Rho激酶抑制剂Y-27632降眼压机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究糖皮质激素(地塞米松)和Rho激酶抑制剂Y-27632对体外培养的人小梁细胞及细胞骨架的影响。采用局部滴用糖皮质激素联合结膜下注射曲安耐德建立糖皮质激素性猫高眼压模型。观察Y-27632对猫糖皮质激素性高眼压的降眼压效果。探讨激素性青光眼的发病机制以及Y-27632的降眼压机制。
     方法:
     1.采用第6代人小梁细胞,培养至细胞融合为稳定的内皮细胞样形态,加入地塞米松(200mM)继续培养2周,然后用1 0gM Y-27632分别处理细胞3小时和24小时,观察细胞形态以及肌动蛋白及粘着斑蛋白的变化。
     2.成年家猫被训练接受局部滴眼药,并适应在表面麻醉下进行眼压测量。采用TONO-PEN XL眼压计,连续3天每天测量双眼眼压,取平均值作为基础眼压。然后采用0.5%地塞米松滴右眼,3次/天,局部麻醉下结膜下注射3mg曲安耐德,每周1次。左眼仅滴生理盐水作为对照。使用糖皮质激素后每周测量1次眼压,并观察眼的局部反应和全身反应。8周后,采集猫小梁网标本送电镜检查。
     3.将眼压升高的猫纳入进一步降眼压研究,取高眼压眼分成3组分别滴30mM,10mM浓度的Y-27632和对照液PBS。用微量加样器将Y-27632或PBS点到角膜中央,每次5ul,间隔30see,共点3次。用TONO-PEN XL眼压计测量滴眼后0.5、1、3、6、9、24小时眼压。
     结果:
     1.与正常培养的人小梁细胞比较,地塞米松处理的小梁细胞表现肌动蛋白增加,形成肌动蛋白交联网,同时粘着斑蛋白表达增多。用Y-27632处理后,小梁细胞回缩变圆,肌动蛋白降解或减少,粘着斑明显减少或趋于消失。中止Y-27632作用后,肌动蛋白及粘着斑蛋白恢复,表明Y-27632的作用有可逆性。
     2.32只实验猫的平均基础眼压为18.64±2.42 mmHg。在接受糖皮质激素的28眼中,25眼在用药第2周眼压开始升高,到第6周时达到峰值。然后保持一个相对高平台。从第2周开始,实验组眼压升高峰值与同期对照组眼压比较,平均差值达7.38mm Hg (P<0.05)。在激素诱导的高眼压眼,电镜检查,小梁细胞核异形性增大,细胞间质内可见微绒毛样结构,粗面内质网扩张,细胞间基质增多。
     3.Y-27632对猫糖皮质激素性高眼压有明显的降眼压效果。与空白对照组比较,Y-27632作用于激素诱导的猫高眼压眼半小时后眼压即开始显著下降(P<0.05)。用药1小时后眼压下降到最低点。浓度为30mM的Y-27632降眼压效果在用药后0.5~3小时之间明显,眼压平均最大下降幅度为6.13mmHg,浓度为10mM的Y-27632降眼压效果在用药后0.5~1小时之间明显,平均最大下降幅度为5.12mmHg。
     结论:
     1.在地塞米松作用下,人小梁细胞肌动蛋白细胞骨架形成肌动蛋白交联网结构,粘着斑蛋白表达增多。推测糖皮质激素诱导小梁细胞骨架改变是激素性青光眼眼压升高的原因。Rho激酶抑制剂Y-27632可有效降解地塞米松所引起的小梁细胞骨架改变,提示Y-27632可能降低糖皮质激素性高眼压。
     2.家猫对眼局部应用糖皮质激素反应率高,89%实验眼发生了糖皮质激素诱导的高眼压。糖皮质激素诱导的猫高眼压模型对了解糖皮质激素性青光眼的发病机制具有重要意义,也可用于寻找和筛选有效的降眼压药物。
     3.Rho激酶抑制剂Y-27632能降低猫糖皮质激素性高眼压,降眼压的持续时间和降压幅度呈剂量依赖性。Rho激酶抑制剂Y-27632是一种有潜力的抗青光眼药物,其降眼压机制可能是通过改变小梁细胞骨架发挥作用。
PURPOSE: To investigate the roles of glucocorticoid (Dexamethasone, DEX) and Rho kinase inhibitor. Y-27632 the cytoskeleton on human trabecular meshwork (HTM) cells in vitro. To establish a kind model of corticosteroid -induced elevation of IOP in cats by topical adminstration of Dexamethasone drops and subconjunctival injections of triamcinoIone.To observe the role of Rho kinase inhibitor Y-27632 in the regulating intraocular pressure in the cats with corticosteroid-induced ocular hypertension. To investigate the pathogenesis of corticosteroid-induced glaucoma and the mechanism lowering the intraocular pressue of Rho kinase inhibitor Y-27632.
     METHODS:
     1. HTM cells (sixth passage) were cultured to a confluent stage with stableendothelium-like morphology and incubated with DEX (200mM) for 2 weeks. Then the cells were treated with 10μM of Y-27632 for 3, 24hrs respectively. Then we observed the changs on cell morphology and actin and vinculin.
     2. Adult domestic cats were trained to accept ocular drug administration andtonometry under topical anesthesia. To establish intraocular pressure (IOP) baseline IOP values, tonometry was performed at the same time of day for 3 consecutive days, with TONO-PEN XL tonometer. Beginning on day 4, thirty-two cats received either 0.5% dexamethasone (right eye) or vehicle (left eye) administered topically three times a day for approximately 56 days, and subconjunctival injections of 3mg triamcinolone in right eyes under topical anesthesia weekly. IOP was monitored once a week after the corticosteroid administration. Then, the tissue of trabecular meshwork (TM) was collected and was examined by electric microscopy.
     3. The cats with corticosteroid-induced ocular hypertension were used in this study. Rho kinase-specific inhibitor, Y-27632, was topically administered to one eye of the cats with corticosteroid-induced ocular hypertension.Y-27632 (30mM or 10mM) or phosphate buffered saline (PBS) was administered to the central cornea as three 5-μl drops at intervals of 30 seconds. TONO-PEN XL tonometer was used to monitor the IOP. It was measured before the administration of Y-27632 and at 0.5, 1, 3, 6, 9, and 24 hours after administration.
     RESULTS:
