氮化碳及其插层化合物作为直接甲醇燃料电池阳极材料的电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(简称DMFC)由于结构简单、能量转化率高、对环境无污染,可作为常规能源的替代品而越来越受到关注。目前,DMFC主要是以负载铂的碳素材料作为阳极材料,但在甲醇氧化过程中铂催化剂非常容易中毒,且铂的价格非常昂贵,这都限制了DMFC的大规模生产和使用。因此开发一种效率高且价格低廉的催化剂越来越迫切。氮化碳具有特殊的光学和电学性能,有可能成为非贵金属催化剂或者新型催化剂载体,而目前对其电化学性质及应用研究却很少,所以相关研究有着重要的意义。
     本文首先综述了氮化碳的结构、性质和合成,以及DMFC的基本原理及阳极催化剂和催化机理的研究进展。由于石墨相氮化碳具有大量孤对电子,对甲醇有一定的吸附能力,因此本文首先研究了石墨相氮化碳作为DMFC的阳极非贵金属催化剂的可能性。实验表明,石墨相氮化碳在硫酸体系中电化学性质十分稳定,对甲醇没有明显的催化活性;而甲醇可以在石墨相氮化碳纳米管表面发生吸附,并导致石墨相氮化碳氧化峰电势正移,但石墨相氮化碳纳米管在硫酸和硫酸甲醇体系中不稳定,对甲醇氧化的催化活性不明显。
     本文还对石墨相氮化碳插层化合物作为DMFC阳极催化剂新型载体的可能性进行了研究。通过在饱和的硫酸钾、硝酸镁以及硫酸铝溶液中电解实现阴阳离子的可控嵌入,以实现对石墨相氮化碳片层电子云密度的控制,从而制备片层中具有不同电子云密度的插层化合物作为催化剂载体。采用电解时间、XRD和电化学等多种方法表征了离子的插入程度。实验表明:嵌入阴阳离子的石墨相氮化碳在硫酸和硫酸甲醇体系中都不稳定,也就是说嵌入的阴阳离子促进了氮化碳的电氧化还原。对嵌入不同价态阳离子及阴离子的氮化碳插层化合物作为DMFC阳极催化剂载体的电化学性质进行了研究。实验表明,嵌入阳离子的价态越高,嵌入氮化碳的电氧化活性越大,且在硫酸—甲醇体系中比在硫酸体系中活泼;嵌入阴离子的氮化碳电化学性质的变化与嵌入阳离子的一致;不论是嵌入阳离子还是阴离子,嵌入程度对其嵌入化合物的电化学性质影响不大。
With simple structure,high energy conversion coefficiency and being pollution-free,direct methanol fuel cell(DMFC)has,attracted many attention as a promising alternative for conventional power sources.The most important anodic catalyst for DMFC is platinum loaded on carbon support.However,platinum was easy to be poisoned by the intermediates produced during methanol electrooxidation,and the price of platinum is also very expensive,which limits the large-scale production and application of DMFC.Therefore,to find catalyst of highly catalytic activity and low prices is essential for DMFC.Carbon nitride,a new type material with special optical and electronic properties,is similar to carbon both in structure and properties.But researches on its electrochemical properties and application are quite rare.
     In this thesis,the structure,properties and synthesis of carbon nitride,and the fundamentals of DMFC,the progress of anodic catalysts and the mechanism for electrooxidation of methanol were summarized.And then,the electrochemical properties of both powder and nanotubes of carbon nitride was examined for non-noble metal catalyst and anodic catalyst support.Experiments showed that the graphite-like carbon nitride in sulfuric acid and the sulfuric acid containing methanol is very stable,they has no significant catalytic activity towards methanol electrooxidation.While graphite-like carbon nitride nanotubes in these systems is not stable and show somewhat catalytic activity towards methanol electrooxidation.
