and Rock can not be decrease.
     5. Tow weeks after optic nerve injury, a little RGCs axon regenerated into crushed region. Whereas, a lot of axons regrowed across the crushed region and entered the distal optic nerve after treated with alpha-crystallin or fasudil.
     6. Compared to BSA, alpha-crystallin and fasudi resulted in significant decrease in phosphorylation of cofilin and MLC. And the phosphorylation of cofilin and MLC were similar between alpha-crystallin and fasudil.
     7. Compared to the BSA control group, alpha-crystallin and fasudil could increase the density of RGCs with neurite significantly after cultured 1, 3 and 5 days. Alpha-crystallin and fasudil could also promote neurite outgrowth in comparison with the BSA.
     8. In normal RGCs axon, growth cone, filopodia and lamellipodia can be seen. The growth cone disappeared after treated with BSA and myelin, and no filopodia and lamellipodia can be seen. However, alpha-crystaliin and fasudil could antagonize myelin and inhibite growth cone retraction in a certain extent. Although, the filopodia and lamellipodia were not very typical, same processes can be seen at the end of the axon after treated with alpha-crystallin and fasudil.
     Conclusions: 1. The expression of RhoA and Rock was enhanced significantly, and the disstribution was extended after optic nerve injury. RhoA/Rock was involved in optic nerve degeneration.
     2. Alpha-crystaliin could antagonize myelin and stimulate RGCs axon regeneration.
     3. Inhibiting RhoA activation was one of the mechanisms of alpha-crystallin stimulating RGCs axon regeration. Alpha-crystallin could stimulate axon regeneration through RhoA/Rock signaling pathway.
引文
1. Mansour-Robaey S,Clarke DB.et al. Effect of ocular injury and administration of brain-derived neurotrophic factors on survival and regrowth of axotomized retinal ganglion cells.Proc Natl Acad Sci USA. 1994;91:1632-1636.
    2. Dietary Fisherm,Mitrofanis Pavlidis, et al.Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in Vivo and in culture.Invest Ophthalmol Visual Sci.2000;14: 3943-3954.
    3. Steven Leon, Yuqin Yin, et al. Lens injury stimulates axon regeneration in the mature rat optic nerve.J.Neurosci. 2000;20:4615-4626.
    4. Dietary Fisher,Peter Heiduschka, et al.Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats.Exp Neuron. 2001;172:257-272
    5. Barbara Lorber,Martin Berry,Ann Logan.et al. Effect of lens lesion on neurite outgrowth of retinal ganglion cells in vitro.Molecular and Cellular Neuroscience. 2002;21:301-311.
    6. 王艳华,王一. 晶体蛋白对离体培养的大鼠视网膜神经节细胞的作用. 中华创伤杂志. 2005,21(2):98-103
    7. 刘志敏,王一. 混合晶状体蛋白对大鼠视神经损伤后视网膜神经节细胞的保护作用. 中华创伤杂志. 2006;22(12):926
    8. 刘康,王一,王艳华,牛建军,曾玉晓. 晶状体蛋白促大鼠视网膜神经节细胞存活和突起生长的体外研究. 华创伤杂志, 2006;23(1):41-46.
    9. 张莉,王一. α-晶状体蛋白对视神经损伤后视网膜神经节细胞保护作用的研究. 中华创伤杂志,2007,待印
    10. 王晓芹,王一. α 晶体蛋白对视网膜神经节细胞作用初步研究.第三军医大学学报,2006,19(28)1955-1958。
    11. Martin E Schwab. Nogo and axon regeneration. Current Opinion in Neurobiology 2004, 14:118–124
    12. Glenn Yiu, Zhigang He. Signaling mechanisms of the myelin inhibitors of axon regeneration. Current Opinion in Neurobiology. 2003; 13(5):545–551.
    13. Tang BL.Inhibitors of neuronal regeneration:mediators and signaling mechanisms.Neurochemistry International. 2003; 42(3):189–203.
