RhoA分子在登革2型病毒感染过程中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
登革病毒(dengue virus,DV)属于黄病毒属、是一种包膜的单股正链RNA病毒。根据包膜蛋白的抗原性不同,可将登革病毒分为四个血清型,即DV1~4。DV以蚊虫为主要传播媒介广泛流行于热带和亚热带地区。每年,登革病毒会导致数百万人感染,引起登革热(dengue fever,DF)和登革出血热/登革休克综合症(dengue hemorrhagic fever/ dengueshock syndrome, DHF/DSS)。DF是自限性发热性疾病。而DHF/DSS则是威胁患者生命的重症,其主要特征是血管通透性显著增加,导致血浆渗漏。每年大约有50万DHF/DSS患者,如未及时治疗,病死率可上升至50%。因而对其致病机理和预防手段的研究已成为亟待解决的前沿课题。
     研究表明,宿主细胞骨架在病毒的感染过程中发挥重要作用,而构成细胞骨架的主要成分微丝、微管、中间纤维在不同病毒的感染过程中分别扮演着不同的角色。我们小组前期实验证实微丝和波形蛋白纤维在DV的感染及复制过程中发挥着重要作用。DV的感染可以引起微丝骨架的改变,用微丝药物破坏其聚合和解离的平衡,可以导致DV感染受到抑制说明微丝聚合和解离的平衡对DV的感染具有重要意义。而调节微丝骨架的关键因子是Rho GTP酶,作为分子开关Rho GTP酶在无活性的GDP和有活性的GTP两种形式间循环,调节细胞的形态、生长、运动以及细胞周期等。Rho GTP酶家族中研究的比较多的有3个成员:RhoA、Cdc42和Rac1。我们对波形蛋白纤维的研究发现,ECV304细胞在感染DV2后,细胞中的波形蛋白会发生重排,重排的波形蛋白从细胞边缘回缩、环绕于细胞核周围,并与病毒抗原共存,用丙烯酰胺长时间作用细胞后,破坏波形蛋白会影响DV2的复制增殖。目前研究发现波形蛋白纤维的重排是由激酶磷酸化所致,而RhoA及其下游激酶ROCK (Rho associated coiled-coil forming protein kinase)在波形蛋白纤维磷酸化中扮演着重要角色。为此,本课题以RhoA/ ROCK通路为研究对象,采用构建RhoA突变体及RhoA和ROCK特异性抑制剂干扰RhoA/ ROCK通路的方法,观察对DV感染与复制的不同环节的影响,从而为解析DV感染的分子机制提供理论依据,为预防和控制DV感染提供新思路。本研究的主要实验内容和结果如下:
     1.利用突变体观察RhoA功能的异常对DV病毒感染的影响
     本实验用DV2感染ECV304细胞及稳定表达RhoA突变体的ECV304细胞株:ECV304N、ECVWtRhoA、ECVV14RhoA和ECVN19RhoA(MOI=1),通过病毒噬斑计数法分别检测感染后1 h细胞内和24h细胞内外的病毒滴度。结果显示在病毒感染1小时后ECVN19RhoA、ECVWtRhoA、ECVV14RhoA细胞内的病毒滴度均低于ECV304和ECV304N,其中ECVV14RhoA、ECVWtRhoA下降比较明显,而ECVN19RhoA下降较少,相较于ECV304N的病毒滴度分别下降了49.71%、51.76%、20.59%。在病毒感染24小时后,细胞上清中的病毒滴度ECVV14RhoA、ECVWtRhoA和ECVN19RhoA均低于ECV304N和ECV304,其中ECVV14RhoA、ECVWtRhoA下降比较明显,而ECVN19RhoA下降不明显,相较于ECV304N的病毒滴度分别下降了76.6%、77.2%、23%;细胞内病毒滴度的变化与上清趋势相符,即ECVV14RhoA、ECVWtRhoA下降比较明显,而ECVN19RhoA下降不明显。相较于ECV304N的病毒滴度分别下降了58.75%、62.32%、20.29%。结果提示:RhoA功能的异常对DV2的感染有明显的抑制作用。
     2.利用C3转移酶抑制RhoA活性观察对DV感染的影响
     利用C3转移酶抑制ECV304细胞内RhoA活化后实施感染实验,收集病毒穿入细胞1 h时的细胞样本和感染后24 h培养上清及细胞样本进行病毒滴度检测,结果显示:药物组病毒穿入1h后细胞内的病毒滴度相较于对照组的病毒滴度下降了88.46%;药物组病毒感染24h培养上清和细胞内的病毒滴度相较于对照组分别下降了12.52%、82.35%。与免疫荧光及共聚焦显微镜观察到的结果相符,即药物处理组病毒抗原阳性的细胞数目明显低于对照组。结果说明抑制RhoA活化可明显抑制DV穿入宿主细胞及DV的复制增殖。
     3.采用G-lisa检测DV病毒感染过程中RhoA分子活性的变化
     用灭活DV2(56℃,30min)和DV2分别感染ECV304细胞。在感染30min,1h,8h及24时收集细胞样品,采用G-LISATM RhoA Activation Assay Biochem KitTM(Cytoskeleton)试剂盒检测胞内RhoA分子的活性。结果显示:在感染30min及1h时RhoA活性较对照组有显著升高,其中感染30min时最为明显,感染后1h开始下降。而在感染8h和24h后RhoA分子活性较对照组没有明显变化。说明RhoA活性主要在病毒穿入细胞的过程中被激活,而在病毒的复制增殖过程中没有变化。
     4.利用Y-27632抑制ROCK活性观察对DV感染的影响