     1. Compared with DEX-free cultured HTM cells, there was an increased amount of the actin cytoskeleton, even formed cross-linked actin networks, and vinculin-positive focal adhesions increased in DEX-treated cells. Y-27632 treated HTM cells appeared to be retracted and round up. The actin cytoskeleton was disrupted or reduced, vinculin-positive focal adhesions were reduced in number or disappeared in Y-27632 treated cells. These alterations were found to be reversible after drug was withdrawn.
     2. The baseline IOP of the rest 32 cats was 18.64±2.42 mmHg. Introcular pressure began to increase after 2 weeks of treatment in 89% of the cat eyes receiving corticosteroid, and reached a peak 4 weeks later. The peak IOP differences between the corticosteroid-treated eye and the fellow control eye reached up to 7.38mmHg (P<0.05). The changes of the trabecular cells ultrastucture, in the corticosteroid-induced hypertension cat eyes, including dysmorphic change of nucleus, enlargement of the endoplasmic and Golgi apparatus, and deposition of TM extracellular matrix.
     3. In cat eyes with corticosteroid-induced ocular hypertension, topical administration of Y-27632 resulted in a significant decrease in IOP. Compared with PBS-treated control eyes, the IOP in Y-27632-treated eyes was significantly lowered 0.5 hours after topical administration of Y-27632 eye drops (P < 0.05). The average maximum decreases was seen after 60 minutes administration of Y-27632 .The IOP reduction was observed between 0.5 and 3 hours (P < 0.05) with 30 mM of Y-27632 and the average maximum decreases was 6.13mmHg. With the 10mM concentration eye drops, the reduction were seen between 0.5 and 1 hour (P < 0.05) and the average maximum decreases was 5.12mmHg.
     CONCLUSIONS:
     1. Corticosteriod caused an obvious change in the organization of actin cytoskeleton and vinculin-positive focal adhesions in the cultured HTM cells.we infer that the cocorticoid-mediated changes in the HTM cytoskeleton maybe the pathogenesis of corticosteroid-induced glaucoma. Because Y-27632 can inhibit the DEX-induced changes in the HTM cells. It indicate that Rho kinase inhibitor Y-27632 can decrease the cocorticoid-induced intraocular pressure.
     2. The domestic cat eyes exhibit a robust steroid-induced ocular hypertensive response, with 89% occurrence in this trial. The high prevalence of corticosteroid-induced elevation of IOP in the cat eyes will permit studies on the mechanism of steroid-induced glaucoma and the pressure-lowering effect of drugs.
     3. Administration of Y-27632 caused a reduction in IOP in cat eyes with corticosteroid-induced ocular hypertension in a dose-dependent manner. The Rho kinase-specific inhibitor Y-27632 is a promising treatment for glaucoma therapy in the next generation and IOP-lowering effects of Y-27632 may be related to the altered cytoskeleton behavior of TM cells.
引文
1. Tian B, Geiger B, David L. Cytoskeletal Involvement in the Regulation of Aqueous Humor Outflow [J]. Invest Ophthalmol Vis Sci, 2000; 41: 619-623.
    2.马莉贞,杨元武.细胞骨架系统的研究进展.内蒙古农业大学学报,2003;jun 24:114-116.
    3.贲长恩,牛建昭,主编.分子细胞学与疾病[M].北京:人民卫生出版社,2003.310-314.
    4. Kaufman PL, Tian B, Gabelt BT, Liu X. Outflow enhancing drugs and gene therapy in glaucoma. In: Weinreb R, Krieglstein G, Kitazawa Y, eds. Glaucoma in the 21st Century. 2000: 117-128.
    5. Sabanay I, Tian B, Gabelt BT, Geiger B, Kaufman PL. Functional and structural reversibility of H-7 effects on the conventional aqueous outflow pathway in monkeys. Exp Eye Res. 2004; 78: 137-150.
    6. Kaufman PL, Erickson KA. Cytochalasin B and D dose-outflow facility response relationships in the cynomolgus monkey. Invest Ophthalmol Vis Sci. 1982; 23: 646-650.
    7. Tian B, Kaufman PL, Volberg T, Gabelt BT. Geiger B. H-7 disrupts the actin cytoskeleton and increases outflow facility. Arch Ophthalmol. 1998; 116: 633-643.
    8. Peterson JA, Tian B, Bershadsky AD, et al. Latrunculin-A increases outflow facility in the monkey. Invest Ophthalmol Vis Sci. 1999; 40: 931-941.
    9. Hall A. Rho GTPases and actin cytoskeleton. Science. 1998; 279: 509- 514.
    10.Rohen JW, Lutjen-Drecoll E, Flugel C, Meyer M, Grierson I. Ultra-stucture of the trabecular meshwork in untreated cases of primary open-angle glaucoma (POAG).Exp Eye Res. 1993;56(6): 683-692.
    