     The intercalated carbon nitrides with K~+,Mg~(2+),Al~(3)+,SO_4~(2-)and NO_3~(2-)as guest ions were also examined for catalyst and support for DMFC.The intercalated carbon nitrides were prepared by electrolysis of carbon nitride powder in the saturated solution of potassium sulfate,magnesium nitrate and aluminum sulfate.The intercalation degree can be precisely controlled by electrolysis for different intervals.By changing the intercalation degrees,the electron density within the layers and therefore the electron donation of the intercalation compounds were adjusted.The experiments showed that the intercalation compounds are not stable both in sulfuric acid and sulfuric acid containing methanol.This suggested that as the oxidation number of the intercalated ions increased, the stability of the intercalated samples became more unstable,important.The intercalated carbon nitride with Mg~(2+)and Al~(3+)have catalytic activity towards methanol electrooxidation.The influence of intercalation degree on the properties in complicated. The intercalated carbon nitride with SO_4~(2-)and NO_3~(2-)with ambiguous catalytic activity towards methanol can also activated the electrooxidation of carbon nitride.The catalytic activity increased with increasing intercalation degrees.
引文
[1] E.G. Wang, Research on carbon nitride, Prog. Mater. Sci., 1997, 41,241-298
    [2] Amy Y Liu, Marvin L. Cohen, Prediction of new low compressibility solids, Science, 1989,245,841-842
    [3] Amy Y Liu, Marvin L. Cohen, Structural properties and electronic structure of low compressibility materials: β-Si_3N_4 and hypothetical β-C_3N_4, Phy. Rev. B, 1990, 41,10727-10734
    [4] J. L. Corkill, M. L. Cohen, Calculated quasipartical band gap of P-C3N4, Phys. Rev. B, 1993,48,17622-17624
    
    [5] A. Y. Liu, Stability of carbon nitride solid, Phys. Rev., B, 1994, 50, 10362-10365
    [6] D. M. Teter, R. J. Hemley, Low-compressibility carbon nitrides, Science, 1996, 271, 53-55
    [7] T. Sekine, H. kanda, M. Yokoyama, A graphitic carbon nitride, J. Mater. Sci. Let 1990,9,1376-1378
    [9] J. H. Nguyen, Raymond Jeanloz, Initial description of a new carbon-nitride phase synthesized at high pressure and temperatures, Mater. Sci. Engin. A, 1996,209,23-25
    [10] John V. Badding, Solid-state carbon nitride, Adv. Mater., 1997. 9(11):877-886
    
    [11] He-xiang Han, Bernard J. Feldman, Structural and optical properties of amorphous carbon nitride, Solid State Commun., 1988, 65,921
    [12] M. Y. Chen, X. Lin. V. P. Dravid. Y. W. Chung, et al., Growth and characterization of C-N thin films. Surf. Coating Technol. 1992. 55.360-367
    [13] M. Y. Chen, D. Li, X. Lin. V. P Dravid, et al., Analytical electron-microscopy and ramen-spectroscopy studies of carbon nitride thin-film, J. Vac. Sci. Technol. A, 1993,11,521-530
    [14] F. Fujimoto, K. Ogata, Formation of carbon nitride films by means of ion assisted dynamic mixing (IVD) method, Jpn. J. Appl. Phys., 1993. 32, L420-L423
    [15] C. Niu, Y Z. Li, C. M. Lieber, Experimental realization of the covalent solid carbon nitride, Science, 1993, 261. 334-336
    [16] Kin Man Yu. Marvin L, Cohen. E. E. Haller. W. L. Hansen, Amy Y. Liu, I. C. Wu. Observation of crystalline C3N4,Phys.Rev.B,1994,49,5034-5037
    [17]H.Sjstrm,L.Hultman,J.E.Sunfgren,er al.,Structural and mechanical properties of carbon nitride CNx films,J.Vac.Sci.Technol.A,1996,14,56-62
    [18]H.Sjstrm,S.Stafstr6m,M.Boman,J.E.Sundren,Superhard and elastic carbon nitride thin films having fullerenelike microstructure,Phys.Rev.Let.,1995,75,1336-1339
    [19]E.Broitman,W.T.Zheng,H.Sjostrm,I.Ivanov,J.E.Greene,Stress development during deposition of CNx thin films,Appl.Phys.Let.,1998,72,2532-2534
    [20]A.K.M.S.Chowdgury,M.Monclus,D.C.Cameron,et al.,The composition and bonding structure of CN,films and their influence on the mechanical properties,Thin Solid Films,1997,308-309,130-134
    [21]Imad F.Husein,Yuan Zhong Zhou,Fan Li,et al.,Synthesis of carbon nitride thin films by vacuum arcs,Mater.Sci.Engin.A,1996,209,10-15
    [22]冯菇献,龙春平,张芳伟,郑毅,范玉殿.CN薄膜结构特性的研究,物理学报,1996,45,1068-1071
    [23]Y.G.Li,A.T.Wee,C.H.A.Huan,W.S.Li,J.S.Pan,Surf.Interface Anal.1999,28,221.
