夏秋季节干旱胁迫对红叶桃光合特性及相关生理指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是众多环境胁迫中最重要的因素之一,它能引起植物巨大的生理变化。光合作用是植物最重要的生理过程,对干旱胁迫高度敏感,但在不同植物之间有一定的差异。彩叶植物作为一类特殊的观赏植物,在园林绿化中的应用越来越广泛。果树中的一些如红叶桃等也属于彩叶植物。因此通过研究红叶桃对干旱胁迫的生理反应,不但有助于揭示红叶桃适应逆境的生理机制,更有助于生产上采取切实可行的技术措施,提高红叶桃的抗逆性或保护其免受伤害,为红叶桃的生长创造有利条件。本研究以绿叶桃品种为对照,研究了不同程度干旱胁迫下红叶桃的逆境生理指标、光合生理特性及叶绿素荧光参数等的变化。结果表明:
     1.夏季干旱胁迫下红叶桃光合特性及相关生理指标的变化
     (1)随着胁迫时间的延长和胁迫程度的加深,红叶桃和绿叶桃叶片相对含水量、光合色素含量以及P_n日积分值等光合基本指标都受到了更深程度的抑制;而花色素苷含量、细胞膜透性、丙二醛含量及脯氨酸含量大幅增加,抗氧化酶系统(SOD、POD、CAT)活性表现为先升后降的趋势。(2)夏季干旱胁迫下,红叶桃与绿叶桃表观量子效率(AQY)、羧化效率(CE)下降,红叶桃与绿叶桃光合受抑,初期中度干旱表现为气孔限制,重度干旱则表现为非气孔限制,后期均为非气孔限制。光饱和点(LSP)降低、光补偿点(LCP)升高,可利用的光强范围变小。(3)对叶绿素荧光参数的分析可知,随着胁迫时间的延长和胁迫程度的加深,红叶桃F_v/F_m、qp、Yield、ETR等参数逐渐下降,而NPQ却逐渐升高(4)灰色关联分析表明,夏季对红叶桃与绿叶桃P_n影响最大的气象因子为大气温度,而干旱胁迫下对红叶桃P_n影响最大的气象因子也是大气温度,绿叶桃则为大气水汽压。
     2.秋季干旱胁迫下红叶桃光合特性及相关生理指标的变化
     (1)随着胁迫时间的延长和胁迫程度的加深,红叶桃和绿叶桃叶片相对含水量、光合色素含量以及P_n日积分值等光合基本指标都受到了更深程度的抑制;而花色素苷含量、细胞膜透性、丙二醛含量及脯氨酸含量大幅增加,抗氧化酶系统(SOD、POD、CAT)活性表现为先升后降的趋势。(2)秋季干旱胁迫下,红叶桃与绿叶桃表观量子效率(AQY)、羧化效率(CB)下降,红叶桃与绿叶桃光合受抑主要为非气孔限制。光饱和点(LSP)降低、光补偿点(LCP)升高,可利用的光强范围变小。(3)对叶绿素荧光参数的分析可知,随着胁迫时间的延长和胁迫程度的加深,红叶桃F_v/F_m、qp、Yield、ETR等参数逐渐下降,而NPQ却逐渐升高(4)秋季对红叶桃与绿叶桃P_n影响最大的气象因子为大气温度,而干旱胁迫下则主要为大气水汽压。
     3.比较夏秋季节干旱胁迫对红叶桃光合特性影响的差异
     比较夏秋季节干旱胁迫对红叶桃细胞膜透性、MDA含量、Chl含量、Ant含量、抗氧化酶(SOD、POD、CAT)活性、P_n日均值、WUE日均值及F_v/F_m等指标影响,可知,由于夏季干旱胁迫下红叶桃Chl含量下降的幅度比秋季低,Ant上升的幅度比秋季高,使其P_n日均值及F_v/F_m下降的幅度低于秋季。结合夏秋季节气象因子的分析,得出夏季干旱胁迫对红叶桃膜系统、光合机构及光系统Ⅱ的伤害程度比秋季小。
Drought is one of the most important ingredients of environmental stresses, which can arose tremendous physiological change of plant. Photosynthesis is the most important physiological process, which is extraordinary sensitivity to drought stresses and have definite diversity among different plants. Color-leafed plants, as a group of special ornamental plants, applied more and more extensively in landscape greening. Some mutation of the fruit tree, such as Red-leaf peach, is belong to Color-leafed plants. So the studying of physiological responses to drought stress is not only helpful to open out physiological mechanism of red-leaf peach to stress, but also redounding to the ability of resisting stress or protecting Red-leaf peach from stress, with the feasible technological measures. In this paper, with the Green-leaf peach as control, we studied on the changes of index of stress physiology, Photosynthetic characteristic and Chlorophyll fluorescence characteristic of red-leaf peach under drought of different degrees. The results showed that:
     1 Studying on Photosynthetic characteristic and relative physiology index of Red-leaf peach under drought stress in summer
     (1)Along with the stress time extended and stress degree increased, leaf relative water content, photosynthetic pigment content and the diurnal integral value of P_n in Red-leaf peach and Green-leaf-peach were restrained in different degree, but the anthocyanin content, membrane permeability ,MDA content and Pro content increased distinctly. And antioxidant enzymes(SOD,POD,CAT)activity first arised and then declined. (2)Under drought stress in summer, AQY and CE of Red-leaf peach and Green-leaf-peach went down. Moreover the photosynthesis restraining was due to stomatal limitation early under Medium drought while the photosynthesis restraining was due to nonstomatal limitation under heavy drought. The declining of LSP and rising of LCP made the available light arrange shortened.