    11.Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996; 133:1403-1415.
    12.Ishizaki T, Uehata M, Tamechika I, et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases.Mol Phamacol. 2000; 57(5):76-983.
    13.Essig M, Vrtovsnik F, Friedlander G. Inhibitors of HMG CoA reductase: new modes of action, new indications? Therapie. 2000;55(1): 43-49.
    14. Rao PV, Deng PF, Kumar J, et al. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632[J]. Invest Ophthalmol Vis Sci, 2001,42:1029-1037.
    15. Wilson K, McCartney MD, Miggans ST,Clark AF.Dexamethasone induced ultrastructural changs in cultured human trabecular meshwork cells. Curr Eye Res.1993; 12:783-793.
    16. Clark AF, Wilson K, McCartney MD, Miggans St, Kunkle m, Howe W. Glucocorticoid-induced cross-linked actin networks in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1994; 35:281-293.
    17.Snyder RW, Stamer WD, Kramer TR, Seftor REB. Corticosteroid treatment and trabecular meshwork proteases in cell and-organ culture supematants. Exp Eye Res. 1993; 57:461-468.
    1. Tian B, Geiger B, David L. Cytoskeletal Involvement in the Regulation of Aqueous Humor Outflow [J]. Invest Ophthalmol Vis Sci, 2000; 41: 619-623.
    2.马莉贞,杨元武.细胞骨架系统的研究进展.内蒙古农业大学学报,2003;Juu:24:114-116
    3.贲长恩,牛建昭,主编.分子细胞学与疾病[M].北京:人民卫生出版社,2003.310-314.
    4. Peterson JA, Tian B, Geiger B, et al. Effect of latrunculin-B on outflow facility in monkeys. Exp Eye Res. 2000; 70: 307-313.
    5. Peterson JA, Tian B, Mclaren JW, et al. Latrunculins effects on intraocular pressure, aqueous humor flow, and corneal endothelium. Invest Ophthalmol Vis Sci. 2000; 41: 1749-1758.
    6. Hall A. Rho GTPases and actin cytoskeleton. Science. 1998; 279: 509-514.
    7. Rohen JW, Lutjen-Drecoll E, Flugel C, Meyer M, Grierson I. Ultrastucture of the trabecular meshwork in untreated cases of primary openangle glaucoma(POAG). Exp Eye Res. 1993; 56(6): 683-692.
    8. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996; 133: 1403-1415.
    9. Ishizaki T, Uehata M, Tamechika I, et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases.Mol Phamacol. 2000; 57(5):976-983.
    10.Essig M, Vrtovsnik F, Friedlander G. Inhibitors of HMG CoA reductase: new modes of action, new indications? Therapie. 2000; 55 (1):43-49.
    11. Wilson K, Mc Cartney MD, Miggans ST, Clark AF. Dexamethasone induced ultrastnictural changs in cultured human trabecular meshwork cells. Curr Eye Res. 1993; 12:783-793.
    12. Clark AF, Wilson K, McCartney MD, Miggans St, Kunkle m, Howe W. Glucocorticoid-induced cross-linked actin networks in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1994; 35: 281-293.
    13.Snyder RW, Stamer WD, Kramer TR, Seftor REB. Corticosteroid treatment and trabecular meshwork proteases in cell and organ culture supematants. Exp Eye Res. 1993; 57:461-468.
    14.Polansky JR, Kurtz RM, Fauss DJ, Kim RY, Bloom E.In vivo correlates of glucocrticoid effects on intraocular pressure. In: Kriegstein GK, ed. Glaucoma Update IV .Berlin: Springer-Verlag; 1991:20-29.
    15. Steely HT, Browder SL, Julian MB, Miggans ST, Wilson Kl, Clark AF. The effects of dexamethasone on fibronectin expression in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1992; 33:2242-2250.
    
