IGF-1对肌肉特异性组蛋白甲基转移酶SMYD1的表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SMYD1是一个在人类心脏和肌肉组织中特异表达的组蛋白甲基转移酶蛋白,在心脏和肌肉发育过程中起关键作用。SMYD1作为组蛋白H3K4的甲基转移酶能激活下游基因的转录,但目前还没有发现上游细胞外因子如何调控SMYD1基因自身的表达。由于IGF-1(胰岛素样生长因子-1)能促进心肌和骨骼肌的发育,加速肌肉损伤修复过程,我们认为IGF-1很有可能通过激活SMYD1的表达促进肌肉分化.通过Western杂交实验,发现IGF-1处理C2C12细胞,SMYD1蛋白表达水平随处理时间逐步升高,同时SRF(血清应答因子)蛋白和Myogenin(成肌素)的表达也呈现类似的趋势;通过构建不同长度的SMYD1基因启动子荧光素酶报告基因载体,发现SMYD1基因启动子上IGF-1的应答区域位于-620--110 bp;EMSA实验表明SRF结合在SMYD1启动子的CArG位点,IGF-1能够促进SRF与Smydl启动子的结合,将启动子上的CArG元件突变,IGF-1对SMYD1启动子的激活效应被削弱;可见IGF-1能够上调SMYD1在C2C12细胞中的转录和翻译水平,而这种调节作用是部分通过SRF与Smyd1启动子上CArG位点结合实现的。此外,通过荧光素酶报告基因分析,发现SMYD1能够激活肌肉标志因子——肌肉肌酸激酶(MCK)基因的启动子活性,而且与MyoD基因存在协同激活的效应,证明SMYD1可能通过与MyoD的协同作用,促进肌肉分化。
IGF-1, insulin-like growth factor 1, plays an essential role in heart and skeletal muscle development. SMYD1, a heart and muscle-specific expressed gene, has been demonstrated to be a regulator of cardiomyocyte differentiation. However, it is not fully understood that how upstream signaling regulates SMYD1 expression. The research about the relation of IGF-1 and SMYDl will helpful to the study of the function of SMYD1 in muscle development and the study of related diseases. In this article, we try to demonstrate how IGF-1 regulates the expression of SMYD1. With RT-PCR analysis, the mRNA expression level of Smydl gene was upregulated in C2C12 cells during myogenic differentiation. The protein level of SMYD1 was upregulated as well as SRF, when C2C12 cells were treated with IGF-1 at different time point. In order to determine the IGF-1 response elements in SMYD1 promoter, we constructed a serial of different length of SMYD1 gene promoter luciferase reporter vector. By luciferase experiment, we discovered that the response element of IGF-1 in SMYD1 gene promoter were located at-620--110 bp. Next, using EMSA experiment, we found that SRF could bind to CArG site in SMYD1 promoter, while IGF-1 could regulate SRF binding in Smydl promoter. Then, using of luciferase experiments, we showed that the CArG element involved the regulation of IGF-1 on Smydl in transcriptional level partly. These findings suggested that IGF-1 could increase SMYD1 expression in transcription level in C2C12 cells.
引文
[1]Hwang I, Gottlieb PD. Bop:a new T-cell-restricted gene located upstream of and opposite to mouse CDSb[J]. Immunogenetics,1995,42:353-361.
    [2]Hwang I, Gottlieb PD.The Bop gene adjacent to the mouse CD8b gene encodes distinct zinc-finger proteins expressed in CTLs and in muscle.[J]Immunol.1997; 158(3):1165-74.
    [3]Gottlieb PD, Pierce SA, Sims RJ, et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis.Nat Genet.2002 (1):25-32.
    [4]Tan X, Rotllant J, Li H, et al. SmyDl, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos.De Deyne P, Du SJ Proc Natl Acad Sci 103(8):2713-8.
    [5]Vakoc C R, andat SA, Olenchock B A, et al. Histone H3 lysine 9 ethylation and HPlgamma are associated with transeripfion elongation through mammalian chromatin[J]. Cell,.2005,19(3):381-91.