    [24]Chunming Niu,Yuan Z.Lu,Charles M.Lieber,Experimental realization of the covalent solid carbon nitride,Science,1993,261,334-336
    [25]A.K.Sharma,P.Ayyub,M.S.Multani,et al.,Sythesis of crystalline carbon nitride thin films by laser processing at a liquid-solid interface,Appl.Phys.Let.,1996,69,3489-3491
    [26]Z.John Zhang,Shoushan Fan,Jinlin Huang,et al.,Diamondlike properties in a single phase carbon nitride solid,Appl.Phys.Let.,1996,68,2639-2641
    [27]I.N.Mihailescu,E.Gyorgy,R.Alexandrescu,et al.,Optical studies of carbon nitride thin films deposited by reactive pulsed laser ablation of a graphite target in low pressire ammonia.,Thin Solid Films.1998,323,72-78
    [28]R.Alexandrescu,F.Huisken,G.Pugna,et al.,Preparation of carbon nitride fine powder by laser induced gas-phase reactions.Appl.Phys.A,1997,65,207-213
    [29]Zhang-Min Ren.Yuan-Cheng Du,Yuanxun Qiu.et al.,Carbon nitride films synthesized by combined ion-beam and laser-ablation processing, Phys. Rev. B, 1995,51,5274-5 277
    
    [30] Z. John Zhang, Jinlin Huang, Shoushan Fan, et al., Phases and physical properties of carbon nitride thin films prepared by pulsed laser deposition. Materials Science and Engineering A, 1996, 209, 5-9
    [31] M. R.Wixom, Chemical Preparation and Shock Wave Compression of Carbon Nitride Precursors, J. Am. Ceram. Soc., 1990, 73, 1973
    [32] M. Todd, J. Kouvetakis, T. LGroy, D. Chandrasekhar, D. J. Smith, Structur and hardness studies of CN_x/TiN nanocomposite coating, Chem. Mater., 1995, 7, 1422
    [33] J. McMurran, J. Kouvetakis, D. C. Nesting, J. L. Hubbard, Synthesis of Molecular Precursorst Carbon-Nitrogen-Phosphorus Polymeric Systems, Chem. Mater. , 1998, 10,590
    [34] D. C. Nesting, J. Kouvetakis, J. V. Badding, Beitrag zun Tagungsband, in the 5th NIRIM International Symposium on Advanced Materials (ISAM,98), Tsukuba, Japan, 1-5 March, 1998
    [35] D. C. Nesting, and J. V. Badding, High-Pressure synthesis of sp~2-bonded carbon nitrides, Chem. Mater., 1996, 8. 1535-1539
    [36] L. C. Ming, P. Zinin, and Y. Meng et al.. A cubic phase of C_3N_4 synthesized in the diamond-anvil cell, J. Appl. Phys.. 2006, 99, 520.
    [37] H. A. Ma, X. P. Jia, and L. X. Chen et al., High-pressure pyrolysis study of C_3N_6H_6: a route to preparing bulk C_3N_4, J. Phys. Cond. Matter.. 2002, 14, 11269-11273.
    [38] Q. Fu, J. T. Jiu, and H. Wang et al., Simultaneous formation of diamond-like carbon and carbon nitride films in the electrodeposition of an organic liquid, Chem. Phys. Lett., 1999,301,87-90.
    [39] Y. J. Bai, B. Lu, and Z. G. Liu et al., Solvothermal preparation of graphite-like C_3N_4 nanocrystals, J. Cryst. Growth. 2003, 247, 505-508.
    [40] Q. Lu, C. B. Cao, and C. Li et al.. Formation of crystalline carbon nitride powder by a mild solvothermal method, J. Mater. Chem. , 2003, 13, 1241-1243.