    16. Clark AF, Wilson K, McCartney MD, Miggans St, Kunkle m, Howe W. Glucocorticoid-induced cross-linked actin networks in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1994; 35:281-293.
    17.Snyder RW, Stamer WD, Kramer TR, Seftor REB. Corticosteroid treatment and trabecular meshwork proteases in cell and organ culture supernatants. Exp Eye Res. 1993; 57:461-468.
    18.Matsumoto Y,Johnson DH. Dexamethasone decreases phagocytosis by human trabecular meshwork cells in situ. Invest Ophthalmol Vis Sci. 1997;38(9): 1902-1907.
    19. Clark AF, Morrison J. Corticosteroid glaucoma. In Morrison J, Pollack I, Editors. Glaucoma: Science and practice. New York: Thieme Medical Publishes, Inc. 2002, p197-206.
    20.Tripathi RC, Parapuram SK, Tripathi BJ, et al. Corticosteroids and glaucoma risk. Drugs Aging, 1999, 15:439-450.
    21. Stokes J, Walker BR, Campbell JC, Seckl JR, O'Brien C, Andrew R. Altered peripheral sensitivity to glucocorticoid in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2003; 44(12):5163-7.
    22. Hall A. Rho GTPases and actin cytoskeleton. Science. 1998; 279: 509-514.
    23.刘旭阳,王宁利,Paufman.外酶C3转移酶转基因表达对小梁细胞的影响。中国生物工程杂志。2005;25:109-117.
    24. Rohen JW, Lutjen-Drecoll E, Flugel C, Meyer. M, Grierson I. Ultrastucture of the trabecular meshwork in untreated cases of primary open-angle glaucoma(POAG). Exp Eye Res. 1993; 56(6): 683-692.
    25. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol. 1996; 133: 1403-1415.
    26. Ishizaki T, Uehata M, Tamechika I, et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Phamacol. 2000; 57(5): 976-983.
    27. Essig M, Vrtovsnik F, Friedlander G. Inhibitors of HMG CoA reductase: new modes of action, new indications? Therapie. 2000; 55(1): 43-49.
    28. 郑惠珍,赵克森,黄巧冰.Rho激酶在烧伤大鼠血清诱导的血管内皮细胞骨架变化中的作用.中华烧伤杂志.2005;3:58-62.
    29. Rao PV, Deng PF, Kumar J, Epstein DL. Modulation of Aqueous Humor Outflow Facility by the Rho Kinase-Specific Inhibitor Y-27632. Investigative Ophthalmology and Visual Science. 2001; 42: 1029-1037.
    30. Fujita H, Katoh H, Hasegawa H, et al. Molecular decipherment of Rho effector pathways regulating tight-junction permeability Biochem J. 346, 617-622.
    31.Nusrat A, Giry M, Turner JR, et al Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia .Proc Natl Acad Sci USA 1995;92:10629-10633.
    32. Underwood, JL, Murphy, CG, Chen, J, et al. Glucocorticoids regulate transendothelial fluid flow resistance and formation of intercellular junctions. Am J Physiol .1999;277:330-342.
    1. Sossi N, Anderson DR, Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure. Effect of arterial hypertension induced by angiotension Ⅰ. Arch Ophthalmol. 1983 Jan; 101(1): 94-97.
    2. Johansson JO Retrograde axoplasmic transport in rat optic nerve in vivo. What cause blockage at increased intraocular pressure? Exp Eye Res. 1986 Oct; 43(4): 653-660.
    3. Johansson JO Inhabition and recovery of retrograde axoplasmic transport in rat optic nerve during and after elevated lOP in vivo. Exp Eye Res. 1988 Feb; 46(2): 223-227.
    4. de Kater AW, Smyth JR Jr, Rosenquist RC. The Slate turkey: a model for secondary angle closure glaucoma. Invest Ophthalmol Vis Sci. 1986 Dec; 27(12): 1751-1754.
    5. Radius RL, Anderson DR. Rapid axonal transport inprimate optic nerve. Distribution of pressure-induced interruption. Arch Ophthalmol. 1981 Apr; 99(4): 650-654.
    6. Gelatt KN. Animal models for glaucoma. Invest Ophthalmol Vis Sci. 1977 Jul; 16(7): 592-596.
    7.李美玉,主编.青光眼学.北京:人民卫生出版社,2004.108-115.
    8. Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics, I: the effect of dexamethasone in the normal eye. Arch Ophthalmol.1963; 70:482-491.
    9. Becker B, Mills DW. Corticosteroids and intraocular pressure. Arch Ophthalmol. 1963; 70:500-507.
    10. Sawaguchi K, Nakamura Y, Sakai H, et al. Myocilin Gene expression in the trabecular meshwork of rats in a steroid-indiced ocular hypertension model. Ophthalmic Res.2005; 37:235-242.
    11.Gerometta R, Podos SM, Candia OA, et al. Steroid induced ocular hypertension in normal cattle. Arch ophthalmol, 2004,122:1492-1497.
    12.Gelatt KN, Mackay EO. The ocular hypertension effects of topical 0.1% dexamethasone in beagles with inherited glaucoma. J Ocul Pharmacol Ther.1998,14:57-66.
    