    14. Benxiu Ji, Mingwei Li, Wu-Tian Wu, Leung-Wah Yick, Xinhua Lee. et al. LINGO-1antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol. Cell. Neurosci. 2006, 33:311–320
    15. Bertrand J., Di Polo A.,McKerracher L., Enhanced survival and regeneration of axotomized retinal neurons by repeated delivery of cell-permeable C3-like Rho antagonists. Neurobiology of Disease 2007;25: 65–72.
    16. Monnier PP., Sierra A., Schwab JM., Henke-Fahle S., Mueller BK. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Molecular and Cellular Neuroscience2003;22:319–330.
    17. Sung JK., Miao L., Calvert JW., Huang L., Louis Harkey H., Zhang JH. A possible role of RhoA/Rho-kinase in experimental spinal cord injury in rat. Brain Research.2003; 959: 29–38.
    18. 章静波.细胞和组织培养技术.北京.人民卫生出版社,2002:14.
    19. 严 宏,惠延年,李明勇. 阿斯匹林类药物和 α-晶体蛋白保护酯酶的失活. 第四军医大学学报. 2002;23(5):476-479.
    20. Derham BK,Harding JJ.Effect of aging on the chaperone-like function of human α-crystallin assessed by three methods.BiochemJ.1997;328 (3):763-768.
    21. Slingsby C,Bateman OA.Rapid separation of bovine beta-crystallin subunits beta B1, beta B2, beta B3, beta A3 and beta A4. Exp.Eye.Res, 1990;51(1): 21-26.
    22. Kampi JL, Marjorie S, Yoji U. Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map. Invest Ophthalmol Vis Sci. 2002; 43(1): 216-24.
    23. Norton WT, Poduslo SE. Myelination in rat brain: method of myelin isolation. Journal of Neurochemistry, 1973;21:749-757.
    24. Poduslo SE.The isolation and characterization of a plasma memerane and a myelin fraction derived from oligodendroglia of calf brain. Journal of Neurochemistry, 1975;24:647-654.
    25. Laforest S, Milanini J, Parat F, Thimonier J, Lehmann M. Evidences that β1 integrin and Rac1 are involved in the overriding effect of laminin on myelin-associated glycoprotein inhibitory activity on neuronal cells. Mol. Cell. Neurosci. 2005;30:418 – 428.
    26. 王艳华,王一,刘勇等 Long Evans 大鼠视网膜神经节细胞培养与鉴定.第三军医大学学报.2004,26(5):412-415
    27. 谢学军,李萍,肖丹,黄秀蓉,杜联,李翔,李瑞荃. 糖障明对糖尿病大鼠晶状体水溶性蛋白质的影响.中国中医眼科杂志,2001;11(3):128-130
    28. 赵惠仁,胡书群,任孝衡等.老年性白内障晶体水溶性蛋白、尿素溶性蛋白和纤维细胞膜蛋白的改变.中华眼科杂志,1994;30(3):186
    29. 师治贤,王俊德,主编.生物大分子的液相色谱分离和制备.北京:科学出版社,1992:61-64
    30. 施良和,主编.凝胶色谱法.北京:科学出版社,1980:2-4
    31. 欧阳平凯,胡永红,主编.生物分离原理及技术,北京:化学工业出版社,1999:225-226
    32. 赵永芳,主编.生物化学技术原理及其应用(第二版).武汉:武汉大学出版社,1994:113
    33. T. Stupp, S. Thanos. Can lenticular factors improve the posttrauma fate of neurons?. Progress in Retinal and Eye Research . 2005;24 :241–257