(3)The analysis of Chlorophyll fluorescence characteristic showed that as the stress time went on and stress degree increased, the value of F_v/F_(m,q_P),Yield,ETR in Red-leaf peach and Green-leaf-peach decreased inapprent, while the value of NPQ rose up. (4)The gray relational grade analysis showed that the relationship between climate factors and P_n in Red-leaf peach and Green-leaf-peach were T_a in summer. While the relationship between climate factors and P_n in Red-leaf peach under drought stress were also T_a, in Green-leaf peach were V_p.
     2 Studying on Photosynthetic characteristic and relative physiology index of Red-leaf peach under drought stress in autumn
     (1)Along with the stress time extended and stress degree increased, leaf relative water content, photosynthetic pigment content and the diurnal integral value of P_n in Red-leaf peach and Green-leaf-peach was restrained in different degree, but the anthocyanin content, membrane permeability,MDA content and Pro content increased distinctly. And antioxidant enzymes(SOD,POD,CAT)activity first arised and then declined. (2)Under drought stress in autumn, AQY and CE of Red-leaf peach and Green-leaf-peach went down. Moreover the photosynthesis restraining was due to nonstomatal limitation. The declining of LSP and rising of LCP made the available light arrange shortened.(3)The analysis of Chlorophyll fluorescence characteristic showed that as the stress time went on and stress degree increased, the value of F_v/F_(m,q_P),Yield,ETR in Red-leaf peach and Green-leaf-peach decreased inapprent, while the value of NPQ rose up. (4)The gray relational grade analysis showed that the relationship between climate factors and P_n in Red-leaf peach and Green-leaf-peach was T_a in summer. While the relationship between climate factors and P_n in Red-leaf peach under drought stress were V_p.
     3 Comparison of the effect on Photosynthetic characteristic of Red-leaf peach under drought stress in summer and autumn
     Comparison of Membrane Permeability、MDA content、Chlcontent、Ant content、antioxidant enzymes(SOD,POD,CAT)activity ,P_n day average value、WUE day average value,F_v/P_m day average value of Red-leaf peach under drought stress in summer and autumn.The results showed that the decrease range of Chl content in Red-leaf peach was higher in summer than in autumn and the ascending range of Ant content in Red-leaf peach is higher in summer than in autumn,so the decrease range of P_n day average value and F_v/F_m day average value was lower than in autumn. By combining with meteorological factors analysis showed that Membrane Permeability、Photosynthetic Apparatus and PhotosystemⅡof Red-leaf peach under drought stress in summer were damaged lighter than in autumn.