    13.GeIatt KN, Mackay EO. Effect of single and multiple doses of 0.2% brimonidine tartate in the glaucomatous beagle. Vet Ophthamol, 2002, 5:253-262.
    
    14.Lorenzetti OJ .Effects of corticosteroids on ocular dynamics in rabbits.J Pharmacol Exp Therapy. 1970; 175:763-772.
    
    15.DeSantis L, Garthwaite C, Knepper PA. Dexamethasone-induction of ocular hypertension in the primate. ARVO Abstract. Invest Ophthalmol Vis Sci. 1990; 31:99.
    16. Bonomi L, Perfetti S, Noya E, et al. Experimental corticosteroid ocular hypertension in the rabbit. Von Graefes Arch Klin Exp Ophthalmol, 1978, 209:73-82.
    
    17.Knepper PA, Breen M, Weinstein, HG, et al. Introcular pressure and glycosaminoglycan distribution in the rabbit eye: effect of age and dexamethasone. Exp Eye Res. 27:567-575.
    
    18.Zhan GL, Miranda OC, Bito LZ. Steroid glaucoma: corticosteroid- induced ocular hypertension in cats.Exp Eye Res. 1992; 54:211-218.
    
    19. Swaguchi S, Abe H, Fukuchi T, et al. Slow axonal transport in primate experimental glaucoma. Nippon Gamaka Gakkai Zasshi.1996, 100 (2): 132-138.
    
    20. Minckler DS, Baervelt G, Heuer Dk .Clinical Evaluation of the Oculab Tono-Pen, Quillen-Thomas B, Walonker AF, Weiner J Am J Ophthalmol. 1987 Aug 15; 104(2): 168-173.
    
    21.Kao SF, Lichter PR, Bergstrom TJ, Rowe S, Musch DC. Clinical comparison of the Oculab Tono-Pen to the Goldmann applanation tonometer. Ophthalmology. 1987 Dec;94(12):1541-1544.
    
    22.Boothe WA, Lee DA, Panek WC. The Tono-Pen. A manometric and clinical study Arch Ophthalmol. 1988 Sep; 106(9); 1214-1217.
    23. Khan JA, Davis M, Graham CE. Comparison of Oculab Tono-pen readings obtained from various corneal and scleral location. Arch Ophthalmol. 1991 Oct; 109(10); 1444-1446.
    24. Armstrong TA. Evaluation of the Tono-Pen and the pulsair tonometers. Am J Ophthalmol.1990 Jun 15; 109(6):716-720.
    
    25. Farrar Sm, Miller Kn,Shields MB. An evaluation of Tono-Pen for the measurement of during intraocular pressure. Am J Ophthalmol .1989 Apr 15; 107(4):411-446.
    
    26. Higginbotham EJ.clinical evaluation of the Oculab Tono-Pen. Am J Ophthalmol. 1988 Jan 15;105(1);101
    
    27.Tripathi RC, Parapuram SK, Tripathi BJ, et al. Corticosteroids and glaucoma risk. Drugs Aging, 1999,15: 439-450.
    28. Clark AF, Morrison J. Corticosteroid glaucoma. In Morrison J, Pollack I, Editors. Glaucoma: Science and practice. New York: Thieme Medical Publishes, Inc. 2002; 197-206.
    