     使用ROCK活性抑制剂Y-27632抑制ROCK活性后实施感染实验,收集感染后8 h和24 h培养上清和细胞样本进行病毒滴度检测,结果显示:与对照组相比药物处理组(6个浓度处理)细胞上清和细胞样本中病毒滴度均没有明显变化。与免疫荧光及共聚焦显微镜观察到结果一致,即药物处理组与对照组之间病毒抗原阳性的细胞数目没有明显差异。说明抑制ROCK活性对DV的复制增殖无明显影响。
     综上所述,RhoA在DV感染过程中具有重要作用,DV在进入ECV304细胞的过程中激活RhoA。上述实验结果为深入理解DV与宿主细胞的相互作用、阐明DV的致病机制提供了重要的实验依据。
Dengue virus (DV) belongs to the family Flavivirus and there are four serotypes (DV1-4). They cause a mild-to-debilitating febrile illness (classical dengue fever, DF) or life-threatening syndrome (dengue haemorrhagic fever/dengue shock syndrome, DHF/DSS). Annually there are millions of infections and at tens of thousands of deaths. The infecting DV is able to produce an acute febrile syndrome characterized by clinically significant vascular permeability(DHF/DSS). An estimated 500 000 cases of DHF require hospitalisation each year, and up to 50% may die if not properly diagnosed and treated. However, no currently licensed vaccines or antiviral drugs are available for dengue because its pathogenic mechanisms are still not fully understood.
     The previous study showed that the cytoskeleton play an important role during viral infection. The cytoskeleton network is composed of actin, microtubules(MT), intermediate filaments(Ifs) and their motor protein and other elements. Our study have found that actin and vimentin play an important role in DV2 infection. DV2 infection could induce rearrangement of actin and vimention, but the mechanism needs to be further confirmed. The present study show that the rearrangement of actin is regulated by signal transduction pathways that depend on small GTPases Rho. Of the 22 identified mammalian Rho GTPases, the best characterized are RhoA (stress fibers), Rac1 (lamellipodia) and Cdc42 (filopodia). At the same time, the rearrangement of vimentin mainly due to phosphorylation and RhoA and its downstream kinase ROCK is a key molecule in regulation of this process. Therefore, in this study, the possibility of RhoA / ROCK involved in DV2 infection was investigated. We found that RhoA was activated during DV2 entry target cells by using RhoA activation assay kit. Perturbing the activation of RhoA with pharmacological agents and RhoA mutants can interfere with DV2 infction. Moreover, inactivation ROCK may not interfere DV2 infection. These results indicated that RhoA may play an essential role in DV2 infection.
