电磁场对细胞蛋白质表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通讯技术和电力事业的飞速发展,电磁辐射已成为环境中增长最快、影响最为普遍的因素之一,对其健康危害的认识和预防事关我国科技、经济和社会的可持续发展。有流行病学调查显示极低频电磁场(ELF EMF)暴露可引起白血病和乳腺癌等发病率增高;移动电话的射频电磁场(RF EMF)暴露可影响中枢神经系统功能,导致脑瘤等恶性病变。这些流行病学调查结果推动了电磁场对生物体的生物学效应及其机理的研究。体内、体外的实验研究提示低强度电磁场对神经系统、生殖系统和免疫系统等可产生一定影响,但同时也有大量的阴性报道存在,导致无法对电磁场的健康危险度进行正确评估。造成这种现象的原因在于电磁场与生物体作用的原初物理过程、引发的生物学反应以及产生生物学效应的机制不清,电磁场生物学效应的研究存在一定的盲目性。因此,揭示低强度电磁场生物学效应及作用机制成为目前迫切需要解决的问题。
     生物系统受电磁场辐照所产生的各种生理生化改变可能涉及到基因的表达调控。有研究发现,电磁场可改变原癌基因、凋亡相关基因、周期调控基因等的mRNA水平,如极低频电磁场可诱导原癌基因c-myc、c-jun和c-fos的转录,改变鼠胚胎干细胞凋亡相关基因bcl-2和bax、细胞周期调控相关基因GADD45的转录:一定强度射频电磁场可下调神经元特异性Nurrl基因的表达,上调bax、GADD45 mRNA的水平;低频电磁场间断辐照可上调p53缺陷型细胞中c-jun、p21和egr-1 mRNA的水平,但野生型细胞不受影响:1710 MHz射频电磁场可显著上调p53缺陷型细胞中Hsp70 mRNA的转录,同时使c-jun、c-myc和p21 mRNA瞬时低幅度增加。
     基因在生物体的功能最终由其编码的蛋白质在细胞水平上体现,因此从蛋白质的角度入手才能真正揭示生命活动的规律。电磁场对细胞蛋白质表达的作用研究不多,主要集中在对鸟苷酸脱羧酶ODC、热休克蛋白HSP27/70以及一些信号转导途径中信号分子PKA、PKC、TPK、MAPK等表达水平或磷酸化等翻译后修饰的影响上。然而在这些研究中,实验者通常是根据推测的电磁场作用的可能效应、作用靶点和机制,选择相关的单个或几个蛋白质进行检测。这种研究思路是以假说为前提的,可能产生主观偏差;同时,由于所选择的指标是零散的,无法得到系统性、整体性的结果,不能全面揭示电磁场的生物学效应,勾画出其反应通路。一般认为,电磁场作为一种低能量的环境因素,可能通过复杂的信号传递过程作用于细胞,改变多个蛋白质的表达水平和/或翻译后修饰,进而产生一系列后续效应。因此,从蛋白质组的角度研究电磁场的生物学效应是必要的。以双向电泳作为分离技术和质谱作为鉴定技术的蛋白质组学方法能同时分离细胞内成百上千种蛋白质,并比较不同生理或病理状态下蛋白质表达的变化,为揭示外界因素对生物体的影响和疾病发生机制等提供了一种全新的研究方法。2001年,本实验室和芬兰Leszczynski研究小组率先将该技术引入到电磁场生物学效应及机制的研究中。为探讨电磁场对肿瘤发生的可能促进效应和比较环境中最常见的两类电磁场作用的异同,本博士论文第一部分选择人乳腺癌细胞株MCF-7,采用双向电泳技术(2-DE)研究了50 Hz极低频磁场和1800 MHz射频电磁场对细胞蛋白质表达的影响,建立了该细胞的电磁场蛋白质差异表达图谱,进而利用质谱技术(MS)鉴定了部分电磁场反应蛋白质。
     根据第一部分的研究结果和一些文献的报道,我们认为有必要筛选确定电磁场作用敏感细胞,为此又设定了第二部分的研究内容。一般认为,电磁场对细胞的生物学效应受电磁场自身多因素的影响,如电磁场频率、强度、暴露时间和模式等。然而,相对于电磁场自身因素的影响而言,生物系统(细胞/组织等)的来源和辐照时的具体状态更能影响实验的最终结果。Leszczynski等发现SAR为2.4 W/kg的GSM 900射频场辐照EA.hv926细胞1小时可引起38个蛋白质的表达发生改变;而在相同条件下,EA.hy926v1细胞(EA.hy926的转化细胞株)中有另外45个蛋白点的表达发生变化,说明射频电磁场影响了两种细胞中不同蛋白质的表达。Sul等将4种不同组织来源的细胞暴露于2 mT正弦磁场中,每天辐照1、3和6小时,共14天,发现4种细胞对电磁场的反应性不同。生物系统的遗传特性决定了各生物系统对不同频率电磁场的反应敏感性不同,是导致目前许多研究结果不一致的原因之一。因此,我们认为只有以电磁场敏感细胞为研究对象,才能正确揭示电磁场的生物学效应和作用机制。在本博士论文的第二部分,我们利用传统双向电泳技术进行了电磁场相对敏感细胞的筛选,以为今后的深入研究奠定基础。
     第一部分:应用双向电泳技术研究电磁场对人乳腺癌细胞蛋白质表达的影响
     流行病学调查显示极低频电磁场暴露可引起乳腺癌发病率增高。在以往研究的基础上,我们选用50 Hz 0.4 mT正弦磁场对人乳腺癌细胞MCF-7进行辐照和假辐照处理24小时,提取总蛋白质进行双向电泳。银染图谱经PDQuest7.1软件分析显示,磁场辐照组中有6个蛋白质斑点的表达量发生显著改变,同时,在磁场辐照组中有19个蛋白点消失和19个蛋白点新出现。3个差异表达的蛋白质斑点经LC-ESI-IT串联质谱分析,鉴定为RNA结合蛋白调节亚基、蛋白酶体β亚基7型前体和翻译调控肿瘤蛋白。
     为系统研究射频电磁场对MCF-7细胞蛋白质表达的影响,选择不同时间(1、3、6、12和24小时)、不同强度(SAR为2或3.5 W/kg)、不同辐照模式(5 min-on/10 min-off或连续辐照)的217 Hz调制的全球移动通讯系统(GSM)1800 MHz射频电磁场辐照细胞,然后提取总蛋白质进行双向电泳。结果显示,在本实验条件下,1800 MHz射频电磁场对MCF-7细胞蛋白质表达谱有一定影响,但不明显,且依赖于电磁场暴露的强度、时间和模式。在上述基础上,选择作用较为明显的实验参数(SAR为3.5 W/kg,间断辐照3小时)对MCF-7细胞进行辐照,提取总蛋白质进行荧光差异双向电泳(DIGE)。采用“Decyder”软件进行分析,发现5个蛋白质点表达受电磁场作用上调。三个蛋白经MALDI-TOF/TOF质谱鉴定为CLIC1蛋白、翻译调控肿瘤蛋白和硫醇特异性抗氧化蛋白。另外两个蛋白未得到鉴定。
     第二部分:应用双向电泳技术筛选电磁场敏感细胞
     选用来源于不同物种或组织的细胞,包括中国仓鼠肺成纤维细胞CHL、小鼠胚胎成纤维细胞NIH3T3、大鼠肾上腺嗜铬细胞PC12、人眼晶状体上皮细胞SRA01/04、人羊膜上皮细胞FL、人早幼粒白血病细胞HL60和人皮肤成纤维细胞HSF分别暴露于0.4 mT的50 Hz磁场24小时或SAR为3.5 W/kg的1800 MHz射频电磁场间断辐照3小时后,立即提取全蛋白,进行双向电泳。结果显示,工频磁场辐照后,PC12和FL细胞中分别检测到差异表达蛋白点共14个和23个,分别占总检测蛋白点数2.2%和3.2%,而在其余细胞中仅检测到小于1.4%的蛋白质表达发生变化;射频电磁场辐照后,NIH3T3、FL和HL60细胞中分别检测到表达差异蛋白点共20个、23个和17个,分别占总检测蛋白点数2.4%、3.5%和2.0%,在其余细胞中仅检测到小于1.3%的蛋白质表达发生变化。根据检测到的差异点数量及其占总检测蛋白质点数的百分比,结合第一部分结果,初步认为在本实验条件下,MCF-7、PC12和FL细胞为工频磁场的相对敏感细胞,NIH3T3、FL和HL60细胞为射频电磁场的相对敏感细胞。
     结论:
     1.0.4 mT50 Hz磁场可诱导人乳腺癌细胞MCF-7蛋白质表达谱发生显著改变。已鉴定的三个差异蛋白和细胞骨架结构存在一定联系,提示细胞骨架很可能是电磁场作用的靶标。
     2.1800 Mnz射频电磁场处理并不能显著改变MCF-7细胞的蛋白质表达模式,提示MCF-7细胞对较高频率的射频电磁场反应性较弱。同时,该弱作用受电磁场辐照强度、作用时间和作用模式等参数的影响。
     3.细胞遗传和/或表观遗传(epigenetic)背景决定了其对电磁场的敏感性。在本实验条件下,MCF-7、PC12和FL细胞为工频磁场的相对敏感细胞,NIH3T3、FL和HL60细胞为射频电磁场的相对敏感细胞。不同细胞对电磁场的敏感性不同,同种细胞对不同频段的电磁场反应也可以不一样。
     4.蛋白质组学技术可以应用于电磁场生物学效应及机制研究。但由于环境低强度电磁场是一种弱作用因素,易受外界其它因素和细胞本身状态的影响;而蛋白质组学这种高通量技术本身是以牺牲敏感性为代价的,在应用于低强度电磁场这种弱效应研究的过程中,还存在一定的不足。因此,一方面需探索发展更灵敏、更高通量的技术;另一方面需通过国际合作,探索建立蛋白质组学技术在电磁场生物学效应研究中应用的技术标准和规范。从目前的情况看,由于蛋白质学技术本身存在的局限性,对所获得的结果还需谨慎对待,并应通过低通量的常规方法验证。
     5.通过对传统双向电泳技术与DIGE技术的比较,我们认为DIGE技术在电磁场应用中并不比传统双向电泳具有更大的优势。
     本博士论文的创新点:
     1.在国际上率先采用蛋白质组学技术进行了电磁场对人乳腺癌细胞蛋白质表达影响的研究及电磁场敏感细胞的筛选工作,在技术手段上有所创新。
     2.首次在国际上报道0.4 mT 50 Hz磁场可诱导人乳腺癌细胞MCF-7蛋白质表达谱发生显著改变,并鉴定了3个差异蛋白。
     3.首次从蛋白质组学的角度证明MCF-7细胞对1800 MHz射频电磁场的反应性较弱。
     4.在国际上首次利用蛋白质组学技术筛选了电磁场的敏感细胞,确定在本实验条件下,MCF-7细胞、PC12细胞和FL细胞为工频磁场的相对敏感细胞;NIH3T3细胞、FL细胞和HL60细胞为射频电磁场的相对敏感细胞。
     5.通过对两类电磁场的平行研究,证明不同细胞对电磁场的敏感性不同,而同一种细胞对不同电磁场的反应不同。
Electromagnetic radiation has become a rapid-increasing and universal-existing environment risk factor due to the rapid development of mobile communication and electric power transmission. The health risk assessment of electromagnetic radiation will protect population from the possible hazards and prmote a sustaining development of technology, economics and society. Epidemiological studies have identified a potential positive association between exposure to extremely low-frequency (ELF) electromagnetic fields and leukaemia and breast cancer. Radiofrequency (RF) electromagnetic fields from mobile phones might affect the function of the central nervous system and induce malignant pathological changes such as brain cancer. The epidemiological findings drive the experimental studies on bioeffects and mechanisms of action of EMF. However, the data from in vivo and in vitro studies are inconsistent, and it is difficult to make a clear conclusion on the overall health impact induced by EMF. Moreover, lack of a coherent hypothesis for a mechanism by which EMF might interact with biological systems has limited such studies to a phenomenological rather than a mechanistic approach. There is thus pressing motivation to delineate the biological effects and the underlining mechanisms of low-energy EMF.
    Gene expression regulation is believed to play a role in the various physiological ang biochemical changes of biological system induced by EMF. Some studies have found EMF could alter the transcription of certain genes, including pro-oncogene, apopotosis-related gene, genes regulating the cell cycle and so on. For example, c-myc, c-jun, c-fos, p21. egr-1, bax and GADD45 were found to be ELF EMF-resposive genes, and Nurr1, bax, GADD45, hsp70, c-jun, c-myc and p21 were reported to be affected by RF EMF exposure. The cell behavior will be affected if the gene expression change results in variation of protein expression and/or modification. Therefore, exploring the effects of EMF on protein would be more direct to elucidate the biological effects of EMF at a cell or organism level. There are so far only a few studies looking at the protein expression or modification after exposing to EMF, and focusing on ornithine decarboxylase (ODC), heat shock proteins (HSP27/70), and some signalling proteins of certain signal transduction pathways. Those studies are hypothesis-driven, and might introduce bias while selecting end-points to be detected. Meanwhile, the selected end-points are scattered, and the experiments were not designed in a systematic way. Therefore, it is difficult to evaluate the EMF-induced bioeffects based on the obtained data. We reason it is necessary to analyze the effect of EMF on protein at a proteomic scale. Theoretically, a proteomics approach allows simultaneously monitoring hundreds or even thousands of proteins in a sample. In 2001 our laboratory and the Leszczynski group in Finland initiated the application of proteomics in EMF research.