    34. 蔡文琴,主编.医用神经生物学基础.重庆:西南师范大学出版社,2001:428-433
    35. Joseph Horwitz.The function of alpha-crystalline in vision.Cell Developmental Biology. 2000;(11):53-60
    36. Joseph Horwitz.Alpha-crystalline.Experimental Eye Research. 2003;76: 145-153.
    37. 钱小红,贺福初主编.蛋白质组学:理论与方法.北京:科学出版社,2003:110-111
    38. 〔德〕坎普(Kamp,R.M.),〔希腊〕T.乔里-帕帕多普洛(T. Choli-Papadopoulou),编著;施蕰渝等译. 蛋白质结构分析:制备、鉴定与微量测序. 北京:科学出版社,2000:199-201
    39. Christine E. Bandtlow. Regeneration in the central nervous system. Experimental Gerontology 2003;38: 79–86.
    40. Rqdiger Schweigreiter, Adrian R. Walmsley, Barbara Niederfst,Dieter R. Zimmermann, Thomas Oertle, Elisabeth Casademunt,Stefan Frentzel.et al. Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75/NgR-independent pathways that converge at RhoA. Mol. Cell. Neurosci. 2004;27:163–174.
    41. Jaimie F. Borisoff, Carmen C.M. Chan, Gordon W. Hiebert, Loren Oschipok,George S. Robertson, R. Zamboni, John D. Steeves.et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Molecular and Cellular Neuroscience 2003;22:405–416.
    42. Bertrand J. ,Winton MJ, Rodriguez-Hernandez N, Campenot RB, McKerracher L. Application of Rho Antagonist to Neuronal Cell Bodies Promotes Neurite Growth in Compartmented Cultures and Regeneration of Retinal Ganglion Cell Axons in the Optic Nerve of Adult Rats. J Neurosci 2005;25(5):1113–1121.
    43. 蔡文琴.现代实用细胞与分子生物学实验技术.北京.人民军医出版社,2003:115-138.
    44. Nusser N, Gosmanova E, Zheng Y, Tigyi G. Nerve Growth Factor Signals through rkA, Phosphatidylinositol 3-Kinase, and Rac1 to Inactivate RhoA during the Initiation of Neuronal Differentiation of PC12 Cells. J Biol Chem. 2002; 277(39):35840-35846.
    45. Sordella R, Jiang W, Chen GC, Curto M, Settleman J. Modulation of Rho GTPase Signaling Regulates a Switch between Adipogenesis and Myogenesis. Cell.2003;113: 147–158.
    46. Ettienne-Manneville, Hall A: Rho GTPases in cell biology.Nature,2002, 420:629-635.
    47. Bar-Sagi, D, Hall, A, Ras and Rho GTPases: a family reunion. Cell.2000,103, 227–238
    48. Bishop, AL, Hall, A, Rho GTPases and their effector proteins. Biochem. J. 2000.2, 241–255.
    49. Raivich G, Makwana M. The making of successful axonal regeneration:Genes, molecules and signal transduction pathways.Brain Research Reviews. 2007.53,287-311.
    50. Santos-Bredariol AS, Santos MF, Hamassaki-Britto DE. Distribution of the small molecular weight GTP-binding proteins Rac1, Cdc42, RhoA and RhoB in the developing chick retina.J Neurocytology 2002,31:149-159.
    51. Kitaoka Y, Kitaoka Y, Kumai T, Lam TT, Kuribayash i K, Isenoumi K, Munemasa Y, Motoki M, Kobayashi S, Ueno S. Involvement of RhoA and possible neuroprotective effect of fasudil, a Rho kinase inhibitor, in NMDA-induced neurotoxicity in the rat retina. Brain Research. 2004,1018:111-118。
    52. Schmidt A, Hall A, Guanine nucleotide exchange factors for Rho GTPases: turning on the switch, Genes Dev. 2002,16:1587–1609.
    53. Dubreuil CI, Winton MJ,McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system.J Cell Biol. 2003,162(2): 233-243.
    54. 〔美〕戈莱米斯(Golemis,E.)编著;贺福初等译.分子克隆手册:蛋白质-蛋白质相互作用. 北京:科学出版社,2002:1481-1483
    55. 〔美〕萨姆布鲁克(Sambrook,J.)等编著;黄培堂等译.分子克隆实验指南.北京:中国农业出版社,2004:35-37
    56. Nikolic M. The role of Rho GTPases and associated kinases in regulation neurite outgrowth. Int J Biochem Cell Biol. 2002,34:731-745
    57. Isenmann, S., Kretz, A., Cellerino, A., Molecular determinants of retinal ganglion celldevelopment, survival, and regeneration. Prog.Retin. Eye Res. 2003;22, 483–543.