引文
[1]Badger M R,Ruuska S,Nakano H.Electron flow to oxygen in higher plants and algae rates and control of direct photoreduction(Mehler reaction) and rubisco oxygenase[J].Biological Sciences,2000,355:1433-1446
    [2]Beets P N,Whitehead D.Carbon partition in Pinus radiate stands in relation to foliage nitrogen status[J].Tree physiology,1996,16:131-138
    [3]Bianchi G,Gamba A,Murelli C,Salamini F,Barrels D,Novel carbohydrate metabolism in the resurrection plant Craterostigm a plantagineum[J].Plant Journal,1991:355-359
    [4]Bilger W,Schreiber U,Book M.Determination of the quantum efficiency of PSⅡand non-photochemical quenching of Chlorophyll fluorescence in the field[J].Decologia,1995,102:425-432
    [5]Carpenter J F,Crowe L M,Arakawa T.Comparison of solute-induced protein stabibilization in aqueous solition and in the frozen and dried states[J].Journal of Dairv Science,1990,73:3627-3636
    [6]Demmig-Adams B Adams Ⅲ WW.Photoprotection and other responses of plants to high light stress[J].Annu.Rev.Plant Physiol.Plant Mol.Biol,1992,43:599-626
    [7]Demmig-Adams B,Bjorkman O.Comparison of the effects of excessive light on chlorophyll fluorescence(77K) and photo yield of O_2 evolution in leaves of higher plants[J],planta,1987,171:171-184
    [8]Dickman D I.Phtotsynthsis,water relations and growth of two hybrid Populus genotypes during a severe drought[J].Can.J.For.Res,1992,22(8):1092-1106
    [9]Dure L,Crouch M,Harada I,et al.Commn amino acid sequence domains among the LEA proteins of higher plants[J].Plant Mol Bio,1989,12:475-186
    [10]Fitter AH.Functional Significance of Root Morphology and Root System Architecture[A].Eeological Interaction Soil:Plants,microbes and animals[C].Oxford:Blackwell Scientific Press,1985,4:87-106
    [11]Fridovich I..The biology of oxygen radicals[J].Science,1978 201:875-880
    [12]Geroge E,Seith E,Schaefer C,et al.Response of Picea,Pinus and Pseudotsuga root to heterogeneous nutrient distribution in soil[J].Tree Physiol,1997,17(1):39-45.
    [13]Grime JP,Campbell BD,Mackey JML,et al.Root Plasticity,Nitrogen Capture and Competitive[A].Plant root growth:an ecological perspective[C].Oxford:Blackwell Scientific:Press,1991.
    [14]Hsiao T.C.,Ann.Rev.Plant Physio[M],1973.24:519-570
    [15]Jastrow J D,Miller R M.Neighbor influences on root morphology and,mycorrhizal fungus colonization in tall gress prairie plants[J].Ecology,1993,72(2):561-569.
    [16]Kramer P J,Kozlowski T T.Physiology of woody plants[M].New York:Academic Press,1979
    [17]Kramer.P J著。植物的水分关系,许旭旦等译.北京:科学出版社,1989
    [18]Long S P,Humphries S,Falkowski PG..Photoinhibition of photosynthesis in nature.Armu.Rev.Plant physiol.Plant Mol.Biol,1994,45:633-662
    [19]Lu C M,Zhang J H.Effects of water stress on photosystem Ⅱ photochemistry and its thermostability in wheat plants[J].J Exp Bot,1999,50(336):1199-1206
    [20]Patakas A,Noitsak is B,Cell Wall elasticity as a mechism to maintain avorable water relations during leaf ontogeny in grapevines[J].American Journal of Ecology & Viticulture,1997,48(3):353-356
    [21]Pilon E A H,Terry N,Sears K H,et al.Enhanced drought fructan-resistance fructan-accumulating tobacco undo drought stress[J].Plant Physiology and Biochemistry,1999,37:313-317.