    [41] Q. Lu, C. B. Cao. and H. S. Zhu et al., Solvothermal synthesis of crystalline carbon nitrides, Chin. Sci. Bull., 2003, 6, 519-522.
    [42] Q. Lu, C .Cao, and J. Zhang et al., The composition and structures of covalent carbon nitride solids synthesized by solvothermal method, Chem. Phys. Lett. , 2003, 372, 469-475
    [43] I. Alves, G. Demazeau, B. Tanguy, F. Weill, On a new model of the graphitic form of C3N4, Solid State Communications, 1999, 109, 697-701
    [44] H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, et al., Solvothermal synthesis of the graphitic form of C3N4 as macroscopic sample, Diamond and Related Materials, 1999, 8, 1707-1710
    
    [45] H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, S. Courjault, CA : Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form, J. Meterials Science, 2000, 35, 2547-2552
    [46] Jesus Martin-Gil, Francisco J. Martin-Gil, Mehmet Sarikaya, Maoxu Qian ey al., Evidence of a low compressibility carbon nitride with defect-zincblende structure, J. Appl. Phys., 1997, 81, 2555-2558
    [47] M. Kawaguchi, Y. Tokimatsu, K. Nozaki, Y. Kaburagi, Y. Hishiyama, Chem. Lett. 1997, 1003.
    
    [48] Courjault, B. Tanguy, G.. Deamzeau, C. R. Acard, Sci. Ser. IIc: Chim., 1999,2 , 487
    [49] Y. J. Bai, B. Lu, Z. GLiu, L. Li, D. L. Cui, X. G. Xu, Q. Q. L. Wang, Sovothermal preparation of graphite-like C3N4 nanocrystal, J. Cryst. Growth, 2003, 247, 505.
    [50] H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, M. Birot, J. Dunogues, Mater. Sci. Forum, 2000, 31,325-326
    [51] H. A. Ma, X. P. Jia, L. X. Chen, P. W. Zhu, M. L. Guo, X. B. Guo, Y. D. Wang, S. Q. Li, G. T. Zhou, G. Zhang, P. Bex, J. Phys. Cond. Matter, 2002, 14, 11269.
    [52] V. P. Dymont, I. Sumrov, Mater. Sci. Eng. ,2001, 82 B, 39.
    [53] D. Li, Y. W. Chung, M. S. Wong, W. D. Sprul, Nano-indentation studies of ultrahigh strength carbon nitride thin films, JAppl. Phys., 1993, 74, 219.
    [54] E. G. Wang, Carbon nitride-related nanomaterials from chemical vapor deposition: structure and properties, J Am Cera. Soc., 2002, 105-108.
    [55] E. Broitman, N. Hellgren, O. Wanstrand, M. P. Johansson, T. Berlind. H. Sjostrom. J. E. Sundgren, M. Larsson, L. Hultman, Wear. 2001, 248, 55.
    [56]M.Y.Chen,X.Lin,V.P.Dravid,Y.W.Chung,M.S.Wong,W.D.Sproul,Synthesis and Tribological Preporties of Carbon Nitride as a Novel Superhard Coating and Solid Lubricant,Tribology Transactions,1993,36,491-495
    [57]X.A.Zhao,C.W.Ong,Reacitve pulsed laser deposition of CNx films,Appl.Phys.Lett.,1995,66,2652-2654
    [58]周之斌,崔容强,氮化碳薄膜的制备及C-N、CulnSe_2/Si异质结光伏特性,科学通报,1997,40,1969-1972
    [59]H.X.Han,F.Bemard,Structural and optical properties of amorphous carbon nitride,Solid.State.Commun.,1988,65,921-923
    [60]吴辉煌,电化学,北京:化学工业出版社 2004,91.
    [61]Chadrasekaran.K,Wass.J.C,Bockris,J.OM.,The Potential Dependence of Intermediates in Methanol Oxidation Observed in the Steady State by FTIR Spectroscopy,J.Electrochem.Soc.,1990,137,518-524.
    [62]周卫江,周振华,李文震,孙公权,辛勤,直接甲醇燃料电池阳极催化剂研究进展,化学通报,2003,4,228-234
    [63]R.Parsons,T.Vandernoot,The oxidation of small organic molecules:A survey of recent fuel cell related research,J.Electroanal.Chem.,1988,257(1-2),9-45.