    To evaluate the potential co-carcinogenic effect of EMF, and compare the effects of two different environmental prevailing EMF, the first part of this dissertation intend to reveal the differential protein expressions in human breast cancer cells (MCF-7) induced by 50 Hz ELF EMF or 1800 MHz RF EMF using two-dimensional electrophoresis (2-DE) technique, then identify differential expression proteins by mass spectrum analysis.
    Based on the results of the first part and other studies, we further reason it is necessary to scan EMF-sensitive cell types and set it up as the second part of the dissertation. It is realized that the bioeffects of EMF depend on many factors, such as exposure frequency, intensity, duration, and pattern. However, the origin and status of tested biological systems (cell, tissue) may be the most important factor to affect the results. Leszczynski and his colleagues, for example, found 38 protein spots with altered expression levels in the EA.hy926 cell line following to 900 MHz RF exposure for 1 h at SAR of 2.4 W/kg, whereas in the EA.hy926vl cell line (a subcloning of EA.hy926) 45 different protein spots showed altered (Nylund R, Leszczynski D. Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics, 2006, 6: 4769-4780). Sul exposed four cell lines of different origins to sinusoidal electromagnetic fields at 2 mT for 1, 3 or 6 hours per day. After 14 days, he found cell type-specific reaction to EMF (Sul AR, Park SN, Suh H. Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med J, 2006, 47: 852-861). Thanks to these studies, the message is becoming clear: the diverse genetic backgroud of biological systems make them react differently to EMF, the key in EMF research is to identify EMF-sensitive cells and then explore the effects and mechanism of action of EMF. Therefore, the second part of my dissertation is to screen EMF-sensitive cell lines using 2-DE approach.
    Part I: The effects of EMF on protein profiles in human breast cancer cells
    To reveal the effect of ELF MF on protein expression, MCF-7 cells were exposed to 50 Hz, 0.4 mT ELF MF for 24 h. Immediately after the exposure and sham-exposure, proteins were extracted from the cells and subjected to be analyzed by 2-DE. The analysis of protein distribution in the gels was carried out with the aid of the PDQuest software, version 7.1. The results showed that 6 spots have been statistically significantly altered, and 19 additional spots were detected only in exposed group while 19 ones were detected only in control group. Three proteins were identified by LC-ESI-IT tandem MS as RNA binding protein regulatory subunit, proteasome subunit beta type 7 precursor, and tanslationally controlled tumor protein.
    To analyze the effect of RF EMF on protein expression, MCF-7 cells were exposed to 1800 MHz RF EMF modulated by 217 Hz (or sham-exposed) at different duration (1, 3, 6, 12 and 24 h), different intensities (SAR of 2 or 3.5 W/kg) and different patterns (5 min-on and 10 min-off exposure, or continuous exposure). After exposure or sham-exposure, total proteins were extracted and analyzed by 2-DE. The analysis of protein distribution in the gels was carried out as above. The results showed the protein expression changes induced by 1800 MHz RF EMF in MCF-7 cells were faint and depended on exposure intensity, duration and pattern.
    We further analyzed the protein expression change induced by RF EMF using fluorescence difference gel electrophoresis (DIGE). MCF-7 cells were intermittent exposed to 1800 MHz RF EMF at SAR of 3.5 W/kg for 3 h (under this exposure condition, we found 18 proteins expression were altered in 2-DE approach). The total proteins were extracted and separated by DIGE, and the three-color images were analyzed by the "Decyder" software. The results showed that 5 proteins were up-regulated by RF EMF. Three of these could be identified in MALDI TOF/TOF as CLIC 1 protein, translationally controlled tumor protein 1, and thiol-specific antioxidant protein.
    Part II: Screening EMF-sensitive cells types using 2-DE
    Chinese hamster lung fibroblast cells line CHL, rat skin fibroblast cells line NIH3T3, rat pheochromocytoma cells line PC 12, human lens cells line SRA01/04, human amnion epithelial fibroblast cells line FL, human leukemic cell line HL60 and human skin fibroblast cell line HSF were exposed to 0.4 mT ELF MF for 24 h or 1800 MHz RF EMF at SAR of 3.5 W/kg for 3 h. The extracted proteins were separated using 2-DE respectively. Compare to sham-exposure group, ELF MF exposure induced 14 and 23 differentially expressed proteins in PC 12 and FL cells, representing 2.2 % and 3.2 % of the total detected protein spots, respectively. Only less than 1.4 % of the total protein spots were changed by ELF MF in other cell types. On the other hand, RF EMF exposure produced 20, 23 and 17 differentially expressed proteins in NIH3T3 cells, FL cells and HL60 cells representing 2.4 %, 3.5 % and 2.0 % of the total protein spots detected, respectively. Meanwhile, only less than 1.3 % of the total proteins were altered by ELF MF in other cells types. Combined the results of Part I, we concluded MCF-7, PC 12 and FL cells as ELF MF-sensitive cells; and NEH3T3, FL and HL60 cells as RF EMF-sensitive cells based on the absolute number of differentially expressed proteins and their ratios to the total protein spots detected.
    The main conclusions are:
    1. 0.4 mT 50 Hz ELF MF could significantly alter proteins expression in MCF-7 cells. The three identified proteins are related with the cellular cytoskeleton, implying cytoskeletal might be an interaction target to EMF.
    2. 1800 MHz RF EMF did not significantly alter protein expression in MCF-7 cells, suggesting this cell type react weakly to RF EMF. The protein expression changes induced by 1800 MHz RF EMF in MCF-7 depend on exposure intensity, duration and pattern.
    3. The genetic and/or epigenetic background of a biological system determines its response to EMF. Under the experimental conditions, we identified that MCF-7, PC12 and FL cells are ELF MF-sensitive cells, and NIH3T3, FL and HL60 cells are RF EMF-sensitive cells. Meanwhile different cell types have different response to EMF, and the same cell type reacts differently to different frequency of EMF.
    4. Proteomics approach is applicable in EMF research to investigate bioeffects and mechanism of action. However, due to the weak interaction of low intensity EMF with a biological system, and the low sensitivity of high through-put technology such as proteomics, there are defects in applying such a technique in elucidation EMF effects. It is urgert to develop more sensitive and more high through-put techniques, and to establish special technique criterion for using proteomics in EMF research. Due to the limitations of proteomics analysis, the produced candidates should be validated using non-HTST methods.
    5. After comparing the application of classical 2-DE and DIGE, we do not recommend DIGE as a better method in EMF research.