    [22]Pnueli L,Hailak E,Rozenberg M,et al.Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam[J].Plant Jou mal,2002,31(3):319-330
    [23]Schansker G,Van Rensen J S V.Performance of active photosystem Ⅱ centers in photoinhibition Pea leaves.Photosynth.Res,1999,62:172-184
    [24]Seiler J R.Physiological morphological responses of three half-sib families of loblolly pine to water-stress conditioning[J].Forest Sci,1998,34(2):487-495
    [25]Theodore C H,Xu L K.Sensitivity of growth of roots versus leaves to water stress:biophysical analysis and relation to water transport[J].J.Exp.Bot,2000,51:1595-1616
    [26]白金,赵瑾,金洪,等.六个圆柏品种(系)抗旱性分析[J]。林业科技开发,2007,21(3):25-28
    [27]卜庆雁,周晏起.果树抗旱性研究进展[J]。北方果树,2000(6):1-3
    [28]陈少良,王沙生.水分逆境下杨树光合作用的气孔与非气孔调控[J].中国林学(英文版),1996,5(2):63-72
    [29]陈少瑜,郎南军,李吉跃,等.干旱胁迫下3树种苗木叶片相对含水量、质膜相对透性和脯氨酸含量的变化[J].西部林业科学,2004,33(3):31-33
    [30]陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响[J].福建农业大学学报,2000,29(1):35-39
    [31]陈学森.13章抗逆育种、胡延吉等编著,植物育种学[M].北京:高等教育出版社,2003,228-254.
    [32]陈忠,苏维埃,汤章城.豌豆热激蛋白Hpc60对酶的高温保护功能及其机理[J].科学通报,1999,44(20):2171-2175
    [33]单长卷,李存胜.土壤干旱对冬小麦幼苗蒸腾耗水特性的影响[J].安徽农业科学,2006,34(7):1407-1408
    [34]杜金友,胡冬南,等.干旱胁迫下胡枝子渗透物质的变化[J].福建林学院学报,2006,26(4):349-352
    [35]冯玉龙,巨关升,朱春全。杨树无性系幼苗光合作用和PV水分参数对水分胁迫的响应[J]。林业科学,2003,39(3):30-36
    [36]付士磊,周永斌,等.干旱胁迫杨树光合生理指标的影响[J].应用生态学报,2006,17(11):2016-2019
    [37]胡景江,顾振瑜,文建雷,等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报,1999,14(2):7-11
    [38]黄上志,王冬梅,卢春斌,等.萌发中花生胚轴的耐干性与热稳定蛋[J].植物生理学报,1999,25(2):193-198
    [39]黄雪清,焦德茂。转C4光合酶基因水稻株系的抗光氧化特性[J].植物生理学报,2001,27(5)
    [40]黄颜梅,张健,罗承德.西藏柏木抗旱生理研究[J].四川林业科技,1998 19(4):31-36
    [41]姜卫兵,高光林,俞开锦,等.水分胁迫对果树光合作用及同化代谢的影响研究进展[J].果树学报,2002,19(6):416-420
    [42]蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报,1994,36(4):289-295
    [43]焦玲,赵颖,李丽萍.现代苗木质量评价的生理指标[J].内蒙古林业科技,2003,1:40-44
    [44]景茂。曹福亮,等.土壤水分含量对银杏光合特性的影响[J]。南京林业大学学报(自然科学版),2005b,29(4):83-86
    [45]景茂,曹福亮,汪贵斌,潘静霞.土壤水分含量对银杏生长及生物量分配的影响[J].南京林业大学学报(自然科学版),2005a,29(3):5-8