     RESULTES
     1. RhoA is involved in DV2 infection
     In our experiment, RhoA mutants including ECVWtRhoA, ECVV14RhoA, ECVN19RhoA and ECV304N cells were infected with the DV2. We detected the supernatant and intracellular virus titers after1 h, 24h p.i. by the virus plaque counts. The results showed that , after 1 hour of viral infection , virus titers of cell fraction in ECVV14RhoA, ECVWtRhoA, ECVN19RhoA cells were lower than ECV304 and ECV304N group, compared with ECV304N control ,the viral titers were reduced 49.71%, 51.76%, 20.59% respectively. At the same time, after 24 hours of viral infection, supernatant virus titer in ECVN19RhoA, ECVWtRhoA, ECVV14RhoA cell were also lower than ECV304N and ECV304, compared with ECV304N control,the titers decreased by 76.6% and 77.2%, 23% respectively. Meanwhile, the same change trend was observed in virus titer of cell fraction. The titers of cell fraction were also reduced by 58.75%, 62.32%, 20.29% in ECVV14RhoA, ECVWtRhoA, ECVN19RhoA groups Compared with that in ECV304N cells. The results suggest that RhoA is involved in DV2 infection in ECV304 cells.
     2. Effects of exoenzyme C3 transferase on DV2 infections cycle
     Using exoenzyme C3 transferase inhibit the activation of RhoA in ECV304 cells ,then cells were infected with DV2. we detected the supernatant and intracellular virus titers after1 h, 24h p.i. by the virus plaque counts. The results showed that at1 h p.i. , Compared with the control group, titers of cell fraction of the drug-treated group was significantly decreased 88.46%; Meanwhile, at 24h p.i. , compared with the control group , titers of supernatant and cell fraction of drug-treated group were also reduced 12.52%, 82.35% respectively. This results were consistent with our obsearvation using confocal microscopy. The results suggest that inhibition of RhoA activation could inhibit the DV into the host cell and the DV replication proliferation.
     3. G-lisa detect the activity of RhoA molecular during DV infection
     ECV cells were infected with Inactivated DV2 (56℃, 30min) and DV2. Collected the cell samples at the time 30min, 1h, 8h and 24h afer infection. Using G-LISATM RhoA Activation Assay Biochem KitTM (Cytoskeleton) kit to detect the intracellular activity of RhoA molecule. The results showed that compared with control group , RhoA activity increased significantly at 30min and 1h after the infection. However, at 8h and 24h after infection the molecular activity of RhoA nearly did not change compared with control group. This result suggest that RhoA activity is activated mainly in the course of the virus into the cell, and has not changed in the proliferation process of viral replication.
     4. Inhibiting Rock activity by Y-27632 to observe the impact on DV infection
     Using the ROCK inhibitor Y-27632 inhibited ROCK activity ,then taking the infection experiments, we collected supernatant and cell samples after 8 h and 24 h infection for virus titer test. Results showed that titers of supernatant and cell fraction have no significant difference between the groups drugs-treated and the control group. The results were consistent with our obsearvation using confocal microscopy. These results suggest that inhibition of ROCK activity have no effect on the replication of DV2.
     In conclusion, RhoA molecular plays an important role in DV2 infection. RhoA was activated during DV2 entry cells.
引文
1. Diamond MS, Roberts TG,Edgil D, et al ,2000, Infection of human cells by DV is modulated by different cell types and viral strains. J Virol 74:7814-23
    2. Rey F A,2002, Dengue virus envelope glycoprotein structure:New insight into its interactions during viral entry. Proc Nati Acad Sci USA 100:6899–901
    3. Bielefeldt-ohmann H,McBride WJ,2000,Dengue viral infections pathogenesis and epidemiology. Microbes Infect 2:1041-1050
    4. Schmidt, Harrison,S.C.,A.G.,Yang, 2010.Peptide inhibitors of DV entry fusion intermediate.PLoSPathog.6,4,doi:10.1371/journal.ppat.1000851.
    5. Schieffelin, J.S., Nicholson,C.O.,Costin,J.M., Orgeron,N.M.,Fontaine,K.A.,Isern,S., Michael,S.F.,Robinson,J.E.,2010. Neutralizingandnon-neutralizing monoclonal antibodies against dengue virus E protein derived from anaturally infected patient. Virol.J.7,28,doi:10.1186/1743-422X-7-28.