    [64]B.Beden,C.Lamy,A.Bewick.K.Kunimatsu,Electrosorption of methanol on a platinum electrode.IR spectroscopic evidence for adsorbed CO species,J.Electroanal.Chem.,1981,121,343-347
    [65]苏爱华,李长志,孙公权,张颖,陆天虹,直接甲醇燃料电池中阳极催化剂的研究进展,电源技术(Chinese Journal of Power Source),1995,19(6),31-35
    [66]A.Hamnett.Mechanism and electrocatalysis in the direct methanol fuel cell,Catalysis today,1997,38,445-453.
    [67]J.Prabhuram,R.Manoharan,Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid.J.Power Sources,1998,74.54-61.
    [68]G.T.Burstein,C.J.Barnett.A.R.Kucemak,K.R.Williams.Aspects of the anodic oxidation of methanol,Catalysis Today,1997.38.425-441.
    [69] Y. Morimoto, E. B. Y. eager, Comparison of methanol oxidationson Pt, Pt-Ru and Pt-Sn electrodes, J. Electroanal. Chem. ,1998,444, 95-100
    
    [70] L. K. Verma, Studies on methanol fuel cell, J. Power. Sources, 2000, 86, 464-468
    [71] Beden. B, Kadirgan. F, Lamy. C, Leger. J. M, Electrocatalytic oxidation of methanol on platinum-based binary electrodes, J. Electroanal. Chem, 1981, 127(1-3), 75-85.
    [72] P. K. Shen and A. C. C. Tseung, Anodic Oxidation of Methanol on Pt/WO_3 in Acidic Media, J. Electrochem. Soc. ,1994, 141, 3082-3090.
    [73] M. Gotz, H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas, Electrochem. Acta, 1998, 43(24), 3637-3644
    [74] Joshua. T, Deryn Chu, Rngzhong Jiang, Synthesis and Characterization of Os and Pt-Os/Carbon Nanocomposites and their Relative Performance as Methanol Electrooxidation Catalysts, Chem. Mater., 2003, 15, 1119-1124
    [75] Ragghuveer V, Viswanathan B. Can La_(2-x)SrxCuO_4 be used as anodes for direct methanol fuel cells? J. Fuel, 2002, 81,2191—2197.
    [76] Hideki K, Hashimoto T, Tagawa H, et al., Difilsion coefficient of oxygen in La_(1.7)Sr_(0.3)CuO_(4-6), Solid State lonics, 1997, 99, 193-199
    
    [77]HyodoT, Hayashi M, MiuraN, et al., Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution, J. Electrochem. Soc. 1996, 143, 267.
    [78] Raghuveer V, Thampi K R, Xanthopoulos N, et al., Rare earth cuprates as electrocatalysts for methanol oxidation, J. Solid State Ionics, 2001, 140, 263-274.
    [79] Yu H C, Fung K Z, Guo T C, et al. Syntheses of perovskite oxides nano particles La_(1-x)SrxMO_(3-4)(M=Co and Cu) as anode electrocatajyst for direct methanol full celll, J. Electrochim Acta, 2004, 50, 811-816
    [80] Biswas P C, Enyo M., Electro-oxidation of methanol on graphite-supported perovskite-modified Pt electrodes in alkaline solution, J. Electroanal Chem. , 1992, 322, 203-220
    [81] Miles R J. The Characterizations and Evaluation of Highly Dispersed Tungsten Carbide Electrocatalysts, Chem. Tech. Biotechnol. 1980, 30, 35-42
    [82]Kudo T Kawamura,GOkamoto H.,A New(W,Mo)C Electrocatalyst Synthesized by A Carbonly Process:Its Activity in Relation to H_2,HCHO and CH3OH Electo-Oxidation,J.Electrochemistry,Society,1983,130,1491-1497
    [83]Oyama S T,Schlatter J C,Catalytic Behavior of Selected Transition-Metal Carbide,Nitride in the HDN of Quinolin.Industrial & Engineering Chemistry Research,1988,27,1639-1648
    [84]Nakazawa N,Okamoto H,Surface Composition of Prepared Tungsten Carbides and Its Catalytic Activity,Appl.Surface Science,1985,24,75-86
    [85]耿利娜,相明辉,李娜,李克安,层状无机化合物-磷酸盐的研究和应用进展,化学进展,2004,16,717
    [86]F.Farzaneh.T.J.Pinnavaia,Metal complex catalysis interlayered in smectiteclay,Hydroformylation of 1-hexane with rhodium complexes ion exchanged into hectorite,Inorg.Chem.,1983,22,2216.