    [6]Xangang Tan,Josep Rotllam,Huiqing Li,et al. SmyDl, a histone methyl--transferase, is required for myofibril organization and muscle contraction in zebrafish embryos[J]. Proc Natl Acad Sci USA,2006,103(8):2713-8
    [7]Zhou P, Xu XW, Wu M et al. Isolation and functional expression of the bop gene from Halobiforma lacisalsi[J]. Microbiol Res,2009,164(5):553-9.
    [8]Plum D, Rasmussen TL, Nakagawao, et al. BOP, a regulator of right ventricular heart development is a direct tranacriptional target of MEF2C in the developing heart[J]. Development,2005,32:2669-2678.
    [9]Hwang I, Gotflieb PD, Bop gene adjacent to the mouse CD8b gene encodes distinct zinc-finger proteins expressed ex. pressed in CTLs and in muscle [J]. lmmunogenetics,1997,158:1165-1174.
    [10]Xiangrong G, Lewis JS, Brad B, et al. A Rac/Cdc42-specific Exchange Factor, GEFT, Induces cell proliferation, Transformtion, and Migration. J boil chem, 2003;278(15):13207-13215.
    [11]Dudou, E., Verzi, M. P., Anderson, J. P.,et al. Met2e is a direct transcriptional target of ISL1 and GATA factors in th anterior heart field during mouse embryonic development[J]. Development,2004,131:3931-3942.
    [12]Morin S, Charron F, Robitaille L, et al. GATA2 dependent recruitment of MEF1 proteins to target promoters [J]. EMBO J,2000,19 (9):2046-2055.
    [13]Duprey, P. and Lesens, C. Control of skeletal muscle-specific transcription: involvement of paired homeodomain and MADS domain transcription factors. Int. J. Dev. Biol.1994;38,591-604.
    [14]Berkes, C.A. and Tapscott, S.J. MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. Biol.,2005;16,585-595.
    [15]Brand-Saberi, B.Genetic and epigenetic control of skeletal muscle development. Ann.Anat.,187,2005; 199-207.
    [16]Aurade.F.,Pinset. C.,Chafey. P., et al. Myf5, MyoD, myogenin and MRF4 myogenic derivatives of the embryonic mesenchymal cell line C3H10T1/2 exhibit the same adult muscle phenotype. Differentiation,1994; 55,185-192.
    [17]Rudnicki, M.A., Schnegelsberg, P.N., et al. Myf-5 is required for the formation of skeletal muscle. Cell,1993; 75,1351-1359
    [18]Rudnicki, M.A., Braun. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell,1992; 71,383-390.
    [19]Rawls, A., Morris, J.H., Rudnicki, M., et al. Myogenin's functions do not overlap with those of MyoD or Myf-5 during mouse embryo genesis. Dev. Biol.,1995; 172, 37-50.
    [20]Kablar.B., Asakura.A., Krastel. K., et al. MyoD and Myf-5 define the specification of musculature of distinct embryonic origin. Biochem. Cell Biol., 1998; 76,1079-1091.
    [21]Hasty. P., Bradley, A., Morris, J.H., et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene.Nature,1993; 364,501-506.
    [22]Nabeshima, Y., Hanaoka, K., Hayasaka, M., et al. Myogenin gene disruption results in perinatallethality because of severe muscle defect. Nature,1993; 364, 532-535.
    [23]Molkentin, J.D. and Olson, E.N. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box 1996;
    [24]Mohun, T.J., Chambers, A.E., Towers, N. et al. Expression of genes encoding the transcription factor SRF during early development of Xenopus laevis: identification of a CArG box-binding activity as SRF. EMBO J.1991,10, 933-940.
    [25]Papadopoulos, N. and Crow, M.T. Transcriptional control of the chicken cardiac myosin light-chain gene is mediated by two AT-rich cis-acting DNA elements and binding of serum response factor. Mol. Cell Biol.1993,13,6907-6918.
    [26]Mack, C.P., Thompson, M.M., Lawrenz-Smith, S. et al.Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ. Res., 200086,221-232.
    [27]McDonald, O.G, Wamhoff, B.R., Hoofnagle, M.H. et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J.Clin. Invest.,2006,116,36-48.
    [28]Li, S., Czubryt, M.P., McAnally, J., et al. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc. Natl Acad. Sci. USA,2005,102,1082-1087.