    58. Alan R. Harvey, Ying Hu, Simone G. Leaver,et al. Gene therapy and transplantation in CNS repair: The visual system. Progress in Retinal and Eye Research 2006;25: 449–489
    59. Inoue, T., Hosokawa, M., Morigiwa, K., Ohashi, Y., Fukuda, Y., Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. J. Neurosci. 2002;22:4468–4477.
    60. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K, Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 1996.271, 20246– 20249.
    61. Profyris C, Cheema SS, Zang DW, Azari MF, Boyle K, Petratos S,Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease 2004.15 ,415–436.
    62. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi, K, Regulation of myosin phosphatase by Rho and Rhoassociated kinase (Rho-kinase). Science 1996. 273, 245– 248.
    63. Nishio Y, Koda M, Kitajo K, Seto M, Hata K, Taniguchi J, Moriya H,et al. Delayed treatment with Rho-kinase inhibitor does not enhance axonal regeneration or functional recovery after spinal cord injury in rats. Experimental Neurology 2006;200:392–397.
    64. Genth H, Gerhard R, Maeda A, Amano M, Kaibuchi K, Aktories K,Just I. Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 Exoenzyme in the Rho-Guanine Nucleotide Dissociation Inhibitor-1 Complex. J. Biol. Chem. 2003;278:28523-28527.
    65. Kaibuchi K, Kuroda S, Amano M, Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells, Annu. Rev. Biochem. 68 (1999) 459– 486.
    66. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, et al. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 2003;93:767–775.
    67. Sauzeau V, Le Mellionnec E, Bertoglio J, Scalbert E, Pacaud P, Loirand G. Human urotensin II-induced contraction and arterial smooth muscle cell proliferation are mediated by RhoA and Rho-kinase. Circ Res 2001;88:1102–1104.
    68. Hara M, Takayasu M, Watanabe K, Noda A, Takagi T, Suzuki Y, Yoshida J, Proteinkinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats, J. Neurosurg. 2000;93:94– 101.
    69. Li F, Xia W, Li A, Zhao C, Sun R. Long-term inhibition of Rho kinase with fasudil attenuates high flow induced pulmonary artery remodeling in rats. Pharmacological Research 2007;55:64–71.
    70. Yamaguchi H, Kasa M, Amano M, Kaibuchi K, Hakoshima T. Molecular Mechanism for the Regulation of Rho-Kinase by Dimerization and Its Inhibition by fasudil. Structure 2006;14: 589–600.
    71. Hiraga A, Kuwabara S, Doya H,Kanai K,Fujitani M,Taniguchi J,Arai K,et al. Rho-kinase inhibition enhances axonal regeneration after peripheral nerve injury. J Peripher Nerv Syst. 2006; 11(3): 217-224.
    72. Feldblum S., Arnaud S., Simon M., Rabin O., D’Arbigny P., Efficacy of a new neuroprotective agent, gacyclidine, in a model of rat spinal cord injury, J. Neurotrauma .2000; 17: 1079–1093.
    73. Herdegen T., Blume A., Buschmann T., Georgakopoulos E., Winter C., Schmid W., Hsieh T.F., Zimmermann M., Gass P. Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation. Neuroscience. 1997;81: 199–212.
    74. Herdegen T., Blume A., Buschmann T., Georgakopoulos E., Winter C., Schmid W., Hsieh T.F., Zimmermann M., Gass P. Expression of activating transcription factor-2, serum response factor and cAMP/Ca response element binding protein in the adult rat brain following generalized seizures, nerve fibre lesion and ultraviolet irradiation. Neuroscience. 1997;81: 199–212.