    29. Stokes J, Walker BR, Campbell JC, Seckl JR, O'Brien C, Andrew R. Altered peripheral sensitivity to glucocorticoids in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2003 ;44(12):5163-5167.
    30. Wilson K, McCartney MD, Miggans ST, et al. Dexamethasone induced ultrastructural changes in cultured human trabecular meshwork cells. Current Eye Res. 1993; 12: 783-793.
    31.Hermande MR, Eenk EJ, Weinstein BI. Glucocorticoid target cells in human outflow pathway. Invest Ophthalmol Vis Sci.1983; 24: 1612-1616.
    32. Johnson D, Gottanka J, Flugel C, et al. Ultrastructural changes in the trabecular meshwork of human eyes treated with glucocorticoids. Arch Ophthalmol.1997; 115: 375-383.
    33. Steely HT, Browder SL, Julian MB, Miggans ST, et al. The effects of dexamethasone on fibronectin expression in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1992; 33: 2242-2250.
    34.Dickerson JE, Steely HT, English-Wright SL, et al. The effects of dexame-thasone on integrin and laminin expression in cultured human trabecular meshwork cells. Exp Eye Res.1998; 66: 731-738.
    35. Engelbrecht-Schnur S, Siegner A, Prehm P, et al. Dexamethasone treatment decreases hyaluronan-formation by primate trabecular meshwork cells in vitro. Exp Eye Res. 1997; 64:539-543.
    36. Johnson D, Gottanka J, Flugel C. Ultrastructural changes in the trabecular meshwork of human eyes treated with corticosteroids. Arch Ophthalmol. 1997;115:375-382
    1. Honjo M, Tanihara H, Inatani M, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility[J]. Invest Ophthalmol Vis Sci. 2001; 42: 137-144.
    2. Clark AF, Morrison J. Corticosteroid glaucoma. In Morrison J, Pollack Ⅰ, Editors. Glaucoma: Science and practice. New York: Thieme Medical Publishes, Inc. 2002, p197-206.
    3. Tripathi RC, Parapuram SK, Tripathi B J, et al. Corticosteroids and glaucoma risk. Drugs Aging, 1999, 15: 439-450.
    4. Stokes J, Walker BR, Campbell JC, Seckl JR, O'Brien C, Andrew R. Altered peripheral sensitivity to glucocorticoid in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2003; 44(12): 5163-7.
    5. Quigley, HA. Open-angle glaucoma. N Engl J Med 1993, 328: 1097-1106.
    6. Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci, 1995, 36: 774-786.
    7.张辰星,阴正勤,许红霞,工仕军,姚军平.RCS大鼠病变发育过程中视网膜神经节细胞形态学变化的研究.第三军医大学学报.2005:27(8):749-752.
    8.卢华,马志中,曹利群,刘敬.大鼠视网膜脱离及复位状态下存活的视网膜神经节细胞计数.中华眼底病杂志,2004:7(20):133-236.
    9.周逸峰,陶黎明,张继文,寿天德.急性眼内压升高对猫视网膜神经节细胞的影响.基础医学与临床.2002;22(5):469-472.
    10. BoycoL BB, Wasslc H. The morphological typel of ganglion cells of the domestic cat's retina. J Physiol. 1974; 240(2): 397-419.
    11. Toole JS. Early postnatal development of visual function in ganglion cells of the cat retinal. J Neurophysiol. 1993; 69(5): 1645-1660.
    12. Shou T, Zhou YF. Y cells the cat retina are more tolerant than X cells to brief elevation of IOP. Invest Ophthalmol Vis Sci. 1989; 30(10): 2093-2098.
    13.刘南琳,范先群,刘海生.正常人眼及青光眼的血流动力学研究.临床眼科杂志.2000;8(2):93-95.
    14.Jocson VL, Seers ML. Experimental aqueous perfusion in enucleeted humen eyes. Results after obstruction of Schlemm's canal. Arch. Ophthalmol. 1971; 86: 65-71.
    15. Bill A, Phillips CI. Uveosclerel drainage of aqueous humor in humen eyes. Exp Eye Res. 1971; 12: 275-281.
    16. Peterson JA, Tian B, Bershadsky AD, et al. Latrunculin-A increases outflow facility in the monkey. Invest Ophthalmol Vis Sci, 1999; 40: 931-941.
    17. Robinson JC, Kaufman PL. Cytochalasin B potentiates epine-phfine's outflow facility-increasing effect. Invest Ophthalmol Vis Sci. 1991; 32: 1614-1618.
    18.Ohnson DH. The effect of cytochalasin D On outflow facility and the trabecular meshwork of the human eye in perfusion organ culture[J]. Invest Ophthalmol Vis Sci.1997;38:2790-2799.
    19. Sabanay I, Tian B, Gabelt BT, et al. Functional and structural reversibility of H-7 effects on the conventional aqueous outflow pathway in monkeys. Exp Eye Res, 2004; 78:137-150.
    20.Tian B, Kaufman PL, Volberg T,et al. H-7 disrupts the actin cytoskeleton and increases outflow facility. Arch Ophthalmol, 1998; 116: 633-643.
    21. Tian B, Gabely BT, Peterson JA, et al. H-7 increases trabecular facility and facility after ciliary muscle disinsertion in monkeys[J]. Invest Ophthalmol Vis Sci, 1999; 40:239-242.
    