    [29]Niu, Z., Yu, W., Zhang, S.X., et al. Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. J. Biol. Chem.,2005,280,32531-32538
    [30]Miano, J.M., Ramanan, N., Georger, M.A., et al. Restricted inactivation of serum response factor to the cardiovascular system. Proc. Natl Acad. Sci. USA, 2004,101,17132-17137.
    [31]L’Honore, A., Lamb, N.J., Vandromme, M., et al. MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration. Mol. Biol. Cell,2003,14,2151-2162.
    [32]Groisman, R., Masutani, H., Leibovitch, M.P., et al. Physical interaction between the mitogenresponsive serum response factor and myogenic basic-helix-loop--helix proteins. J. Biol. Chem.,1996,271,5258-5264.
    [33]L’Honore, A., Rana, V., Arsic, N., et al. Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis. Mol.Biol. Cell, 2007,18,1992-2001.
    [34]Gauthier-Rouviere, C., Vandromme, M., Tuil, D., et al. Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol. Biol. Cell,1996,7,719-729.
    [35]Biesiada, E., Hamamori, Y., Kedes, L. et al. Myogenic basic helix-loop-helix proteins and Spl interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Mol. Cell Biol., 1999,19,2577-2584.
    [36]Sartorelli, V., Webster, K.A. and Kedes, L. Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArGbox binding factor, and Sp1. Genes Dev.,1990,4,1811-1822.
    [37]Catala, F., Wanner, R., Barton, P., et al. A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain 1A gene. Mol. Cell Biol.,1995,15,4585-4596.
    [38]Kawamura, S., Yoshigai, E., Kuhara, S. et al. smydland smyd2 are expressed in muscle tissue in Xenopus laevis.Cytotechnology,2008,57,161-168.
    [39]Du, S.J., Rotllant, J. and Tan, X. Muscle-specific expression of the smydl gene is controlled by its 5.3-kb promoterand 50-flanking sequence in zebrafish embryos. Dev. Dyn.,2006,235,3306-3315.
    [40]Phan AT, Kuryavyi V, Gaw HY, et al. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat Chem Biol. 2005 Aug; 1(3):167-73.
    [41]Bell GI, Stempien MM, Fong NM, et al. Sequences of liver eDNAs encoding two different mouse insulin-like growth factor I precursors. Nucleic Acids Res, 1986,14:7873-7882.
    [42]Yang S, Alnaqeeb M, Simpson H, et al. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil,1996,17:487-495.
    [43]Winn N, Paul A, Musaro A, et al. Insulin-like growth factor isoforms in skeletal muscle aging, regeneration and disease. Cold Spring Harb Symp Quant Biol, 2002,67:507.518.
    [44]Xian CY, Wang YL, Zhang BB, et al. Alternative splicing and expression of the insulin-like growth factor gene(IGF-1)in osteoblasts under mechanical stretch. Chin Sci Bull,.2006.51:2731-2736.
    [45]Guan J, Waldvogel HJ, Faull RL, et al. The effects of the N-terminal tripeptide of insulin-like growth factor-1. glycineproline-glutamate in different regions following hypoxic-is chemic brain injury in adult rats. Neuroscienee,1999,89: 649-659.
    [46]Shavlakadze T, Winn N, Rosenthal N, et al. Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res,.2005.15:4-18.
    [47]Lund PK, Hoyt EC, Van Wyk JJ. One size heterogeneity of rat insulin-like growth factor-I mRNAs is due primarily to differences in the length of 3: untranslated sequence. Mol Endocrinol,1989,3:2054-2061.
    [48]Shavlakadze T, Winn N, Rosenthal N, et al. Reconciling data from transgenic mice that overexpress IGF-I specifically in skeletal muscle. Growth Horm IGF Res,.2005.15:4-18.
    [49]Daughaday WH, Kapadia M. Significance of abnormal serum binding of insulin-like growth factor Ⅱ in the development of hypoglycemia in patients with non-islet-cell tumors.Proc Natl Acad Sci USA.1989; 86(17):6778-82
    [50]Le Roith D. N Engl J Med Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors.1997,27; 336(9):633-40.