    Innovation points of this dissertation:
    1. We first employ proteomics approach in revealing the effects of EMF on protein expression in MCF-7 cells and in screening the EMF-responsive cell types. Thus, there is innovation in selecting experimental technique.
    2. We first report the differential proteins expression profile of MCF-7 cells induced by 0.4 mT 50 Hz ELF MF, and identified three ELF MF-responsive proteins
    3. We first report the MCF-7 cell line is not a sensitive cell line to 1800MHz RF EMF from a point of view of proteomics analysis.
    4. We first identify MCF-7, PC12 and FL cells are ELF MF-sensitive cells, and NIH3T3, FL and HL60 cells are RF EMF-sensitive cells under the current experimental conditions. 5. By conducting a parallel proteomics study on ELF MF and RF EMF, we conclude that different cells react differently to EMF, and the same cell type has different response to different frequency of EMF.
引文
1. Wertheimer N, Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol, 1979, 109(3): 273-284
    2. Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M, Michaelis J, Olsen JH, Tynes T, Verkasalo PK. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer, 2000, 83(5): 692-698
    3. Greenland S. Estimation population attributable fractions from fitted incidence ratios and exposure survey data, with an application to electromagnetic fields and childhood leukemia. Biometrics, 2001,57(1):182-188
    4. IARC. 2002. Non-ionizing radiation. Part 1, static and extremely low-frequency (ELF) electric and magnetic fields. Lyon, France: IARC. p.429
    5. Hardell L, Mild KH, Carlberg M. Further aspects on cellular and cordless telephones and brain tumours. Int J Oncol, 2003, 22(2): 399-407
    6. Hansson Mild K, Hardell L, Carlberg M. Pooled analysis of two Swedish case-control studies on the use of mobile and cordless telephones and the risk of brain tumours diagnosed during 1997-2003. Int J Occup Saf Ergon, 2007, 13(1): 63-71
    7. http://www.who.int/peh-emf/en/
    8. Lee JH, McLeod KJ. Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields. Bioelectromagnetics, 2002, 21 (2): 129-136
    9. Manni V, Lisi A, Pozzi D, Rieti S, Serafino A, Giuliani L, Grimaldi S. Effects of extremely low frequency (50 Hz) magnetic field on morphological and biochemical properties of human keratinocytes. Bioelectromagnetics, 2002, 23(4): 298-305
    10. Rieti S, Manni V, Lisi A, Giuliani L, Sacco D, D'Emilia E, Cricenti A, Generosi R, Luce M, Grimaldi S. SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT). J Microsc, 2004, 213(Pt1): 20-28
    11. Lisi A, Ledda M, Rosola E, Pozzi D, D'Emilia E, Giuliani L, Foletti A, Modesti A, Morris SJ, Grimaldi S. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D 16V cells. Bioelectromagnetics, 2006, 27(8): 641-651
    12. Santoro N, Lisi A, Pozzi D, Pasquali E, Serafino A, Grimaldi S. Effect of extremely low frequency(ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochim Biophys Aeta, 1997, 1357(3): 281-290
    13. Lisi A, Pozzi D, Pasquali E, Rieti S, Girasole M, Cricenti A, Generosi R, Serafino AL, Congiu-Castellano A, Ravagnan G, Giuliani L, Grimaldi S. Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells(Raji). Bioelectromagnetics, 2000, 21(1): 46-51
    14. Donnellan M, McKenzie DR, French PW. Effects of exposure to electromagnetic radiation at 835 MHz on growth, morphology and secretory characteristics of a mast cell analogue, RBL-2H3. Cell Biol Int, 1997, 21(7): 427-439
    15. Bersani F, Marinelli F, Oqnibene A, Matteucci A, Cecchi S, Santi S, Squarzoni S, Maraldi NM. Intramembrane protein distribution in cell cultures is affected by 50Hz pulsed magnetic fields. Bioelectromagnetics, 1997, 18(7): 463-469
    16. Capri M, Scarcella E, Fumelli C, Bianchi E, Salvioli S, Mesirca P, Agostini C, Antolini A, Schiavoni A, Castellani G, Bersani F, Franceschi C. In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: studies of proliferation, apoptosis and mitochondrial membrane potential. Radiat Res, 2004, 162(2): 211-218
    17.孙文均,付一提,鲁德强,姜槐.工频磁场诱导肺成纤维细胞膜受体聚簇及噪声磁场的干预作用.中华预防医学杂志,2004,38:5-7
    18.谢亮,姜槐,孙文均,傅一提,鲁德强.移动电话射频电磁场诱导膜受体聚簇及噪声磁场的干预.中华劳动卫生职业病杂志,2006,24(8):461-464
    19. Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D'Ascenzo M, Grassi C, Azzena GB, Cittadini A. 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta, 2005, 1743(1-2):120-129
    20. Wei M, Guizzetti M, Yost M, Costa LG. Exposure to 60-Hz magnetic fields and proliferation of human astrocytoma cells in vitro. Toxicol Appl Pharmacol, 2000, 162(3): 166-176
    21. Manni V, Lisi A, Rieti S, Serafino A, Ledda M, Giuliani L, Sacco D, D'Emilia E, Grimaldi S. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics, 2004, 25(2): 118-126
    22. Lisi A, Foletti A, Ledda M, Rosola E, Giuliani L, D'Emilia E, Grimaldi S. Extremely low frequency 7 Hz 100 microT electromagnetic radiation promotes differentiation in the human epithelial cell line HaCaT. Electromagn Biol Med, 2006, 25(4):269-280
    23. Pacini S, Ruqqiero M, Sardi I, Aterini S, Gulisano F, Gulisano M. Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol Res, 2002, 13(1): 19-24
    24. Velizarov S, Raskmark P, K wee S. The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochem Bioenerg, 1999, 48(1): 177-180
    25. Barbier E, Dufy B, Veyret B. Stimulation of Ca~(2+) influx in rat pituitary cells under exposure to a 50 Hz magnetic field. Bioelectromagnetics, 1996, 17(4): 303-311
    26.黄春明,徐建华。极低频弱磁场对PC-12瘤细胞内游离钙离子浓度的影响.生物医学工程学杂志.2000,94:63-65
    27.刘仁臣,周贞洁,褚克平,刘秀丽,陈树德,夏若虹.0.4 mT工频磁场对骨骼肌肌质网囊泡游离钙离子转运的影响.中华预防医学杂志,2006,40(3):168-172
    28. Knedlitschek G, Noszvai-Nagy M, Meyer-Waarden H, Schimmelpfeng J, Weibezahn KF, Dertinger H. Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities. Radiat Environ Biophys, 1994, 33(2): 141-147
    29. Schimmetpfeng J, Stein JC, Dertinger H. Action of 50 Hz magnetic fields on cyclic AMP and intercellular communication in monolayers and spheroids of mammalian cells. Bioelectromagnetics, 1995, 16(6): 381-386
    30. Yamaguchi DT, Huang J, Ma D, Wang PK. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. J Cell Physiol, 2002, 190(2): 180-188
    31. Ubeda A, Trillo MA, House DE, Blackman CF. A 50Hz magnetic field blocks melatonin-induced enhancement of junctional transfer in normal C3H/10T1/2 cells. Carcinogenesis, 1995, 16(12):2945-2949
    32. Li CM, Chiang H, Fu YD, Shao BJ, Shi JR, Yao GD. Effects of 50Hz magneticfields on gap junctional intercellular communication. Bioelectromagnetics, 1999, 20(5): 290-294
    33. Hu GL, Chiang H, Zeng QL, Fu YD. ELF magnetic field inhibits gap junctional intercellular communication and induces hyperphosphorylation of connexin43 in NIH3T3 cells. Bioelectromagnetics, 2001, 22(8): 568-573
    34. Zeng QL, Chiang H, Hu GL, Mao GG, Fu YT, Lu DQ. ELF magnetic fields induce internalization of gap junction protein connexin43 in Chinese hamster lung cell. Bioelectromagnetics, 2003, 24(2):134-138
    35. Wahab MA, Podd JV, Rapley BI, Rowland RE. Elevated sister chromatid exchange frequencies in dividing human peripheral blood lymphocytes exposed to 50 Hz magnetic fields. Bioelectromagnetics, 2006, 28(4): 281-288