    75. Shirvan A., Kimron M., Holdengreber V., Ziv I., Ben-Shaul Y.,Melamed S., Melamed E., Barzilai A., Solomon A.S. Antisemaphorin 3A antibodies rescue retinal ganglion cells from cell death following optic nerve axotomy. J. Biol.Chem. 2002;277: 49799–49807.
    76. Meberg PJ, Bamburg JR. Increase in Neurite Outgrowth Mediated by Overexpression of Actin Depolymerizing Factor. The Journal of Neuroscience.2000; 20(7):2459-2469.
    77. Bentley D, Toroian-Raymond A. Disoriented pathfinding by pio-neer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 1986;323:712-715.
    78. Fan J, Mansfield SG, Redmond T, Gordon-Weeks PR, Raper JA.1993 The organizationof F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 1993 ;121:867-878.
    79. Lin CH, Forscher P. Cytoskeletal remodeling during growth cone-target interactions. J Cell Biol 1993;121:1369-1383.
    80. Kuhn TB, Meberg PJ, Brown MD, Bernstein BW, Minamide LS, Jensen JR, Okada K, Soda EA, Bamburg JR, Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho-family GTPases. J. Neurobiol. 2000.44, 126–144.
    81. Sumi T, Matsumoto K, Takai Y, Nakamura T, Cofilin phosphorylation and actin cytoskeletal dynamics regulated by Rhoand Cdc42-regulated LIM-kinase 2. J. Cell Biol. 1999.147, 1519–1532.
    82. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P, Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998. 393, 805–809.
    83. Morgan TE, Lockerbie RO, Minamide LS, Browning MD, Bamburg JR. Isolation and characterization of a regulated form of actin depolymerizing factor. J Cell Biol 1993;122:623-633.
    84. Edwards DC, Sanders LC, Bokoch GM, Gill GN, Activation of LIM-kinase by PAK1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics. Nat. Cell Biol. 1999.1, 253–259.
    85. Schmidt JT,Morgan P,Dowell N,Leu B. Myosin light chain phosphorylation and growth cone motility. J.Neurobiol. 2002;52(3): 175-188.
    86. Fujita A,Hattori Y, Takeuchi T, Kamata Y, Hata F. NGF induces neurite outgrowth via a decrease in phosphorylation of myosin light chain in PC12 cells. Neuroreport. 2001 ;12(16): 3599-3602.
    87. Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe M, Kaibuchi K. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes-Cells. 1998 ;3(3): 177-188.
    88. Skaper SD, Moore SE, Walsh FS. Cell signalling cascades regulating neuronal growth-promoting and inhibitory cues. Progress in Neurobiology. 2001;65: 593–608.
    89. Kamradt MC.et al.The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation.J-Biol-Chem. 2001;276(19): 16059-16063.
    90. Kamradt,MC; Chen,-F,et al. The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J-Biol-Chem. 2002;277(41): 38731-38736.
    91. Mao YW,Liu JP,Xiang H,Li DWC.Human aA- and aB-crystallins bind to Bax and Bcl-Xs to sequester their translocation during staurosporine-induced apoptosis.Cell Death and Differentiation.2004;11:512-526.
    92. Alge,CS; Priglinger,SG,et al. Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin. Invest Ophthalmol Vis Sic. 2002 43(11): 3575-3582.
    93. Machida S,Chaudhry P,et al.Lens epithelium-derived growth factor promotes photoreceptor survival in light-damaged and RCS rats. Invest Ophthalmol Vis Sic.2001;42(5):1087-1095.
    94. Andley UP, Song Z, Wawrousek EF.et al. Differential protective activity of alpha A- and alphaB-crystallin in lens epithelial cells. J.Biol.Chem. 2000 (275): 36823-36831.
    95. Liu JP, Schlosser R, Ma WY, Dong Z, Feng H, Liu L, Huang XQ,et al. Human aA- and aB-crystallins prevent UVA-induced apoptosis through regulation of PKCa, RAF/MEK/ERK and AKT signaling pathways. Experimental Eye Research 2004;79: 393–403.