    22. Limouze J, Straight AF, Mitchison T, et al. Specificity of blebbistatin, an inhibitor of myosin II. J Musc Res & Cell Motil, 2004; 25:337-341.
    23. Kovacs M, Toth J, Hetenyi C, et al. Mechanism of blebbistatin inhibition of myosin II. J Bio Chemi, 2004; 279:3557-35563.
    24. Zhang M, Rao PV. Blebbistatin, a Novel Inhibitor of Myosin II ATPase Activity, Increases Aqueous Humor Outflow Facility in Perfused Enucleated Porcine Eyes. Invest Ophthalmol Vis Sci, 2005; 46: 4130-4138.
    25. McGwin G, McNeal S, Owsley C et al. Statins and Other Cholesterol-Lowering Medications and the Presence of Glaucoma. Arch Ophthal- mol, 2004; 122: 822-826.
    26. Song J, Deng PF, Sandra S, et al. Effects of Cholesterol-Lowering Statins on the Aqueous Humor Outflow Pathway. Invest Ophthalmol Vis Sci, 2005; 46: 2424-2432.
    27. Epstein DL, Rowlette LL, Roberts B. Acto-Myosin Drug Effects and Aqueous Outflow Function. Invest Ophthalmol Vis Sci.1999; 40: 74-81.
    28. Tian B, Kaufman PL. Effects of the Rho kinase inhibitor Y-27632 and the phosphatase, inhibitor calyculin A on outflow facility in monkeys. Exp Eye Res, 2005, 80(2): 215-225.
    29. Waki M, Yoshida Y, Oka T, et al. Reduction ofintraocular pressure by topical administration of an inhibitor of the Rho-associated protein kinase. Curr Eye Res, 2001, 22(6): 470-474.
    30. Ishizaki T, Uehata M, Tamechika I, et al. Pharmacological propertiesof Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharnacol, 2000; 57(5): 976-983.
    31. EssigM, Vrtovsnik F, Friedlander G. Inhibitors of HMG CoA reductase: new modes of action, new indications? Therapie, 2000; 55(1): 43 49.
    32.陆慧琴,张德秀.小梁细胞收缩特性研究进展.国外医学眼科学分册.2006;26(4):1-4.
    33. Rosenthal R, Choritz L, Schlott S, et al. Effects of ML7 and Y-27632 on carbachol and endothelin-1-induced contraction of bovine trabecular meshwork. Exp Eye Res. 2005, 80(6): 837-845.
    34. Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhension.J Cell Biol. 1996;133:1403-1415.
    35.Amoano M, Ito M, Kimura K, Fukata Y, Chihara K and Nakano T.Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) J Biol Chem. 1996;271:20246-20249.
    36. Rao PV, Deng PF, Kumar J, Epsteinl DL.Modulation of Aqueous Humor Outflow Facility by the Rho Kinase-Specific Inhibitor Y-27632. Investigative Ophthalmology and Visual Science. 2001; 42:1029-1037.
    
    37. Takai, Y, Sasaki, T, Tanaka, K, Nakanishi, H. Rho as a regulator of the cytoskeleton Trends. Biochem Sci, 1995,20:227-231
    