    36. Simko M, Kriehuber R, Weiss DG, Luben RA. Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics, 1998, 19(2):85-91
    37. Ivancsits S, Diem E, Pilger A, Rudiger HW, Jahn O. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Murat Res, 2002, 519(1-2): 1-13
    38. Maes A, Collier M, Slaets D, Verschaeve L. Cytogenetic effects of microwave from mobile communication frequencies (954MHz). Electro-and Magnetobiology,1995, 14:91-98
    39. Maes A, Collier M, Slaets D, Verschaeve L. 954MHz microwaves enhance the mutagenic properties of mitomycin C. Environ Mol Mutagen, 1996, 28:26-30
    40. d'Ambrosio G, Massa R, Scarfi MR, Zeni O. Cytogenetic damage in human lymphocytes following GMSK phase modulated microwave exposure. Bioelectromagnetics, 2002, 23(1): 7-13
    41. Diem E, Schwarz C, Adlkofer F, Jahn O, Rudiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res, 2005, 583(2): 178-183
    42.张丹英,许正平,姜槐,鲁德强,曾群力.1800MHz射频电磁场对中国仓鼠肺成纤维细胞DNA损伤的影响.中华预防医学杂志,2006,40(3):149-152
    43. Sun LX, Yao K, Wang KJ, Lu DQ, Hu HJ, Gao XW, Wang BH, Zheng W, Lou JL, Wu W. Effects of 1.8GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. MutatRes, 2006, 602(1-2): 135-142
    44. Goodman R, Wei LX, Xu JC, Henderson A. Exposure of human cells to low frequency electromagnetic fields results in quantitative changes in transcripts. Biochim Biophys Acta, 1989, 1009:2 16-220
    45.刘赞,喻云梅,瓮恩琪.极低频电磁场对小鼠脑和肝脏c-fos mRNA水平的影响.中华劳动卫生职业病杂志,2003,21(5):335-338
    46. Phillips JL, Haggren W, Thomas WJ, Ishida-Jones T, Adey WR. Magnetic field-induced changes in specific gene transcription. Biochim Biophys Aeta, 1992, 1132(2): 140-144
    47. Lin H, Goodman R, Shirley-Henderson A. Specific region of the c-myc promoter is responsive to electric and magnetic fields. J Cell Biochem, 1994, 54(3): 281-288
    48. Rao S, Henderson AS. Regulation of c-fos affected by electromagnetic fields. J Cell Biochem, 1996,63(3): 358-365
    49. Ivasehuk OI, Jones RA, Ishida-Jones T, Haggren W, Adey WR, Phillips JL. Exposure of nerve growth factor-treated PC12 rat pheochromoeytorna cells to a modulated radiofrequency field at 836.55 MHz: effects on c-jun and c-fos expression. Bioelectromagnetics, 1997, 18(3): 223-229
    50. Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Jovtehev G, Schuderer J, Kuster N, Wobus AM. Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB, 2005, 19(12): 1686-1688
    51. Czyz J, Nikolova T, Sehuderer J, Kuster N, Wobus AM. Non-thermal effects of power-line magnetic fields (50Hz) on gene expression levels of pluripotent embryonic stem cells-the role of tumor suppressor p53. MutatRes, 2004, 557(1): 63-74
    52. Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schonborn F, Schuderer J, Kuster N, Wobus AM. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics, 2004, 25(4): 296-307
    53. Carmody S, Wu XL, Lin H, Blank M, Skopicki H and Goodman R. Cytoprotection by Electromagnetic Field-Induced hsp70: A Model for Clinical Application. J Cell Biochemistry, 2000,79(3): 453-459
    54. Tokalov SV, Gutzeit HO. Weak electromagnetic fields (50Hz) elicit a stress response in human cells. Environ Res, 2004, 94(2): 145-151
    55. Pipkin JL, Hinson WG, Young JF, Rowland KL, Shaddock JK, Tolleson WH, Duffy PH, Casciano DA. Induction of Stress Proteins by Electromagnetic Fields in Cultured HL-60 Cells. Bioelectromagnetics, 1999, 20(6): 347-357
    56. Loschinger M, Thurnm S, Hammerle H, Rodemann HP. Stimulation of protein kinase A activity and induced terminal differentiation of human skin fibroblasts in culture by low-frequency electromagnetic fields. Toxieol Lett, 1998, 96-97:369-376
    57. Uckun FM, Kurosaki T, Jin J, Jun X, Morgan A, Takata M, Bolen J, Luben R. Exposure of B-lineage lymphoid cells to low energy, electromagnetic fields stimulates Lyn kinase. J Biol Chem, 1995, 270(46): 27666-27670
    58. Kristupaitis D, Dibirdik I, Vassilev A, Mahajan S, Kurosaki T, Chu A, Tuel-Ahlgren L, Tuong D, Pond D, Luben R, Uckun FM. Electromagnetic field-induced stimulation of Bruton's tyrosine kinase. J Biol Chem, 1998,270(20): 12397-12401
    59. Dibirdik I, Kristupaitis D, Kurosaki T, Tuel-Ahlgren L, Chu A, Pond D, Tuong D, Luben R, Uckun FM. Stimulation of Src family protein-typosine kinase as a proximal and mandatory step for SYK kinase-dependent phospholipase Cgamma2 activation in lymphoma B cells exposed to low energy electromagnetic fields. J Biol Chem, 1998, 273: 4035-4039
    60. Nie K, Henderson A. MAP kinase activation in cells exposed to a 60 Hz electromagnetic field. J Cell Biochem, 2003, 90(6): 1197-1206
    61. Sun WJ, Chiang H, Fu YT, Yu YN, Xie HY. Exposure to 50 Hz electromagnetic fields induces the phosphorylation and activity of stress-activated protein kinase in cultured cells. Eleetromagn Biol Med, 2001, 20(3): 415-423
    62.孙文均,余应年,姜槐,付一提,鲁德强.工频磁场对P38丝裂原活化的蛋白激酶磷酸化的诱导作用.中华劳动卫生职业病杂志,2002,20(4):252-255
    63. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer-and blood-brain barrier-related effects. Differentiation, 2002, 70(2-3): 120-129
    64. Peakall D, Shugart L. The human genome project (HGP). Ecotoxicology, 2002, 11(1): 7-9
    65.俞利荣,曾嵘,夏其昌.蛋白质组研究技术及其进展.生命的化学,1998,18(6):4-9
    66. Patterson SD, Aebersold RH. Proteomics: the first decade and beyond. Nat Genet, 2003, 33:311-323
    67. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. Biol Chem, 1975, 250:4007-4021
    68. Viswanathan S, Unlu M, Minden JS. Two-dimensional difference gel electrophoresis.Nat Protoc, 2006, 1(3):1351-1358
    69. Wu TL. Two-demensional difference gel electrophoresis. Methods Mol Biol, 2006, 328:71-95
    70. Cain CD, Thomas DL, Adey WR. 60 Hz magnetic field acts as co-promoter in focus formation of C3H/10T1/2 cells. Carcinogenesis, 1993, 14(5): 955-960
    71. Rannug A, Holmberg B, Ekstrom T, Mild KH, Gimenez-Conti I, Slaga TJ. Intermittent 50 Hz magnetic field and skin tumor promotion in SENCAR mice. Carcinogenesis, 1994, 15(2): 153-157
    72. Richard D, Lange S, Viergutz T, Kriehuber R, Weiss DG, Myrtill S. Influence of 50 Hz electromagnetic fields in combination with a tumour promoting phorbol ester on protein kinase C and cell cycle in human cells. Mol Cell Biochem, 2002, 232(1-2): 133-141
    73. Harland JD, Liburdy RP. Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics, 1997, 18(8):555-562.
    74. Blackman CF, Benane SG, House DE. The influence of 1.2 microT, 60 Hz magnetic fields on melatonin- and tamoxifen-induced inhibition of MCF-7 cell growth. Bioelectromagnetics, 2001,22(2): 122-128
    75. Ishido M, Nitta H, Kabuto M. Magnetic fields (MF) of 50 Hz at 1.2 microT as well as 100 microT cause uncoupling of inhibitory, pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells. Carcinogenesis, 2001, 22(7): 1043-1048
    76. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Durra MJ. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Electrophoresis, 2000, 21 (17): 3666-3672
    77. Risk evaluation of potential environmental hazards from low frequency electromagnetic field exposure using sensitive in vitro methods, http:// www.itis.ethz.ch/dovvnloads/REFLEX Final%20 Report_171104.pdf P173
    