    6. Hase T, Eckels KH, Summers PL, Baze WB ,1987. An electron and immunoelectron microscopic study of DV-2 virus infection of cultured mosquito cells: maturation events. Arch Virol 92:273-291
    7. Wear, M.A.,Schafer, D.A.,Cooper, J.A., 2000. Actin dynamics:assembly and disassembly of actin networks. Curr. Biol. 10 (24),R891-R895.
    8. Hunter, A.W., Wordeman, L.,2000. How motor proteins influence microtube polymerization dynamics. J Cell Scil 113 (Pt 24),4379-4389.
    9. Brock, S.C., Goldenring, J.R., Crowe JR., J.E., 2003. Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 100(25),15243-15248.
    10. Cudmore,S., Reckmann, I., Way,M., 1997. Viral manipulations of the actin cytoskeleton. Trends Microbiol. 5 (4),142-148.
    11. Sodeik, B., 2000. Mechanisms of viral transport in the ctoplasm.Trends Microbiol. 8 (10),465-472.
    12. Wang Jia-Li, Gao Na, Chen Wei, et al. Preparation of antibodies against soluble recombinant dengue E proteins fused with glutathione’s transferase. Dengue Bull 2006, 30:162-170.
    13. Wei Chen, Na Gao, Jia-li Wang,et al. Roles of microtubule and vimentin in denguevirus serotype 2 infection. Archives of Virology,2008,53(9):1777-81.
    14. Tao Peng, Jia-Li Wang, Wei Chen, et al. Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis.Canadian Journal of Microbiology,2009,55(2):139-134
    15. Montaner, S., Saniger, L., Perona, R., and Lacal, J. C. ,1998. Multiple signaling pathways lead to the activation of the nuclear factor kappaB by the Rho family of GTPases. J. Biol. Chem. 273, 12779-12785.
    16. Walker K,Olson MF.Targeting Ras and Rho GTPases as opportunities for cancer therapeutics[J].Curr Opin Genet Dev,2006,15(1):62-68.
    17. Narumiya S (1996) The small GTPase Rho: cellular functions and signal transduction. J Biochem 120:215-228
    18. Ridley A J, Hall A (1992) The small GTP binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389-399
    19. Sharma-Walia N, Krishnan HH, Zeng L, Naranatt PP, Chandran B ,2004.Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements. J Virol 78:4207–4223.
    20. Vettil MV, Sadagopan S, Sharma-Walia N, et al ,2006. RhoA-GTPase facilitates entry of Kaposi's sarcoma-associated herpesvirus into adherent target cells in a Src-dependent manner. J Virol 80:11432-46.
    21. Lamb RA ,Lin G.Y, 2000.The paramyxovirus simian virus V5 protein slows progression of the cell cycle. J Virol 74:9152-9166.
    22. Gower TL, Collins PL, Peeples ME, Graham BS ,2001. RhoA Is Activated During Respiratory Syncytial Virus Infection. Virology 283:188-196
    23. Li E, Stupack D, Nemerow GR, Bokoch GM, 1998. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 72:8806–8812.
    24. Nobe K, Paul RJ, Goeckeler ZM, Distinct pathways of Ca2 + sensitization in porcine coronary artery: effects of Rho-related kinase and p rotein kinase C inhibition on force and intracellular Ca2 + .
    25. EmmertDA, Paul RJ, Goeckeler ZM, et al. Rho-kinase-mediated Ca2 +independentcontraction in rat embryo fibroblasts. Am J Physiol Cell Physiol, 2004, 286 : C8~21.
    26. Pastey MK, Gower TL, Spearman PW, Crowe JE Jr, Graham BS. A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat Med. 2000 Jan;6(1):35-40.
    27. Iesato K, Tatsumi K, Saito K, Ogasawara T, Sakao S, Tada Y, Kasahara Y, Kurosu K, Tanabe N, Takiquchi Y, Kuriyama T, Shirasawa H. Tiotropium Bromide Attenuates Respiratory Syncytial Virus Replication in Epithelial Cells. Respiration, 2008, 76(4):434-441.