    [87]G.Alberti,Synthesis,crystalline structure,and ion exchange properties of insoluble acid salts of tetravalent metals and their salt forms,Acc.Chem.Res.,1978,11,163
    [88]A.Clearfield,G.Alberti,U.Costantino,Inorganic Ion Exchange Materials,Chapter 14,Newyork,1987
    [89]Marino M.,Donaghy K.J.,Synthesis of carborane containing diphosphonate hangers for zirconium phosphate materials,Abstract of papers of the American chemical society,2003,225,618.
    [90]Holman K.T.,Pivovar A.M.,Ward M.D.,Engineering crystal symmetry and polar order in molecular host frameworks,Science,2001,294,1907-1911.
    [91]扬楚罗,秦金贵,刘道玉,夹层化合物研究进展,化学通报,1996,3,4.
    [92]Izawa H.,Kikkawa S.,Koizumi M.,Efect of intercalated alkylammounium on cation exchange properties,J.Solid State Chem.,1987,69,1023.
    [93]Stahl H.Intercalation Complexes of Metallocenes in Iron Oxide Chloride,Inorg.Nucl.Chem.Let.,1980,16,271.
    [94]Johnson J.W.,Jacobson A.J.Etal.,New layered compounds with transition-metal oxide layers separated by covalently bound organic ligands.Molybdenum and tungsten trioxide-pyridine,J.Am.Chem.Soc.,1981,103,5246.
    [95]JG.Lagaly,Clay-Organic Interactions,Philos.Trans.R Soc.London,1984,A3,11.
    [96]R.Clement,Intercalation of potentially transition-mental complex in the lamellar MnPS_3,host latice,J.Am.Chem.Soc.,1981,103,6998.
    [97]Nazar L.F.,Jacobson A.J,Intercalation of a Large Iron Sulphur Cation Into TaS_2by Ion Exchange with a Dispersion of the Disulphide,Chem.Commun.,1986,570.
    [98]Chatakondu K.,Green M.L.H.,Mingos D.M.P.,Application of Microwave Dielectric Loss Heating Effect for Rapid and Convenient Systhesis of Intercalation Compound,Chem.Commun.,1989,1515.
    [99]D.O' Harein In organic Materials:In organicin tercalationc ompounds,eds.D.W Bruce and D.O' Hare,John Wiley edition,1992,165-235.
    [100]Schollhom R.,Physics of Intercalation Compounds,(Berlin:Springer Verlag),1981,33.
    [101]Matsumoto,E.Q.Xie,F.Izumi,On the validity of the formation of crystalline Carbon nitrides,C_3N_4,Diamond Relat.Mater.,1999,8,1175-1182
    [102]R.Soto,P.Gonzalez,F.Lusquinos,J.Pou,B.Leon,M.Perez-Amor,Carbon 1998,5-6,781.
    [103]Y.A.Li,S.Xu,H.S.Li,W.Y.Luo,J.Mater.Sci.Lett.17(1998)31.
    [104]Darrell.D.Ebbing,Steven.D.Gammon,General Chemistry,Boston:Houghton Mifflin Company,1999(the sixth edition),950
    [105]张树永,综合化学实验 北京,化学工业出版社,2006
    [106]张积树,任志华,蔺玉胜,等。电化学制备膨胀石墨的研究(J),精细化工,1996,13(增刊):120-122
    [107]薛美玲,于永良等,电化学制备膨胀石墨的再改进,精细化工,2002,19:567-570。
    [108]于仁光,乔小晶等,影响电化学法制备的膨胀石墨的膨胀容积因素研究,精细石油化工进展。2003,4:8-10。
    [109]Takeshi Yao~*,Naoshi Ozawa,Takahiro Aikawa,Sinsuke Yoshinaga,Analysis of layered structures of lithium-graphite intercalation compounds by one-dimensional Rietveld method,Solid State lonics,2004,175,199-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700