    78. Nylund R, Leszczynski D. Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM900 radiation. Proteomics, 2004, 4(5): 1359-1365
    
    
    79. Hod Y, Pentyala SN, Whyard TC, EL-Maghrabi MR. Identification and characterization of a novel protein that regulates RNA-protein interaction. Jf Cel Biochem, 1999, 72(3): 435-444
    
    80. Siomi MC, Zhang Y, Siomi H, Dreytuss G. Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunit and the interactions among them. Mol Cell Biol, 1996, 16(7): 3825-3832
    
    81. Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA. The growth-related, translatioanlly controlled protein P23 has properties of a tubulin binding protein and associate transiently with microtubules during the cell cycle. J Cell Sci, 1999, 112(Pt8): 1257-1271
    
    82. Xu A, Bellamy AR, Taylor JA. Expression of translationally controlled tumor protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J, 1999, 342: 683-689
    
    83. McCreary CR, Thomas AW, Prato FS. Factors confounding Cytosolic calcium measurements in jurkat E6.1 cells during exposure to ELF magnetic fields. Bioelectromagnetics, 2002, 23: 315-328
    
    84. Valenzuela SM, Mazzanti M, Tonini R, Qiu MR, Warton K, Musqrove EA, Campbell TJ, Breit SN. The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J Physiol, 2000, 529 (Pt 3): 541-552
    
    85. Suh KS, Mutoh M, Gerdes M, Crutchley JM, Mutoh T, Edwards LE, Dumont RA, Sodha P, Cheng C, Glick A, Yuspa SH. Antisense suppression of the chloride intracellular channel family induces apoptosis, enhances tumor necrosis factor (alpha)-induced apoptosis, and inhibit tumor growth. Cancer Res, 2005, 65(2): 562-571
    
    86. Berryman M, Bretscher A. identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli. Mol Biol Cell, 2000, 11(5): 1509-1521
    
    87. Valenzuela SM, Martin DK, Por SB, Robbins JM, Warton K, Bootcov MR, Schofield PR, Campbell TJ, Breit SN. Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem, 1997,272(19):12575-12582
    
    88. Tonini R, Ferroni A, Valenzuela SM, Warton K, Campbell TJ, Breit SN and Mazzanti M. Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells. FASEB, 2000, 14(9): 1171-1178
    
    89. Chen CD, Wang , Huang YH, Chien K Y, Liang Y, Chen WJ, Lin KH. Overexpression of CLIC1 in human gastric carcinoma and its clinicopathological significance. Proteomics, 2007, 7(1): 155-167
    
    90. Caraglia M, Marra M, Mancinelli F, D' Ambrosio G, Massa R, Giordano A, Budillon A, Abbruzzese A, Bismuto E. Electromagnetic fields at mobile phone frequency induce apoptosis and inactivation of the multi-chaperone complex in human epidermoid cancer cells. J Cell Physiol, 2005, 204(2): 539-548
    