    28. Cordeiro JV,Guerra S, Arakawa Y,Dodding MP, et al(2009) F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection.Plos One 4(12):e8506.
    29. Erguang Li,Dwayne Stupack,Gmry M.Bokoch.et al.1998. Adenovirus ecdocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. Journal of virology, Nov.1998,p.8806-8812.
    30. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279,509-514.
    31. Narumiya, S. (1996). The small GTPase Rho: cellular functions and signal transduction. J. Biochem. 120, 215-228.
    32. Adamson, P., Marshall, C. J., Hall, A., and Tilbrook, P. A. (1992).Posttranslational modifications of p21rho proteins. J. Biol. Chem. 272,20033-20038.
    33. Arnold, A., Konig, B., Gallatti, H., Werchau, H., and Konig, W. (1995).Cytokine (IL-8, IL-6, TNF-alpha) and soluble TNF receptor-I release from human peripheral blood mononuclear cells after respiratory syncytial virus infection. Immunology 85, 364-372.
    34. Tanaka T, Wu RC, nishimura D , et al.Nucle Rho kinase,Rock-targets p300 acetyltransferase [J].J Biol Chem,2006,281(22) :15320-15329.
    35. Doran JD, Taslimi P, Liu X, et al, 2004. New insights into the structure-funtion relationships of Rho-associated kinase:a thermodynamic and hydrodynamic study of the dimer-to-monomer transition and its kinetic implications [J] . Biochem J, 384(2):255-262.
    36. Takeshita A,Sbimokawa H, 2005. Rho-kinase is an important therapeutic target in cardiovascular medicine [J]. Arterioscler thromb VascBiol, 25(9):1767-1775.
    37. Erguang Li,Dwayne Stupack,Gmry M.Bokoch.et al.1998. Adenovirus ecdocytosisrequires actin cytoskeleton reorganization mediated by Rho family GTPases. Journal of virology, Nov.1998,p.8806-8812.
    38. Cordeiro JV,Guerra S, Arakawa Y,Dodding MP, et al(2009) F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection.Plos One 4(12):e8506.
    39. Valderrama F,Cordeiro JV, Schleich S, Frischknecht F,way M (2006) Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling.Science 311:377-381.
    40. Pastey MK, Gower TL, Spearman PW, Crowe JE Jr, Graham BS. A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat Med. 2000 Jan;6(1):35-40.
    41. Iesato K, Tatsumi K, Saito K, Ogasawara T, Sakao S, Tada Y, Kasahara Y, Kurosu K, Tanabe N, Takiquchi Y, Kuriyama T, Shirasawa H. Tiotropium Bromide Attenuates Respiratory Syncytial Virus Replication in Epithelial Cells. Respiration, 2008, 76(4):434-441.
    42. Kathrina Q, Melinda A.B.,Melodie L.W.John A.C.et al.Rho GTPasea Modulate Entry of Ebola Virus and Vesicular Stomatitis Virus Pseudotyped Vectors.Journal of virology ,Oct.2009:10176-10186.
    43. AraKawa, Y.,Cordeiro,J.V., and Way, M. (2007).F11L-Mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection. Cell Host & Microbe 1:213-226.
    44. Gower, T. L., M. E. Peeples, P. L. Collins, and B. S. Graham. 2001. RhoA is activated during respiratory syncytial virus infection. Virology 283:188–196.
    45. Gower TL, Pastey MK, Peeples ME, Collins PL, McCurdy LH, Hart TK, Guth A, Johnson TR, Graham BS. RhoA Signaling Is Required for Respiratory Syncytial Virus-Induced Syncytium Formation and Filamentous Virion Morphology. J Virol, 2005, 79(9):5326-5336.
    46. Gower, T. L., M. E. Peeples, P. L. Collins, and B. S. Graham. 2001. RhoA is activated during respiratory syncytial virus infection. Virology 283:188–196.
    47. Amin,M.,Magnusson,K.E.,Kapus,A.et al.Treponma denticola Msp-Deduced Peptide Conjugate, P34BSA,Promotes RhoA-Dependent Actin Stress Fiber Formation Independent of its internalization by Fibroblasts.