    1. Isenmann, S., Kretz, A., Cellerino, A., Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog.Retin. Eye Res. 2003;22, 483–543
    2. Alan R. Harvey, Ying Hu, Simone G. Leaver,et al. Gene therapy and transplantation in CNS repair: The visual system. Progress in Retinal and Eye Research 2006;25: 449–489
    3. Inoue, T., Hosokawa, M., Morigiwa, K., Ohashi, Y., Fukuda, Y., Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. J. Neurosci. 2002;22, 4468–4477
    4. Morgenstern, D.A., Asher, R.A., Naidu, M.,et al. Expression and glycanation of the NG2 proteoglycan in developing, adult, and damaged peripheral nerve.Mol. Cell Neurosci. 2003;24, 787–802
    5. Yin G, He ZG. Signaling mechanisms of the myelin inhibitors of axan regeneration. Current Opinion in Neurobiology(2003), 13:545–551.
    6. Tang BL. Inhibitors of neuronal regeneration: mediators and signaling mechanisms.Neurochemistry International 42 (2003) 189–203
    7. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., Filbin, M.T.. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 1994,13, 757–767.
    8. McKerracher, L., David, S., Jackson, J.L., Kottis, V., Dunn, R., Braun,P.E. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite outgrowth. Neuron 1994. 13, 805–811.
    9. Cai, D., Qiu, J., Cao, Z., McAtee, M., Bregman, B.S., Filbin, M.T. Neuronal cyclic AMP controls the developmental loss in ability ofaxons to regenerate. J. Neurosci. 2001.21, 4731–4739.
    10. Yamashita, T., Higuchi, H., Tohyama, M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J.Cell Biol. 2002. 157, 565–570.
    11. GrandPre, T., Nakamura, F., Vartanian, T., Strittmatter, S.M,.Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 2000,403, 439–444。
    12. Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL,He Z: Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002,417:941-944。
    13. Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang KC,Nikulina E, Kimura N, Cai H, Deng K, Gao Y et al.: Myelinassociated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 2002, 35:283-290.
    14. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z: p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and Omgp. Nature 2002, 420:74-77.
    15. Filbin MT: Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003, 4:703-713.
    16. Martin E Schwab. Nogo and axon regeneration. Current Opinion in Neurobiology 2004, 14:118–124
    17. Asher, R.A., Morgenstern, D.A., Fidler, P.S., Adcock, K.H., Oohira,A., Braistead, J.E., Levine, J.M., Margolis, R.U., Rogers, J.H.,Fawcett, J.W. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 2000, 20: 2427–2438.
    18. Fawcett, J.W., Asher, R.A., The glial scar and central nervous system repair. Brain Res. Bull. 1999,49: 37–391.
    19. Moon, L.D., Asher, R.A., Rhodes, K.E., Fawcett, J.W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 2001, 4: 465–466
    20. Bradbury, E.J., Moon, L.D.F., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., Fawcett, J.W., McMahon, S.B. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002,416: 636–640.
    21. Ettienne-Manneville, Hall A: Rho GTPases in cell biology.Nature 2002, 420:629-635.
    22. Bishop, AL, Hall, A, Rho GTPases and their effector proteins. Biochem. J. 2000.2, 241–255.
    23. Nobes, CD, Hall, A, Rho, Rac and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia and filopodia, lamellipodia and filopodia. Cell 1995. 81, 53–62.
    24. Bertrand J. ,Winton MJ, Rodriguez-Hernandez N, Campenot RB, McKerracher L. Application of Rho Antagonist to Neuronal Cell Bodies Promotes Neurite Growth in Compartmented Cultures and Regeneration of Retinal Ganglion Cell Axons in the Optic Nerve of Adult Rats. J Neurosci 2005 , 25(5):1113–1121.
    25. Niederost B, Oertle T, Fritsche J, Mckinney RA, Bandtlow CE:Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1.J Neurosci 2002, 22:10368-10376.