    91. Kristensen P, Rasmussen DE, Kristensen BI. Properties of thiol-specific anti-oxidant protein or calpromotin in solution. Biochem Biophys Res Commun, 1999, 262(1): 127-131
    92. Watabes, Haseqawa H, Takimoto K, Yamamoto Y, Takahashi SY. Possible function of SP-22, a substrate of mitochondrial ATP-dependent protease, as a radical scavenger. Biochem Biophys Res Commun, 1995, 213(3): 1010-1016
    93. Charruyer A, Jean C, Colomba A, Jaffrezou JP, Quillet-Mary A, Laurent G, Bezombes C. PKCzeta protects against UV-C induced apoptosis by inhibiting acid sphingomyelinase-dependent ceramide production. Biochem J, 2007 Mar 8 [Epub ahead of print]
    94. Lantow M, Lupke M, Frahm J, Mattsson MO, Kuster N, Sirnko M. Ros release and Hsp70 expression after exposure to 1800MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiat Environ Biophys, 2006, 45(1): 55-62
    95. Lai H, Singh NP. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect, 2004, 112(6): 687-694
    96. Risk evaluation of potential environmental hazards from low frequency electromagnetic field exposure using sensitive in vitro methods, http://www.itis.ethz.ch/downloads/REFLEX_Fina1%20 Report_171104.pdf P198
    97. Risk evaluation of potential environmental hazards from low frequency electromagnetic field exposure using sensitive in vitro methods, http://www.itis.ethz.ch/downloads/REFLEX_Fina1%20 Report_171104.pdf P177
    98. Markkanen A, Penttinen P, Naarala J, Pelkonen J, Sihvonen AP, Juntilainen J. Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells. Bioelectromagnetics, 2004,25(2): 127-133
    99. Risk evaluation of potential environmental hazards from low frequency electromagnetic field exposure using sensitive in vitro methods, http://www.itis.ethz.ch/downloads/REFLEX_Final%20 Report_171101.pdfP188
    100. Hu GL, Fu YT, Zeng QL, Xu ZP, Chiang H. Study on gap junctional intercellular communication inhibition by ELF magnetic fields using FRAP method. Electromagn BioMed, 2002, 21(2): 155-160
    101. Chen Q, Zeng QL, Lu DQ, Chiang H. Millimeter Wave Exposure Reverses TPA Suppression of GAP Junction Intercellular Communication in HaCaT Human Keratinocytes. Bioelectromagnetics, 2004, 25(1):1-4
    102. Sinclair J, Weeks M, Butt A, Worthington JL, Akpan A, Jones N, Waterfield M, Allanand D, Timms JF. Proteomic response of Schizosaccharomyces pombe to static and oscillating extremely low-frequency electromagnetic fields. Proteomics, 2006, 6(17):4755-4764
    103. Leszezynski D. Mobile phone radiation and gene expression. RadiatRes. 2007, 167(1): 121
    104. Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet, 2006, 7(1): 55-65
    105. Gade D, Thiermann J, Markowsky D, Rabus R. Evaluation of two-dimensional difference gel electrophoresis for protein profiling. J Mor Microbio Biotechnol,. 2003, 5:240-251
    1. Ivancsits S, Pilger A, Diem E, Jahn O, Rudiger HW. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res, 2005, 583(2): 184-188
    2. McFarlane EH, Dawe GS, Marks M, Campbell IC. Changes in neurite outgrowth but not in cell division induced by low EMF exposure: influence of field strength and culture conditions on responses in rat PC12 pheoehromoeytoma cells. Bioeleetrochemistry, 2000, 52(1): 23-28
    3. Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schonborn F, Schuderer J, Kuster N, Wobus AM. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics, 2004, 25(4): 296-307
    4. Risk evaluation of potential environmental hazards from low frequency electromagnetic field exposure using sensitive in vitro methods. http://www.verum-foundation.de/www2004/html/pdf/euprojekte01/REFLEX_Final%20Report_Part%201.pdf
    5. Simko M, K.riehuber R, Weiss DG, Luben RA. Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Biaelectramagnetics, 1998, 19(2):85-91
    6. Sul AR, Park SN, Suh H. Effects of sinusoidal electromagnetic field on structure and function of different kinds of cell lines. Yonsei Med J, 2006, 47(6): 852-861
    7. Czyz J, Nikolova T, Schuderer J, Kuster N, Wobus AM. Non-thermal effects of power-line magnetic fields (50Hz) on gene expression levels of pluripotent embryonic stem cells-the role of tumor suppressor p53. Mutar Res, 2004, 557(1): 62-74
    8. Nylund R, Leszczynski D. Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Prateamies, 2006, 6(17): 4769-4780
    9. Shen J, Wu M, Yu Y. Proteomic profiling of cellular responses to different concentrations of N-Methyl-N'-nitro-N-nitrosoguanidine. J Proteome Res, 2006, 5(2): 385-395
    10. Wang Y, Cheung YH, fang Z, Chiu JF, Che CM, He QY. Proteomic approach to study the cytotoxity of dioscin (saponin). Proteomics, 2006, 6(8): 2422-2432
    11. Jin BF, He K, Wang HX, Bai B, Zhou T, Li HY, Man JH, Liu BY, Gong WL, Wang J, Li AL, Zhang XM. Proteomics analysis reveals insight into the mechanism of H-Ras-Mediate transformation. J Proteome Res, 2006, 5(10): 2815-2823
    12. Zeng QL, Chen GD, Weng Y, wang LL, Lu DQ, Chiang H, Xu ZP. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics, 2006, 6(17): 4732-4738
    13. Wertheimer N and Leeper E. Adult cancer related to electrical wires near the home. Int J Epidemiol. 1982, 11:345-355
    14. Harland JD, Liburdy RP. Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics. 1997, 18(8):555-562
    15. Blaekman CF, Benane SG, House DE. The influence of 1.2 microT, 60 Hz magnetic fields on melatonin- and tamoxifen-induced inhibition of MCF-7 cell growth. Bioelectromagnetics. 2001,22(2): 122-128
    16. Ishido M, Nitta H, Kabuto M. Magnetic fields (MF) of 50 Hz at 1.2 microT as well as 100 microT cause uncoupling of inhibitory pathways of adenylyl cyelase mediated by melatonin la receptor in MF-sensitive MCF-7 cells. Carcinogenesis, 2001, 22(7): 1043-1048
    17. Nie K, Henderson A. MAP kinase activation in cells exposed to a 60 Hz electromagnetic field. J Cell Biochem, 2003, 90(6): 1197-1206
    18. Blaekman CF, Benane SG, House DE. Frequency-dependent interference by magnetic fields of nerve growth factor-induced neurite outgrowth in PC- 12 cells. Bioelectromagnetics, 1995, 16(6): 387-395
    19. Blackrnan CF, Benane SG, House DE, Pollock MM. Action of 50Hz magnetic fields on neurite outgrowth in pheochromocytoma cells. Bioelectromagnetics, 1993, 14(3): 273-286
    20. Blackman, C. F., Benane, S. G., House, D. E, Evidence for direct effect of magnetic fields on neurite outgrowth. FASEB J, 1993, 7(9): 801-806
    21. Shah JP, Midkiff P, Brandt PC, Sisken BF. Growth and differentiation of PC6 cells: The effects of pulsed electromagnetic fields (PEMF). Bioelectromagnetics, 2001, 22(4): 267-271
    22. Zhang Y, Ding J, Duan W, Fan W. Influence of pulsed electromagnetic field with different pulse duty cycles on neurite outgrowth in PC12 rat pheochromoeytoma cells. Bioelectromagnetics, 2005, 26(5): 406-411
    23. Infante-Rivard C, Deadman JE. Maternal occupational exposure to extremely low frequency magnetic fields during pregnancy and childhood leukemia. Epidemiology, 2003, 14(4): 437-441
    24. Simko M, Kriehuber R, Lange S. Micronucleus formation in human amnion cells after exposure to 50 Hz MF applied horizontally and vertically. Mutat Res, 1998, 418(2-3): 101-111
    25. Lange S, Viergutz T, Simko M. Modifications in cell cycle kinetics and in expression of Gl phase-regulating proteins in human amniotic cells after exposure to electromagnetic fields and ionizing radiation. Cell Prolif, 2004, 37(5) :337-349
    26. Richard D, Lange S, Viergutz T, Kriehuber R, Weiss DG, Myrtill S. Influence of 50 Hz electromagnetic fields in combination with a tumour promoting phorbol ester on protein kinase C and cell cycle in human cells. Mol Cell Biochem, 2002, 232(1-2): 133-41
    27. Hu GL, Chiang H, Zeng QL, Fu YT. ELF magnetic field inhibits gap junctional intercellular communication and induces hyperphosphorylation of connexin43 in NIH3T3 cells. Bioelectromagnetics, 2001, 22(8): 568-573
    28.孙文均,付一提,鲁德强,姜槐.王频磁场诱导肺成纤维细胞膜受体聚簇及噪声磁场的干预作用.中华预防医学杂志,2004,38(1):5-7
    29. Jia C, Zhou Z, Liu R, Chen S, Xia R. EGF receptor clustering is induced by a 0.4 mT power frequency magnetic field and blocked by the EGF receptor tyrosine kinase inhibitor PD153035. Bioelectromagnetics, 2007, 28(3): 197-207
    30.谢亮,姜槐,孙文均.付一提,鲁德强.移动电话射频电磁场诱导膜受体聚簇及噪声磁场的干预.中华劳动卫生职业病杂志,2006,24(8):461-464
    31. Hu GL, Fu YD, Zeng QL, Xu ZP, Chiang H. Study on Gap Junctional Intercellular Communication Inhibition by ELF Magnetic Fields Using FRAP Method. Electromag Bio Med, 2002, 21(2): 155-160
    32. Zeng QL, Ke XQ, Gao XW, Fu YT, Lu DQ, Chiang H, Xu ZP. Noise magnetic fields abolish the gap junction intercellular communication suppression induced by 50 Hz magnetic fields. Bioelectromagnetics, 2006, 27(4): 274-279
    33. Zeng QL, Chiang H, Hu GL, Mao GG, Fu YT, Lu DQ. ELF magnetic fields induce internalization of gap junction protein connexin 43 in Chinese hamster lung cells. Bioelectromagnetics, 2003, 24(2):134-138
    34. Lipman RM, Tripathi BJ, Tripathi RC. Cataracts induced by microwave and ionizing radiation. Surv Ophthalmol, 1988, 33(3): 200-210
    35.叶娟,姚克,吴仁毅,姚耿东.低强度微波辐射致兔眼晶状体上皮细胞超微结构的早期改变.中华眼科杂志,2001,37:56-58
    36. Ye J, Yao K, Zeng Q, Lu D. Changes in gap junctional intercellular communication in rabbits lens epithelial cells induced by low power density microwave radiation. Chin Med J (Engl), 2002,115(12):1873-1876
    37. Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, Baohong W, Wei Z, Jianling L, Wei W. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res, 2006, 602(1-2): 135-142
    38.孙丽霞,姚克,何继亮,鲁德强,王凯军,李宏武.手机模拟电磁信号对人眼晶状体上皮细胞DNA损伤及修复的影响.中华劳动卫生职业病杂志,2006,24(8):465-467
    39. Loschinger M, Thumm S, Hammerle H, Rodemann HP. Stimulation of protein kinase A activity and induced terminal differentiation of human skin fibroblasts in culture by low-frequency electromagnetic fields. Toxicol Lett, 1998, 96-97:369-376
    40. Losehinger M, Thumm S, Hammerle H, Rodemann HP. Induction of intracellular calcium oscillations in human skin fibroblast populations by sinusoidal extremely low-frequencv magnetic fields (20 Hz, 8 mT) is dependent on the differentiation state of the single cell. Radiat Res, 1999, 151 (2): 195-200
    41. Thumm S, Loschinger M, Glock S, Hammerle H, Rodemann HP. Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteoblasts by extremely low-frequency electromagnetic fields. Radiat Environ Biophys, 1999, 38(3): 195-199
    1. Sehena M, Shalon D, Davis RW. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270:484487
    2. Ramsay R. DNA chips: State-of-the-art. Nature Biotechnology, 1998, 16:40
    3. Velculescu VE, Zhang L, Vogelstein B. et al. Serial analysis of gene ecpression. Science, 1995, 270:484-487
    4. Loberg LI, Engdahl WR, Gauger JR, McCormick DL. Expression of cancer-related genes in human cells exposed to 60 Hz magnetic fields. RadiatRes, 2000, 153(5 Pt 2):679-684
    5. Lupke, M., Frahm, J., Lantow, M., Maercker, C., Remondini, D., Bersani, F. and Simko, M. Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim Biophys Acta, 2006, 1763,402-412
    6. Antonini RA, Benfante R, Gotti C, Moretti M, Kuster N, Schuderer J, Clementi F, Fomasari D. Extremely low-frequency electromagnetic field (ELF-EMF) does not affect the expression of alpha3, alpha5 and alpha7 nicotinic receptor subunit genes in SH-SY5Y neuroblastoma cell line. Toxicol Lett, 2006, 164(3): 268-277
    7. Henderson B, Kind M, Boeck G, Helmberg A, Wick G. Gene expression profiling of human endothelial cells exposed to 50-Hz magnetic fields fails to produce regulated candidate genes. Cell Stress Chaperones, 2006, 11(3):227-232
    8. Nakasono S, Laramee C, Saiki H, MeLeod KJ. Effect of power-frequency magnetic fields on genome-scale gene expression in Saccharomyces cerevisiae. Radiat Res, 2003, 160(1):25-37
    9. Luceri C, De Filippo C, Giovannelli L, Blangiardo M, Cavalieri D, Aglietti F, Pampaloni M, Andreuecetti D, Pieri L, Bambi F, Biggeri A, Dolara P. Extremely low-frequency electromagnetic fields do not affect DNA damage and gene expression profiles of yeast and human lymphocytes. Radiat Res, 2005, 164(3):277-285
    10. Sanggyu Lee. 22.45GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Letters, 2005, 579:48294836
    11. Remondini D, Nylund R, Reivinen J, Poulletier de Gannes F, Veyret B, Lagroye I, Haro E, Trillo MA, Capri M, Franceschi C, Schlatterer K, Gminski R, Fitzner R, Tauber R, Sehuderer J, Kuster N, Leszczynski D, Bersani F, Maercker C. Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics, 2006, 6(17):4745-54.
    12. Nylund R, Leszczynski D. Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome-and proteome-dependent. Proteomics, 2006, 6(17):4769-4780
    13. Zhao TY, Zou SP, Knapp PE. Exposure to cell phone radiation up-regulates apoptosis genes in primary, cultures of neurons and astrocytes, Neurosci Left, 2007, 412(1):34-38.
    14. Ebru Gurisik, Kristina Warton, Donald K. Martin, Stella M. Valenzuela, An in vitro study of the effects of exposure to a GSM signal in two human cell lines: Monocytic U937 and neuroblastoma SK-N-SH. Cell Biology International, 2006, 30: 793-799
    