    [51]Blakesley VA, Scrimgeour A, Esposito D, Le Roith D.Signaling via the insulin-like growth factor-I receptor:does it differ from insulin receptor signaling? Cytokine Growth Factor Rev.1996Aug; 7(2):153-9.
    [52]Ito H, Hamabata T, Hori SH. Transcriptional activation of the Drosophila melanogaster glucose-6-phosphate dehydrogenase gene by insertion of defective P elements.Mol Gen Genet.1993 Dec; 241(5-6):637-46.
    [53]Torella D, Rota M, Nurzynska D, et al., Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res.2004 Mar 5;94(4):514-24.
    [54]Cittadini A, Ishiguro Y, Stromer H, et al. lInsulin-like growth factor-1 but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca2+ through a wortmannin-sensitive pathway:studies in rat and ferret isolated muscles.Circ Res.1998 13; 83(1):50-9.
    [55]Duerr RL, McKirnan MD, Gim RD, et al. Cardiovascular effects of insulin-like growth factor-1 and growth hormone in chronic left ventricular failure in the rat. Circulation.1996,15;93(12):2188-96.
    [56]Lee WL, Chen JW, Ting CT, et al. Changes of the insulin-like growth factor I system during acute myocardial infarction:implications on left ventricular remodeling. J Clin Endocrinol Metab.1999; 84(5):1575-81.
    [57]Wang PH. Roads to survival:insulin-like growth factor-1 signaling pathways in cardiac muscle.Circ Res.2001; 88(6):552-4
    [58]Tomaselli K, Lefer AM. Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc. Natl Acad. Sci. USA 1995; 92(17),8031-8035
    [59]Otani H, Yamamura T, Nakao Y et al. Insulin-like growth factor-I improves recovery of cardiac performance during reperfusion in isolated rat heart by a wortmannin-sensitive mechanism. J. Cardiovasc. Pharmacol.2000; 35(2), 275-281.
    [60]Friehs I, Stamm C, Cao-Danh H, et al. Insulin-like growth factor-1 improves postischemic recovery in hypertrophied hearts. Ann. Thorac. Surg.2001; 72(5), 1650-1656
    [61]Wu W, Lee WL, Wu YY et al. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J. Biol. Chem.2000; 275(51),40113-40119.
    [62]Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitroand protects against ischemia-reperfusion injury in mouse heart. Circulation 2000; 101 (6),660-667.
    [63]Parrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J. Biol. Chem.1997; 272(1),154-161.
    [64]Seale, P. et al. Adult stem cell specification by Wnt signaling in muscle regeneration. Cell Cycle2,2003; 418-419
    [65]Parker, M.H. et al. Looking back to the embryo:defining transcriptional networks in adult myogenesis. Nat. Rev. Genet.2003;4,497-507
    [66]Hill, M. et al. Muscle satellite (stem) cell activation during local tissue injury and repair. J. Anat.2003; 203,89-99
    [67]Barton-Davis, E.R. et al. Contribution of satellite cells to IGF-Iinduced hypertrophy of skeletal muscle. Acta Physiol. Scand.1999; 167,301-305
    [68]Edwall, D. et al. Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 1989; 124, 820-825
    [69]DeVol, D. et al. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am. J.Physiol.1990; 259,89-95
    [70]Yang, S. et al. Cloning and characterization of an IGF-I isoform expressed in skeletal muscle subjected to stretch. J. Muscle Res. CellMotil.1996; 17,487-495
    [71]Bamman, M.M. et al. Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J.Appl. Physiol.2007; 102, 2232-2239
    [72]McCormick, K.M. and Thomas, D.P. Exercise-induced satellite cell activation in senescent soleus muscle. J. Appl. Physiol.1992; 72,888-893
    [73]Chakravarthy, M.V. et al. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J.Appl.Phyiol.2000; 89,1365-1379
    [74]Adi, S. et al. Early stimulation and late inhibition of extracellular signal-regulated kinase 1/2 phosphorylation by IGF-I:a potential mechanism mediating the switch in IGF-I action on skeletal muscle cell differentiation. Endocrinology.2002; 143,511-516
    [75]Mukherjee, A. et al. Insulin-like growth factor (IGF) binding protein-5 blocks skeletal muscle differentiation by inhibiting IGFactions. Mol. Endocrinol.2008; 22,206-215