    26. Fournier AE, Takizawa BT, Strittmatter SM: Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 2003, 23:1416-1423.
    27. Schweigreiter R, Walmsley AR, Niederost B, et al Versican V2 and the central inhibitory domain of Nogo-A inhibit neurite growth via p75NTR/NgR-independent pathways that converge at RhoA. Mol. Cell. Neurosci. 27 (2004) 163– 174
    28. Monnier PP., Sierra A., Schwab JM., Henke-Fahle S., Mueller BK. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Molecular and Cellular Neuroscience 2003;22:319–330.
    29. Sung JK., Miao L., Calvert JW., Huang L., Louis Harkey H., Zhang JH. A possible role of RhoA/Rho-kinase in experimental spinal cord injury in rat. Brain Research.2003; 959: 29–38.
    30. Bishop AL, Hal l A, Rho GTPases and their effector proteins, Biochem. J. 348 (Pt. 2) (2000) 241– 255.
    31. Schmidt A, Hall A, Guanine nucleotide exchange factors for Rho GTPases: turning on the switch, Genes Dev. 16 (2002) 1587–1609.
    32. Kaibuchi K, Kuroda S, Amano M, Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells, Annu. Rev. Biochem. 68 (1999) 459– 486.
    33. Zong H, Raman N, Mickelson-Young LA, Atkinson SJ, Quilliam LA, Loop 6 of RhoA confers specificity for effector binding, stress fiber formation, and cellular transformation, J. Biol. Chem. 274 (1999) 4551– 4560.
    34. Allal C, Favre G, Couderc B, Salicio S, Sixou S, Hamilton AD, Sebti SM, Lajoie-Mazenc I, Pradines A, RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription, J. Biol. Chem. 275 (2000) 31001–31008.
    35. Olofsson B, Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling, Cell Signal 11 (1999) 545–554.
    36. Katoh H, Aoki J, Ichikawa A, Negishi M, p160 RhoA-binding kinase ROKα induces neurite retraction. J. Biol. Chem. 1997.273, 2489–2492.
    37. Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K, Maekawa M, Ishizaki T, Narumiya S, A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 2000. 26, 431–441.
    38. Tanaka H, Yamashita T, Yachi K, Fujiwara T, Yoshikawa H, Tohyama M, Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience 2004.127, 155–164.
    39. Meberg PJ, Bamburg JR, Increase in neurite outgrowth mediated by over-expression of actin depolymerizing factor. J. Neurosci. 2000.20, 2459–2469.
    40. Kuhn TB, Meberg PJ, Brown MD, Bernstein BW, Minamide LS, Jensen JR, Okada K, Soda EA, Bamburg JR, Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho-family GTPases. J. Neurobiol. 2000.44, 126–144.
    41. Sumi T, Matsumoto K, Takai Y, Nakamura T, Cofilin phosphorylation and actin cytoskeletal dynamics regulated by Rhoand Cdc42-regulated LIM-kinase 2. J. Cell Biol.1999.147, 1519–1532.
    42. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P, Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998. 393, 805–809.
    43. Edwards DC, Sanders LC, Bokoch GM, Gill GN, Activation of LIM-kinase by PAK1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics. Nat. Cell Biol. 1999.1, 253–259.
    44. Schmidt JT,Morgan P,Dowell N,Leu B. Myosin light chain phosphorylation and growth cone motility. J.Neurobiol. 2002;52(3): 175-188
    45. Fujita A,Hattori Y, Takeuchi T, Kamata Y, Hata F. NGF induces neurite outgrowth via a decrease in phosphorylation of myosin light chain in PC12 cells. Neuroreport. 2001 ;12(16): 3599-3602
    46. Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe M, Kaibuchi K. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes-Cells. 1998 ;3(3): 177-188
    47. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K, Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 1996.271, 20246– 20249.
    48. Profyris C, Cheema SS, Zang DW, Azari MF, Boyle K, Petratos S,Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease 2004.15 ,415–436.
    49. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi, K, Regulation of myosin phosphatase by Rho and Rhoassociated kinase (Rho-kinase). Science 1996. 273, 245– 248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700