    15. Qutob SS, Chauhan V, Bellier PV, Yauk CL, Douglas GR, Berndt L, Williams A, Gajda GB, Lemay E, Thansandote A, McNamee JR Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field. Radiat Res, 2006, 165(6):636-644
    
    16. Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, Xu Z. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics, 2006, 6(17):4732-4738.
    
    17. Port M, Abend M, Romer B, Van Beuningen D. Influence of high-frequency electromagnetic fields on different modes of cell death and gene expression. Int J Radial Biol, 2003, 79(9):701-708
    
    18. Whitehead TD, Moros EG, Brownstein BH, Roti Roti JL. Gene expression does not change significantly in C3H 10T(1/2) cells after exposure to 847.74 CDMA or 835.62 FDMA radiofrequency radiation. Radiat Res, 2006, 165(6):626-635
    
    19. Li H., Zeng QL, Weng Y, Lu D., Jiang H, Xu ZP Effects of ELF magnetic fields on protein expression profile of human breast cancer cell MCF7. Science in China Series C: Life Sciences, 2005,48: 1-9
    
    20. Leszczynski D, Nylund R, Joenvaara S, Reivinen J. Applicability of discovery science approach to determine biological effects of mobile phone radiation. Proteomics, 2004, 4(2):426-431
    
    
    21. Leszczynski D, Joenvaara S, Reivinen J, Kuokka R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation, 2002, 70(2-3): 120-129.
    
    22. Nylund R, Leszczynski D. Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics, 2004, 4(5): 1359-1365
    
    23. Nakasono S, Saiki H. Effect of ELF magnetic fields on protein synthesis in Escherichia coli K12. RadiatRes, 2000, 154(2):208-216
    