    [76]Foulstone, E.J. et al. Insulin-like growth factors (IGF-I and IGFII) inhibit C2 skeletal myoblast differentiation and enhance TNF alpha-induced apoptosis. J. Cell. Physiol.2001; 189,207-215
    [77]Coolican, S.A. et al. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J. Biol.Chem.1997; 272,6653-6662
    [78]Coleman, M.E. et al. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J. Biol. Chem.1995; 270,12109-12116
    [79]Musaro, A. et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet.2001; 27,195-200
    [80]Jacquemin, V. et al. IL-3 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes.J. Cell Sci.2007; 120, 670-681
    [81]James, P.L. et al. Insulin-like growth factor binding protein-5modulates muscle differentiation through an insulin-like growthfactor-dependent mechanism. J. Cell Biol.1996; 133,683-693
    [82]Tureckova, J. et al. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinaseAkt-signaling pathways and myogenin. J. Biol. Chem.2001; 276,39264-39270
    [83]Sacheck, J.M. et al. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MURF-1. Am. J. Physiol.Endocrinol. Metab.2004; 287,591-601
    [84]Machida, S. et al. Forkhead transcription factor FOXO1 transduces insulin-like growth factors signal to p27kip in primary skeletal muscle satellite cells. J. Cell. Physiol.2004; 196,523-531
    [85]Gayan-Ramirez, G et al. Acute treatment with corticosteroids decreases IGF-I and IGF-2 expression in the rat diaphragm and gastrocnemius. Am. J. Resp. Crit. Care Med.1999; 159,283-289
    [86]Reardon, K.A. et al. Myostatin, insulin-like growth factor-I, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve 2,2001; 893-899
    [87]Frost, R.A. and Lang, C.H. Skeletal muscle cytokines:regulation by pathogen-associated molecules and catabolic hormones. Curr. Opin.Clin. Nutr. Metab. Care 8,2005; 255-263
    [88]Lang, C.H. et al. IGF-I/IGFBP-3 ameliorates alterations in protein synthesis, elF4E availability, and myostatin in alcohol-fed rats. Am. J. Physiol. Endocrinol. Metab.2004; 286,916-926
    [89]Lang, C.H. et al. Sepsis and inflammatory insults downregulate IGFBP-5, but not IGFBP-4, in skeletal muscle via a TNF-dependent mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol.2005; 290, R963-R972
    [90]Lang, C.H. et al. Beta-adrenergic blockade exacerbates sepsisinduced changes in tumor necrosis factor alpha and interleukin-6 in skeletal muscle and is associated with impaired translation initiation. J. Trauma 2008; 64,477-486
    [91]Frost, R.A. and Lang, C.H. Protein kinase B/Akt:a nexus of growth factor and cytokine signaling in determining muscle mass. J.Appl. Physiol.2007; 103, 378-387
    [92]Schakman, O. et al. Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoidtreated rats. Endocrinology 2005; 146,1789-1797
    [93]Hamel, F.G. et al. Inhibition of proteasome activity by selected amino acids. Metabolism 2003; 52,810-814
    [94]Bodine, S.C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294,1704-1708
    [95]Gomes, M.D. et alAtrogin-1, a muscle-specific F-box protein highlyexpressed during muscle atrophy. Proc. Natl. Acad. Sci. U. S. A.2001; 98,14440-14445
    [96]Lecker, S.H. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J.2004; 18,39-51
    [97]Clarke, B.A. et al. The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab.2007; 6,376-385
    [98]Schakman, O. et al. Insulin-like growth factor-1 gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoidtreated rats. Endocrinology 2005; 146,1789-1797
    [99]Sandri, M. et al. FOXO transcription factors induce the atrophyrelated ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy.Cell 2004; 117,399-412
    [100]Shah, O.J. et al. Acute attenuation of translation initiation and protein synthesis by glucocorticoids in skeletal muscle. Biochem. J.2000; 347,389-397
    [101]Liu, Z. et al. Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle. Am. J. Physiol.Endocrinol. Metab.2004; 287, 275-281
    [102]Alvaro, C. et al. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK--dependent manner. J. Biol. Chem.2004; 279,17070-17078