    1. D.A. Parry,Microdissection of the sequence and structure or intermediate filament chains, Adv. Protein Chem. 70 (2005) 113–142.
    2. E. Colucci-Guyon, M.M. Portier, I. Dunia, D. Paulin, S. Pournin, C. Babinet, Mice lacking vimentin develop and reproduce without an obvious phenotype, Cell 79 (1994) 679–694.
    3. E. Colucci-Guyon, M. Gimenez, Y. Ribotta, T. Maurice, C. Babinet, A. Privat, Cerebellar defect and impaired motor coordination in mice lacking vimentin, Glia 25 (1999) 33–43.
    4. B. Eckes, E. Colucci-Guyon, H. Smola, S. Nodder, C. Babinet, T. Krieg, P. Martin, Impaired wound healing in embryonic and adult mice lacking vimentin, J. Cell Sci. 113 (2000) 2455–2462.
    5. T. Yamaguchi, H. Goto, T. Yokoyama, H. Sillje, A. Hanisch, A. Uldschmid, Y. Takai, T. Oguri, E.A. Nigg, M. Inagaki, Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis, J. Cell Biol. 171 (2005) 431–436.
    6. D.L.Gard,E.Lazarides,Cyclic AMP-modulated phosphorylationof intermediate filament proteins in cultured avian myogenic cells, Mol. Cell. Biol. 2 (1982) 1104–1114.
    7. S. Stefanovic, M. Windsor, K.I. Nagata, M. Inagaki, T. Wileman, Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II, J. Virol. 79 (2005) 11766–11775.
    8. [8] R.O. Hynes, Integrins: bidirectional, allosteric signaling machines, Cell 110 (2002) 673–687.
    9. M. Gonzales, B. Weksler, D. Tsuruta, R.D. Goldman, K.J. Yoon,S.B. Hopkinson, F.W. Flitney, J.C. Jones, Structure and function of a vimentin-associated matrix adhesion in endothelial cells, Mol. Biol. Cell 12 (2001) 85–100.
    10. S. Kreis, H.J. Schonfeld, C. Melchior, B. Steiner, N. Kieffer, The intermediate filament protein vimentin binds specifically to a recombinant integrin alpha2/beta1 cytoplasmic tail complex and co-localizes with native alpha2/beta1 in endothelial cell focal adhesions, Exp. Cell Res. 305 (2005) 110–121.
    11. K. Sato, S. Hattori, S. Irie, S. Kawashima, Spike formation by fibroblasts adhering to fibrillar collagen I gel, Cell Struct. Funct. 28 (2003) 229–241.
    12. A.D. Bershadsky, I.S. Tint, T.M. Svitkina, Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts, Cell Motil. Cytoskelet. 8 (1987) 274–283.
    13. P.A. Vincent, K. Xiao, K.M. Buckley, A.P. Kowalczyk,VE-cadherin: adhesion at arm's length, Am. J. Physiol., Cell Physiol. 286 (2004) C987–C997.
    14. R. van der Neut, P. Krimpenfort, J. Calafat, C.M. Niessen, A.Sonnenberg, Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice, Nat. Genet. 13 (1996) 366–369.
    15. B.T. Helfand, L. Chang, R.D. Goldman, Intermediate filaments are dynamic and motile elements of cellular architecture, J. Cell Sci. 117 (2004) 133–141.
    16. M.L. Styers, A.P. Kowalczyk, V. Faundez, Intermediate filaments and vesicular membrane traffic: the odd couple's first dance? Traffic 6 (2005) 359–365.
    17. H. Zhang, J.S. Berg, Z. Li, Y. Wang, P. Lang, A.D. Sousa, A. Bhaskar, R.E. Cheney, S. Stromblad, Myosin-X provides a motor-based link between integrins and the cytoskeleton, Nat. Cell Biol. 6 (2004) 523–531.
    18. J. Ivaska, K. Vuoriluoto, T. Huovinen, I. Izawa, M. Inagaki, P.J.Parker, PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility, EMBO J. 24 (2005) 3834–3845.
    19. J. Ivaska, R.D. Whelan, R. Watson, P.J. Parker, PKC epsilon controls the traffic of beta1 integrins in motile cells, EMBO J. 21 (2002) 3608–3619.