    [46]康才周,赵明,朱淑婕,谢全仁.土壤水分胁迫下四翅滨藜的生长及生物量分配特性[J].安徽农业科学,2007,35(29):9162-9165
    [47]孔艳菊,孙明高,等.干旱胁迫对黄栌幼苗几个生理指标的影响[J].中南林学院学报,2006,26(4):42-46
    [48]孔艳菊,孙明高,等.干旱胁迫下元宝枫生长性状及生理特性研究[J]。西北林学院学报,2006,21(5):26-31
    [49]寇祥明,杨利民,韩梅,姜雷,李玉.不同施水量对五叶地锦幼苗生长及抗性生理的影响[J].干旱区资源与环境,2007,21(3):139-143
    [50]雷泽勇,张学丽,周凤艳.沙地樟子松抗旱性的研究[J].林业科技通讯,1996(1):6-8
    [51]李华祯,姚保强等.4种经济林树木水分生理及抗旱特性研究[J].山东林业科技,2006,2:9-11
    [52]李吉跃,张建国。北方主要造林树种耐旱机理及其分类模型的研究(Ⅰ)-苗木叶水势与土壤含水量的关系及分类[J]北京林业大学学报,2003,15(3):1-11
    [53]李静,徐志防,叶万辉。不同胁迫处理对刺栲叶片叶绿素a荧光的影响[J].武汉植物科学研究,2006,24(5):429-434
    [54]廖观荣,钟继洪,等.土壤水分对幼龄桉树蒸腾和生长的影响[J].土壤与环境,2001,10(4):285-288
    [55]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615
    [56]刘淑明,陈海滨,孙长忠.等.黄土高原主要造林树种的抗旱性研究[J]。西北农林科技大学学报,2003,31(4):149-153
    [57]刘淑明,王得祥,孙长忠.干旱胁迫下雪松土壤水分及生理特性的研究[J].西北植物学报,2004,24(11):2057-2060
    [58]刘祖祺.植物抗性生理[M].北京:中国农业出版社,1994
    [59]罗俊,张术清,吕建林,林彦铨.水分胁迫对不同甘蔗品种叶绿素a荧光动力学的影响[J].福建农业大学学报,2000,29(1):18-22
    [60]米海莉,许兴,李树华,何军等。水分胁迫对牛心朴子、甘草叶片色素、可溶性糖、淀粉含量及碳氮比的影响[J].西北植物学报,2004,24(10):1816-1821
    [61]裴保华,周宝顺.三种灌木耐旱性研究[J].林业科学研究,1993,6(6):597-602。
    [62]蒲光兰,袁大刚,等.土壤干旱胁迫对3个杏树品种生理生化特性的影响[J].浙江林学院学报,2005,22(4):375-379
    [63]茹广欣,郝绍菊,等.干旱梯度下刺槐无性系生理指标的变化与品种抗旱性关系的研究[J].河南科技学院学报(自然科学版),2006,34(1):37-40
    [64]阮成江,李代琼.黄土丘陵区沙棘林几个水分生理生态特征研究[J].林业科学研究,2002,15(6):47-53
    [65]申亚梅,童再康,张露.干旱胁迫对红叶石楠等3个观赏品种生理特性的影响[J].江西农业大学学报,2006,28(3):397-402
    [66]史胜青,袁玉欣,张金香,施征.不同水分胁迫方式对核桃苗叶绿素荧光动力学特性的影响[J].河北农业大学学报,2003,26(2):20-24
    [67]史玉炜,王燕凌,李文兵,高述民,李霞.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8
    [68]孙国荣,彭永臻,等.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响[J].林业科学,2003,39(1):165-167
    [69]王淼,李秋荣.长白山阔叶红松林主要树种对干旱胁迫的生态反应及生物量分配的初步研究[J]。应用生态学报,2001,12(4):496-500
    [70]王爱国,邵从本,罗广华,等.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,1986,22(2):55-57
    [71]王传印,姜涛,等。水分胁迫下柳树的生理生化反应[J]。山东林业科学,2006(5),28-30
    [72]王华田,孙明高,等.土壤水分状况对苗期银杏生长及生理特性影响的研究[J].山东农业大学学报(自然科学版),2003,31(1):74-78
    [73]王金锡,许金铎.长江上游高山高原林区迹地生态与营林更新技术[J].北京:林业出版社,1995.