    [103]Mourkioti, F. et al. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J. Clin.Invest.2006; 116,2945-2954
    [104]Cai, D. et al. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004; 119,285-298
    [105]Doborwolny, G et al. Muscle expression of a local IGF-1 isoform protects motor neurons in an ALS mouse model. J. Cell Biol,2005; 168,193-199
    [106]Miller, T.M. and Cleveland, D.W. Has gene therapy for ALS arrived? Nat. Med. 2003; 9,1256-1257
    [107]Barton, E.R. et al. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J. Cell Biol.2002;157,137-148
    [108]Haddad, F. and Adams, GR. Selected contribution:acute cellular and molecular responses to resistance exercise. J. Appl.Physiol.2002; 93,294-403
    [109]Florini J R, Ewton D Z, Coolican S A. Growth hormone and the insulin-like growth factor system in myogenesis[J]. Endocr Rev,1996,17:481-517
    [110]Powell-Braxton L, Hollingshead P, Warburton C, et al. IGF-I is required for normal embryonic growth in mice [J]. Genes Dev,1993,7:2609-2617
    [111]Satoru S, Kayoko G, Joseph R T, et al. Aktl and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts[J]. Endocrinology,143(3):820-828
    [112]Berkes C A, Tapscott S J. MyoD and the transcriptional control of myogenesis [J]. Cell Dev Biol,2005,16,585-595
    [113]Aurade F, Pinset C, Chafey P, et al. Myf5, MyoD, myogenin and MRF4 myogenic derivatives of the embryonic mesenchymal cell line C3H10T1/2 exhibit the same adult muscle phenotype[J]. Differentiation,1994,55,185-192.
    [114]Mohun T J, Chambers A E, Towers N, et al. Expression of genes encoding the transcription factor SRF during early development of Xenopus laevis: identification of a CArG box-binding activity as SRF.[J]. EMBO J,1991,10, 933-940
    [115]Papadopoulos N, Crow M T. Transcriptional control of the chicken cardiac myosin light-chain gene is mediated by two AT-rich cis-acting DNA elements and binding of serum response factor [J]. Mol Cell Biol,1993,13,6907-6918
    [116]Mack C P, Thompson M M, Lawrenz-Smith S, et al. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex[J]. Circ Res,2000,86,221-232
    [117]McDonald O G, Wamhoff B R, Hoofnagle M H, et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest,2006,116,34-37
    [118]Biesiada E, Hamamori Y, Kedes L. et al. Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Mol Cell Biol, 1999,19,2577-2584
    [119]Sartorelli V, Webster K A, Kedes L. Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG box binding factor, and Sp1. Genes Dev, 1990,4,1811-1822.
    [120]Catala F, Wanner R, Barton P, et al. A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain 1A gene. Mol Cell Biol,1995,15,4585-4596.
    [121]Cheng G, Hagen T P, Dawson M L, et al. The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+-Ca2+ exchanger gene.[J]. JBiol Chem,1999,274,12819-12826
    [122]Li S, Czubryt M P, McAnally J, et al. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice.[J]. Proc Natl Acad Sci USA,2005,102,1082-1087
    [123]L’Honore A., Lamb N J, Vandromme M, et al. MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration.[J]. Mol Biol Cell,2003,14, 2151-2162
    [124]Groisman R, Masutani H, Leibovitch M P, et al. Physical interaction between the mitogen-responsive serum response factor and myogenic basic-helix-loop--helix proteins. [J]. JBiol Chem,1996,271,5258-5264
    [125]L’Honore A, Rana V, Arsic N, et al. Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis[J]. Mol Biol Cell, 2007,18,1992-2001
    [126]Gauthier-Rouviere C, Vandromme M, Tuil D, et al. Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. [J]. Mol Biol Cell,1996,7,719-729.
    [127]Li D, Niu Z, Yu W, et al. SMYD1, the myogenic activator, is a direct target of serum response factor and myogenin.Nucleic Acids Res.2009;Nov; 37(21):7059-71.Epub.
    [128]Huang J, Perez-Burgos L, Placek BJ,.Repression of p53 activity by Smyd2-mediated methylation. Nature.2006 Nov 30; 444(7119):629-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700