    20. M.L. Styers, G. Salazar, R. Love, A.A. Peden, A.P. Kowalczyk, V. Faundez, The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton, Mol. Biol. Cell 15 (2004) 5369–5382.
    21. I. Holen, P.B. Gordon, P.O. Seglen, Protein kinase-dependent effects of okadaic acid on hepatocytic autophagy and cytoskeletal integrity, Biochem. J. 284 (Pt 3) (1992) 633–636.
    22. M.L. Styers, A.P. Kowalczyk, V. Faundez, Architecture of the vimentin cytoskeleton is modified by perturbation of the GTPase ARF1, J. Cell Sci. 119 (2006) 3643–3654.
    23. Q.F. Li, A.M. Spinelli, R. Wang, Y. Anfinogenova, H.A. Singer, D.D. Tang, Criticalrole of vimentin phosphorylation at Ser-56 by p21-activated kinase in vimentin cytoskeleton signaling, J. Biol. Chem. 281 (2006) 34716–34724.
    24. H.-M. Pallari, J.E. Eriksson, Intermediate filaments as signaling platforms, Sci. STKE 366 (2006) pe53.
    25. N. Kumar, J. Robidoux, K.W. Daniel, G. Guzman, L.M. Floering, S. Collins, Requirement of vimentin filament assembly for beta 3-adrenergic receptor activation of ERK MAP kinase and lipolysis, J. Biol. Chem. (2007) (Electronic publication ahead of print).
    26. D. Bridges, G.B. Moorhead, 14-3-3 proteins: a number of functions for a numbered protein, Sci. STKE 296 (2005) re10.
    27. H. Hermeking, A. Benzinger, 14-3-3 proteins in cell cycle regulation, Semin. Cancer Biol. 16 (2006) 183–192.
    28. [29] G. Tzivion, Z.J. Luo, J. Avruch, Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo, J. Biol. Chem. 275 (2000) 29772–29778.
    29. J. Satoh, T. Yamamura, K. Arima, The 14-3-3 protein epsilon isoform expressed in reactive astrocytes in demyelinating lesions of multiple sclerosis binds to vimentin and glial fibrillary acidic protein in cultured human astrocytes, Am. J.Pathol. 165 (2004) 577–592.
    30. S. Kim, P. Wong, P.A. Coulombe, A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth, Nature 441 (2006) 362–365.
    31. W.C. Sin, X.Q. Chen, T. Leung, L. Lim, RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament network, Mol. Cell. Biol. 18 (1998) 6325–6339.
    32. X. Yang, J. Wang, C. Liu, W.E. Grizzle, S. Yu, S. Zhang, S. Barnes, W.J. Koopman, J.D. Mountz, R.P. Kimberly, H.G. Zhang, Cleavage of p53-vimentin complex enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of rheumatoid arthritis synovial fibroblasts, Am. J. Pathol. 167 (2005) 705–719.
    33. G.V. Tolstonog, X. Wang, R. Shoeman, P. Traub, Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments, DNA CellBiol. 19 (2000) 647–677.
    34. G.V. Tolstonog, E. Mothes, R.L. Shoeman, P. Traub, Isolation of SDS-stable complexes of the intermediate filament protein vimentin with repetitive, mobile, nuclear matrix attachment region, and mitochondrial DNA sequence elements from cultured mouse and human fibroblasts, DNA Cell Biol. 20 (2001) 531–554.
    35. Q. Wang, R. Shoeman, P. Traub, Identification of the amino acid residues of the amino terminus of vimentin responsible for DNA binding by enzymatic and chemical sequencing and analysis by MALDI-TOF, Biochemistry.
    36. I. Holen, P.B. Gordon, P.O. Seglen, Protein kinase-dependent effects of okadaic acid on hepatocytic autophagy and cytoskeletal integrity, Biochem. J. 284 (Pt 3) (1992) 633–636.
    37. B. Bhattacharya, R.J. Noad, P. Roy, Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress, Virol. J. 4 (2007) 7–12.
    38. L. Chang, R.D. Goldman, Intermediate filaments mediate cytoskeletal crosstalk, Nat. Rev., Mol. Cell Biol. 5 (2004) 601–613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700