    24. Sinclair J, Weeks M Butt A, Worthington JL, Akpan A, Jones N, Waterfield M, Allanand D, Timms JF. Proteomic response of Schizosaccharomyces pombe to static and oscillating extremely low-frequency electromagnetic fields. Proteomics, 2006, 6(17):4755-4764.
    1. Hamrick PE, Fox SS. Rat lymphocytes in cell culture exposed to 2450 MHz (CW) microwave radiation,J Microw Power. 1977, 12(2): 125-132
    2. Czerska EM, Elson EC, Davis CC, Swicord ML, Czerski P. Effects of continuous and pulsed 2450-MHz radiation on spontaneous lymphoblastoid transformation of human lymphocytes in vitro. Bioelectromagnetics. 1992, 13(4): 247-259
    3. Novoselova EG, Fesenko EE, Makar VR, Sadovnikov VB. Microwaves and cellular immunity. Ⅱ. Immunostimulating effects of microwaves and naturally occurring antioxidant nutrients. Bioelectrochem Bioenerg. 1999, 49(1): 37-41
    4. Capri M, Scarcella E, Fumelli C, Bianchi E, Salvioli S, Mesirca P, Agostini C, Antolini A, Schiavoni A, Castellani G, Bersani F, Franceschi C. In vitro exposure of htunan lymphocytes to 900 MHz CW and GSM modulated radio frequency: studies of proliferation, apoptosis and mitochondrial membrane potential. Radiat Res. 2004, 162(2): 211-218
    5. Rama Rao G, Cain CA, Lockwood J, Tompkins WA. Effects of microwave exposure on the hamster immune system. Ⅱ. Peritoneal macrophage function. Bioelectromagnetics. 1983, 4(2): 141-155
    6. Rao GR, Cain CA, Tompkins WA. Effects of microwave exposure on the hamster immune system. Ⅲ. Macrophage resistance to vesicular stomatitis virus refection. Bioelectromagnetics. 1984, 5(4):377-388
    7. Fesenko EE, Makar VR, Novoselova EG, Sadovnikov VB. Microwaves and cellular immunity. Ⅰ. Effect of whole body microwave irradiation on tumor necrosis factor production in mouse cells. Bioelectrochem Bioenerg. 1999, 49(1): 29-35
    8. Zafra C, Pena J, de la Fuente M. Eflect of microwaves on the activity of murine maerophages in vitro.Int.Arch Allergy Appl Immunol.1988, 85(4): 478-482
    9. Singh B, Bate LA. Responses of pulmonary intravascular macrophages to 915-MHz microwave radiation: ultrastructural and cytochemical study. Anat Rec. 1996,246(3): 343-355
    10. Smialowicz RJ, Rogers RR, Garner RJ, Riddle MM, Luebke RW, Rowe DG. Microwaves (2,450 MHz) suppress murine natural killer cell activity. Bioelectromagnetics.1983, 4(4): 371-381
    11. Deschaux P, Douss T, Santini R, Binder P, Fontanges R. Effect of microwave irradiation (2450 MHz) on murine cytotoxie lymphocyte and natural killer (NK) cells. J Microw Power 1984, 19(2):107-110
    12. Dmoch A, Moszczynski P. Levels of immunoglobulin and subpopulations of T lymphocytes and NK cells in men occupationally exposed to microwave radiation in frequencies of 6-12 GHz. Med Pr. 1998, 49(1): 45-49
    13.鲍建芳,王建有,鲁德强,邵传森.低强度微波辐射对小鼠NK细胞活性的影响.浙江大学学报(医学版),2001,30(2):79-81
    14.沈新颖,姚耿东,邵传森.急性微波照射对离体人血NK细胞功能的影响.浙江预防医学,2000,12(7):14-16
    15. Nageswari KS, Sarma KR, Rajvanshi VS, Sharan R, Sharma M, Barathwal V, Singh V. Effect of chronic microwave radiation on T cell-mediated immunity in the rabbit, Int J Biometeorol. 1991, 35(2): 92-97
    16. Moszezynski P, Lisiewicz J, Dmoch A, Zabinski Z, Bergier L, Rucinska M, Sasiadek U. The effect of various occupational exposures to microwave radiation on the concentrations of immunoglobulins and T lymphocyte subsets。Wiad Lek. 1999; 52(1-2): 30-34
    17. Tuschl H, Neubauer G, Garn H, Duftschmid K, Winker N, Brusl H. Occupational exposure to high frequency electromagnetic fields and its effect on human immune parameters, Int J Occup Med Environ Health. 1999, 12(3): 239-251
    18. Wiktor-Jedrzejczak W, AhmedA, Czerski P, Leach WM, Sell KW. Increase in the frequency of Fc receptor (FcR) bearing cells in the mouse spleen following a single exposure of mice to 2450 MHz microwaves. Biomedicine. 1977, 27(7): 250-252
    19. Smialowicz RJ, Brugnolotti PL, Riddle MM. Complement receptor positive spleen cells in microwave (2450-MHz)-irradiated mice. Microw Power 1981, 16(1): 73-77
    20. Wiktor-Jedrzejczak W, Ahrned A, Czerski P, Leach WM, Sell KW. Effect of microwaves (2450-MHz) on the immune system in mice: studies of nucleic acid and protein synthesis. Bioetcetromagnetics. 1980,1(2):161-170
    21. Wiktor-Jedrzejczak W, Sehlagel CJ, Ahmed A, Leach WM, Woody JN. Possible humoral mechanism of 2450-MHz microwave-induced increase in complement receptor positive cells. Bioelectromagnetics. 1981, 2(1): 81-84
    22. Schlagel CJ, Sulek K, Ho HS, Leach WM, Ahmed A, Woody JN. Biologic effects of microwave exposure. Ⅱ. Studies on the mechanisms controlling susceptibility to microwave-induced increases in complement receptor-positive spleen cells. Bioelectromagnetics. 1980, 1(4):405-414
    23. Smialowicz RJ, Riddle MM, Weil CM, Brugnolotti PL, Kinn JB. Assessment of the immune responsiveness of mice irradiated with continuous wave or pulse-modulated 425-MHz radio frequency radiation. Bioelectromagnetics. 1982, 3(4): 467-470
    24. Liddle CG, Putnam JP, Lewter OH, West M, Morrow G. Circulating antibody response of mice exposed to 9-GHz pulsed microwave radiation. Bioelectromagnetics. 1986, 7(1) :91-94
    25. Elekes E, Thuroczy G, Szabo LD. Effect on the immune system of mice exposed chronically to 50 Hz amplitude-modulated 2.45 GHz microwaves. Bioelectromagnetics.1996, 17(3):246-248
    26.陈永娟,陈宇炼,翁念农.低强度微波对小鼠免疫毒性的研究.环境与健康杂志,1997,14(3):104-110
    27. Rama Rao GV, Cain CA, Tompkins WA. Effects of microwave exposure on the hamster immune system. Ⅳ. Spleen cell IgM hemolytic plaque formation. Bioelectromagnetics. 1985, 6(1): 41-52
    28. Veyret B, Bouthet C, Deschaux P, de Seze R, Geffard M, Joussot-Dubien J, le Diraison M, Moreau JM, Caristan A. Antibody responses of mice exposed to low-power microwaves under combined, pulsed-and-amplitude modulation. Bioelectromagneties, 1991,12(1): 47-56
    29.张梧,刘庆川,冷沙力.微波站低场强微波对人体免疫球蛋白的影响.中国辐射卫生,1995,4(1):56-57
    30.唐鸿,王登高.低强度微波对小鼠胸腺及外周血非特异性酯酶(ANAE)的量效反应.职生卫生 与创伤,1991,6:72-74
    31.银涛,宁竹之.亚慢性微波辐照的免疫学剂量—效应探讨.解放军预防医学杂志,1993,11(5):336-339
    32.陈永斌,曾桂英,任东青,张杰,张发科.J005A电磁波屏蔽织物对2450MHz微波辐照小鼠骨髓细胞的影响.第四军医大学学报,2003,24(2):150-152
    33. Gatta L, Pinto R, Ubaldi V, Pace L, Galloni P, Lovisolo GA, Marino C, Pioli C. Effects of in vivo exposure to GSM-modulated 900 MHz radiation on mouse peripheral lymphocytes. Radiat Res.2003,160(5): 600-605
    34.孙侠,张文辉,牛玉杰,曾明,候玉春,王秀荣.不同强度微波辐射对小鼠胸腺的影响.中华劳动卫生职业病杂志,2004,22(2):108-111
    35. Smialowicz RJ, Weil CM, Kinn JB, Elder JA. Exposure of rats to 425-MHz (cW) radiofrequency radiation: effects on lymphoeytes. Microw Power: 1982, 17(3): 211-221
    36. Galvin MJ, MacNichols GL, McRee DI. Effect of 2450 MHz microwave radiation on hematopoiesis of pregnant mice. Radiat Res. 1984, 100(2): 412-417
    37. Rotkovska D, Vacek A. The effect of electromagnetic radiation on the hematopoietic stem cells of mice. Ann N Y Acad Sci. 1975, 247:243-250
    38. Riddle MM, Smialowiez RJ, Rogers RR. Microwave radiation (2450-MHz) potentiates the lethal effect of endotoxin in mice. Health Phys. 1982, 42(3): 335-340
    39. Liddle CG, Putnam JP, Lewter OH. Effects of microwave exposure and temperature on survival of mice infected with Streptococcus pneumoniae. Bioelectromagnetics. 1987, 8(3): 295-302
    40.陈成章,Michaelson SM.微波全身照射对带肿瘤和非带肿瘤大鼠免疫反应的影响.职业医学,1989,16(3):6-9
    41.黄文天,陈成章.低强度微波作用时动物肾上腺皮质激素与脾抗体形成细胞反应变化的相互关系.卫生毒理学杂志,1991,5(2):95-97
    42.陈成章,董胜章,宋宏,牛冠明,余贵英,李少群,郑清兰,何健民,周英伦.低强度微波(2450MHz)对卡介苗预免疫大鼠免疫系统的影响.中山医科大学学报,1992,13(2):34-39
    43. Marino AA, Wolcott RM, Chervenak R, Jourd'heuil F, Nilsen E, Frilot C Ⅱ. Nonlinear dynamical law governs magnetic field induced changes in lymphoid phenotype. Bioelectromagnetics, 2001,22(8): 529-546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700