    [74]王晶英,赵雨森,等.银中杨光合作用和蒸腾作用对土壤干旱的响应[J].中国水土保持科学,2006,4(4):56-61
    [75]王明怀,陈建新。红锥等8个阔叶树种抗旱生理指标比较及光合作用特征[J].广东林业科技,2005,21(2):1-5
    [76]韦小丽,徐锡增,朱守谦.水分胁迫下榆科3种幼苗生理生化指标的变化[J].南京林业大学学报(自然科学版),2005,29(2):47-50
    [77]韦振泉,林宏辉,何军贤,梁厚果.水分胁迫对小麦捕光色素蛋白复合物的影响[J]。西北植物学报,2000,20(4):555-560。
    [78]温国胜,王林和,等.干旱胁迫条件下臭柏的气体交换与荧光特征[J].浙江林学院学报,2004,21(4):361-365
    [79]文建雷,刘志龙,等。水分胁迫条件下元宝枫的光合特征及水分利用效率[J]。西北林学院学报,2003,8(2):1-3
    [80]吴振基.红锥育苗技术[J]。广东林业科技,2003,19(3):66-67
    [81]伍泽贵。超氧自由基与叶片衰老时叶绿素破坏的关系[J].植物生理学通讯,1991,27(4):277-279
    [82]徐利霞,杨水平,等.石漠化地区3个树种幼苗在水分胁迫下的光合特性与抗旱性关系[J].林业科学研究,2006,19(6):785-790
    [83]许大全.光合作用效率[M].上海科学技术出版社,2002:43
    [84]闫成仕.水分胁迫下植物叶片抗氧化系统的响应研究进展[J]。烟台师范学院学报,2002,18(3):220-225
    [85]严昌国,韩兴国,陈灵芝,等.北京山区落叶阔叶林优势种叶片特点及其生理生态特征[J]。生态学报,2000,20(1):53-60
    [86]阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及膜质过氧化作用的影响[J].生态学报,1999,19(6):850-854
    [87]颜华,贾良辉,王根轩.植物水分胁迫诱导蛋白的研究进展[J].生命的化学,2002,22(2):165-168.
    [88]杨建伟,周索,韩蕊莲,梁宗锁.土壤干旱对刺槐蒸腾变化及抗旱性研究[J].西北林学院学报,2006,21(5):32-36
    [89]杨敏生,黄选瑞.水分胁迫对白杨杂种无性系生理和生长的影响[J].河北林果研究,1998,13(2):99-102
    [90]姚允聪等.土壤干旱对君迁子幼树枝叶生长及几个生理指标的影响[J].北京农学院学报,1993,8(2):53-59
    [91]于永强,宇万太,张璐.海伦摞荒地植被生物量的季节变化[J].应用生态学报,2002,13(6):685-688
    [92]曾凡江,张希明,李小明,等.柳的水分生理特性研究进展[J].应用生态学报,2002,13(5):611-614
    [93]张华,郑培龙,王百田.黄土半干旱区土壤水分条件对刺槐蒸腾速率的影响[J].武夷科学,2005,(21):40-45
    [94]张金池,夏尚光,梁淑英:三种榆树幼苗对水分胁迫的生理响应[J].林业科技开发,2008,22(1):24-26
    [95]张明生,谈锋,谢波,等.甘薯膜脂过氧化作用和膜保护系统的变化与品种抗旱性的关系[J].中国农业科学,2003,36(11):1395-1398
    [96]张往祥,曹福亮。高温期间水分对银杏光合作用和光化学效率的影响[J].林业科学研究,2002,15(6):672-679
    [97]朱万泽,薛建新,王金锡.台湾桤木种源对水分胁迫的光合响应及其抗旱性[J].水土保持学报,2004,18(4):170-181
    [98]邹琦,李德全,郑国生,等.作物抗旱生理生态研究[M]。济南:山东科学技术出版社,1994,24-29
    [1]Bassi R,Croce R,CS.Cugini D,Sandona,D.Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites[J].Proc Natl Acad Sci USA,1999,96:10056-10061
    [2]Demmig Adams B,Winter K,KrügerA,Czygan F-Ch.Photoinhibition and zeaxanthin formation in intact leaves[J].Plant Physiol.1998,84:218-224
    [3]Demmig-Adams B,Adams W W Ⅲ,Baker D H,Logan B A,Bowling D R and Verhoven A S.Using chlorophyll fluorescence to assess the fraction of absorbes light allocated to themal dissipation of escess excitation.Physiol Plant.1996,98:253-264
    [4]Farquhar G D,Sharkey T D.Stomatal conductance and photosynthesis[J].Ann Rev Plant Physiol,1982,33:317-345
    [5]FridovichI.Superoxide dismulatase[J].Ann.Rev.Biochem,1975,44:147-159
    [6]Gindaba J,Rozanov A,Negash L.Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress[J].For.Ecol.Manage,2004,201:119-129