    38.Tian, B, Geiger, B, Epstein, DL, Kaufman, PL. Cytoskeletal involvement in the regulation of aqueous humor flow. Invest Ophthalmol Vis Sci, 2000,41:619-623.
    39. Kaibuchi, K, Kuroda, S, Amano, M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev Biochem, 1999,68:459-486.
    1. Tian B, Geiger B, David L. Cytoskeletal Involvement in the Regulation of Aqueous Humor Outflow [J]. Invest Ophthalmol Vis Sci, 2000, 41: 619-623.
    2.贲长恩,牛建昭,主编.分子细胞学与疾病[M].北京:人民卫生出版社,2003.310-314.
    3. Clark AF, Brotchie D, Read AT, et al. Dexamethasone alters F-actin architecture and promotes cross-linked actin network formation in human trabecular meshwork tissue[J]. Cell Motil Cytoskeleton, 2005, 60: 83-95.
    4. Gotlieb AI. The endothelial cytoskeleton: organization in normal and regenerating endothelium [J]. Toxicol Pathol, 1990, 18: 603-617.
    5.吴正蓉,申洪.Rho GTP酶对肌动蛋白细胞骨架的作用[J].国外医学·生理、病理科学与临床分册,2002,22:70-73.
    6. Hall A. Rho GTPases and actin cytoskeleton [J]. Science. 1998, 279: 509-514.
    7. Liang LL, Epstein DL, Kater AW, et al. Ethacrynic acid increases facility of outflow in the human eye in vitro [J]. Arch Ophthalmol, 1992, 110: 106-109.
    8. O'Brien ET, Kinch M, Harding TW, et al. A mechanism for trabecular meshwork cell retraction: ethacrynic acid initiates the dephosphorylation of focal adhesion proteins [J]. Exp Eye Res, 1997, 65: 471-483.
    9. Peterson JA, Tian B, Bershadsky AD, et al. Latrunculin-A increases outflow facility in the monkey [J]. Invest Ophthalmol Vis Sci, 1999, 40: 931-941.
    10. Peterson JA, Tian B, Geiger B, et al. Effect of latrunculin-B on outflow facility in monkeys[J]. Exp Eye Res, 2000,70:307-313.
    11. Peterson JA,Tian B,Mclaren JW,et al. Latrunculins'effects on intraocular pressure, aqueous humor flow, and corneal endothelium [J]. Invest Ophthalmol Vis Sci, 2000,41:1749-1758.
    12. Robinson JC, Kaufman PL. Cytochalasin B potentiates epine-phrine's outflow facility-increasing effect [J]. Invest Ophthalmol Vis Sci, 1991,32:1614-1618.
    13. Ohnson DH. The effect of cytochalasin D On outflow facility and the trabecu|ar meshwork of the human eye in perfusion organ culture [J]. Invest Ophthalmol Vis Sci, 1997,38:2790-2799.
    14. Sabanay I, Tian B, Gabelt BT, et al. Functional and structural reversibility of H-7 effects on the conventional aqueous outflow pathway in monkeys [J]. Exp Eye Res, 2004, 78:137-150.
    15. Tian B, Kaufman PL, Volberg T,et al. H-7 disrupts the actin cytoskeleton and increases outflow facility [J]. Arch Ophthalmol, 1998, 116:633-643.
    16. Tian B, Gabely BT, Peterson JA, et al. H-7 increases trabecular facility and facility after ciliary muscle disinsertion in monkeys[J]. Invest Ophthalmol Vis Sci, 1999,40:239-242.
    17. Sabanay I, Gabelt BT, Tian B, et al. H-7 effects on the structure and fluid conductance of monkey trabecular meshwork[J]. Arch Ophthalmol, 2000,118:955-962.
    18. Bahler CK, Hann CR, Fautsch MP, et al. Pharmacologic Disruption of Schlemm's Canal Cells and Outflow Facility in Anterior Segments of Human Eyes[J]. Invest Ophthalmol Vis Sci, 2004,45:2246-2254.
    19. Tian B, Wang RF, Podos SM, et al. Effects of Topical H-7 on Outflow Facility, Intraocular Pressure, and Corneal thickness in monkeys [J]. Arch Ophthalmol, 2004, 122: 1171-1177.
    20.彭玉豪,李和平,Abbot FC.青光眼药物治疗的新进展[J].中国新药与临床杂志,2003,22:495-501.
    21. Megumi Honjo, Masaru Inatani, Noriaki Kido. Effects of Protein Kinase Inhibitor, HA1077, on Intraocular Pressure and Outflow Facility in Rabbit Eyes [J]. Arch Ophthalmol, 2001, 119: 1171-1178.
    22. Rao PV, Deng PF, Kumar J, et al. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632[J]. Invest Ophthalmol Vis Sci, 2001, 42: 1029-1037.
    23. Honjo M, Tanihara H, Inatani M, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility [J]. Invest Ophthalmol Vis Sci, 2001, 42: 137-144.
    24. Tian B, Kaufman PL. Effects of the rho kinase inhibitor Y-27632 and the phosphatase inhibitor calyculin-A on outflow facility in monkeys [J]. Exp Eye Res, 2005, 80: 215-225.
    25. Limouze J, Straight AF, Mitchison T, et al. Specificity of blebbistatin, an inhibitor of myosin Ⅱ[J]. J Musc Res & Cell Motil, 2004, 25: 337-341.
    26. Kovacs M, Toth J, Hetenyi C, et al. Mechanism of blebbistatin inhibition of myosin Ⅱ [J]. J Bio Chemi, 2004, 279: 35557-35563.
    27. Zhang M, Rao PV. Blebbistatin, a Novel Inhibitor of Myosin Ⅱ ATPase Activity, Increases Aqueous Humor Outflow Facility in Perfused Enucleated Porcine Eyes[J]. Invest Ophthalmol Vis Sci, 2005, 46: 4130-4138.
    28. McGwin G, McNeal S, Owsley C, et al. Statins and other Cholesterol-Lowering Medications and the Presence of Glaucoma [J]. Arch Ophthalmol, 2004, 122:822-826.
    29. Song J, Deng PF, Sandra S, et al. Effects of Cholesterol-Lowering Statins on the Aqueous Humor Outflow Pathway [J]. Invest Ophthalmol Vis Sci, 2005,46:2424-2432.
    30. Epstein DL, Rowlette LL, Roberts B. Acto-Myosin Drug Effects and Aqueous Outflow Function [J]. Invest Ophthalmol Vis Sci, 1999, 40:74-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700