    [7]Grusecki W I,Krupa Z.LH CII,the major light-harvesting compoment-protein complex is a zeaxanthin epoxidase[J].Biochem biophs Acta,1993,1144:145-152
    [8]Hsiao T.C.Plant response to water stress[J].Ann.Rev.Plant Physiol,1973,24:519-570
    [9]Krause G H,Weis E.Chlorophyll fluorescence and photosynthesis[J].Ann Rew Plant physiol.Miol.1991,42:313-349
    [10]Rao M V,Paliyath G,armrod D P.Ultraviolet-B radiation and ozone-induced biochemical changes in the antioxidant enzymes of Arabidopsis thaliana[J].Plant Physiol,1996,110:125-136
    [11]Rohacek K.Cholrophyll fluorescence parameters:the definitions,photosynthetic meaning and mutual relationships[J].Photosynthetica,2002,40(1 ):13-29.
    [12]Sarry J E,Montillet J L,Sauvaire Y,Havaux,M.The protective function of the xanthophyll cycle in photosynthesis[J].FEBS-Lett,1994,353(2):147- 150
    [13]Schansker G,Van Rensen JSV,Performance of active photosystem Ⅱ centers in photoinhibition pea leaves[J].Photosynthesis research,1999,62:175-184
    [14]Smillie R M,Hetherington S E.Photoabatement by anthocyanin shields Photosynthetic systems from light stress[J].Photosynthetica,1999,36:451-463
    [15]Vankooten O,Snel J F H.The use of chlorophyll nomenclature in plant stress physiology[J].Photosynth.Res.1990,25:147-150
    [16]Yamasaki H,Uefuji H,Sakihama Y.Bleaching of the red anthocyanin induced by superoxide radical[J].Arch Biochem Bio Phys,1996,332:183-186
    [17]何奕昆,代庆阳,苏学辉.雁来红叶色转变与超微结构及色素含量的关系[J].四川师范学院学报(自然科学版),1995,16(3):195-198
    [18]侯小改,段春燕,刘改秀,等.土壤含水量对牡丹光合特性的影响[J]。华北农学报,2006,21(2)91-94。
    [19]关义新,戴俊英,林燕.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297
    [20]姚砚武,周连第,李淑英,等.美国红栌光合作用季节变化的研究[J].北京农业科学,2000,18(5):32-34
    [21]姜卫兵,庄猛,徐岩.论我国彩叶树种的开发[J].上海农业学报,2004,20(4):75-78
    [22]姜卫兵,庄猛,沈志军,宋宏峰,曹晶,李刚。不同季节红叶桃、紫叶李的光合特性研究[J].园艺学报,2006,33(3):577-582
    [23]姜卫兵,庄猛,花国平,等.彩叶植物呈色机理及光合特性研究进展[J].园艺学报,2005,32(2):352-358
    [24]孙明霞,王宝增,范海,赵可夫.叶片中的花色素苷及其对植物适应环境的意义[J].植物生理学通讯,2003,39(6):688-694
    [25]庄猛,姜卫兵,马瑞娟,俞明亮.Rutgers桃(红叶)与白芒蟠桃(绿叶)光合生理特性的比较[J].南京农业大学学报,2005,28(4):26-29
    [26]张怡,罗晓芳,沈应柏.上壤逐渐干旱过程中刺槐新品种苗木抗氧化系统的动态变化[J].浙江林学院学报,2005,22(2):166-169
    [27]张雷明,上官周平,毛明策,于贵端.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J].应用生态学报,2003,14(5):695-698
    [28]徐晓丽,翁忙玲,姜卫兵.果树在园林绿化中的价值及其应用[J].中国农学通报,2006,22(7):398-403
    [29]戴高兴,张宗琼,邓国富.紫叶水稻叶内丙二醛测定中花青素干扰的排除[J].植物生理学通讯,2006,42(6):1147-1148
    [30]房玉林,惠竹梅,陈洁,何建林,张振文.水分胁迫对葡萄光合特性的影响[J].干旱地区农业研究,2006,24(2):135-138
    [31]曲桂敏,沈向,王鸿霞,等.不同品种苹果树水分利用效率及有关参数日变化[J].果树科学,2000,17(1):7-11.
    [32]曹帮华,张明如,翟明普,毛培利.土壤干旱胁迫下刺槐无性系生长和渗透调节能力[J].浙江林学院学报,2005,22(2):161-165
    [33]曹慧,许雪峰,韩振海,王孝威,郭图强.水分胁迫下抗旱性不同的两种苹果属植物光合特性的变化[J]。园艺学报,2004,31(3):285-290
    [34]曹晶,姜卫兵,翁忙玲,姜武.夏秋季旱涝胁迫对红叶石楠光合特性的影响[J]。园艺学报,2007,34(1):163-172
    [35]李华祯,姚宝强等.4种经济林木水分生理及抗旱特性研究[J].山东林业科技,2006,2:9-11
    [36]李合生等.植物生理生化实验原理和技术[M],高等教育出版社,2000
    [37]李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响[J].应用生态学报,2005,16(12):2353-2356
    [38]杨晓青,张岁歧,梁宗锁,山颖。水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J]。西北植物学报,2004,24(5):812-816
    [39]柯世省。干旱胁迫对夏蜡梅光合特性的影响[J].西北植物学报,2007,27(6):1209-1215
    [40]武玉叶,李德重.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响[J].华北农学报,2001,16(2):87-93。
    [41]武维华。植物生理学[M].科学出版社,2003,168-170
    [42]沈文飚,叶茂炳,徐朗莱.小麦旗叶自然衰老过程中清除活性氧能力的变化[J].植物学报,1997,39(7):634-640
    [43]潘瑞炽,董愚得.植物生理学(第三版)[M].高等教育出版社,1995
    [44]王庆菊,李晓磊,王磊,陈学森,沈向.桃、李属红叶树种叶片光合特性[J].林业科学,2007,43(6):32-37
    [45]王忠,植物生理学[M].中国农业出版社,2000,452-453
    [46]王有年,杨爱珍,于同泉,等.水分胁迫对爱宕梨渗透调节的影响:北京农学院学报,2003,18(1):17-20.
    [47]王进,欧毅,周贤文,张龚,代正林.土壤水分胁迫对梨叶片生理生化指标的影响[J]西南农业学报,2008,21(1):62-65
    [48]罗红艺,景红娟,李金枝.含矮壮素的保鲜剂对非洲菊切花衰老的影响[J].植物生理学通讯,2004,(40):553-555
    [49]苏正淑,张宪政。几种测定植物叶绿素含量的方法比较[J]。植物生理学通讯,1989,(5):77-78
    [50]许大全,张玉全.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4)237-243
    [51]邹琦,李德全,郑国生,等.作物抗旱生理生态研究[M].济南:山东科学技术出版社,1994,24-29
    [52]郁怡汶.草莓光合作用对水分胁迫响应的生理机制研究[C].2003,浙江大学博士论文
    [53]郝峰鸽,杨立峰,任军辉.不同光照条件对紫叶小檗光合特性及色素含量的影响[J].安徽农业科学,2006,34(7):1351-1352
    [54]郭晓荣,曹坤芳,许再富.热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应[J].应用生态学报,2004,15(3):377-381
    [55]陈立松。刘星辉。水分胁迫对荔枝叶片活性氧代谢的影响[J].园艺学报,1998,25(3):241-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700