玉米PEPC基因导入籼稻恢复系及高光效材料的创制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L)作为重要的粮食作物,其现有高产品种的光能利用率在1%-1.5%,而光能利用率的潜力可达3-5%。本研究以转玉米PEPC基因的粳稻Kitaake(潮霉素作筛选标记)为基因供体,与籼型恢复系蜀恢881、蜀恢527、蜀恢955进行杂交,以期导入PEPC基因改良籼型恢复系光合生理特性,并对玉米PEPC基因导入蜀恢881后的光合作用特性、产量性状进行了系统分析,主要结果如下:
     1.用40mg/L的潮霉素培养基对蜀恢881的BC_1F_1代种子进行潮霉素抗性检验,初步筛选出含有玉米PEPC基因的植株。
     2.用潮霉素引物对三个不同世代的植株进行扩增的结果表明,玉米PEPC基因已经整合进蜀恢881中,并能够稳定的遗传。
     3.通过杂交转育,杂交后代的PEPCase活性得到了极大的提高。转PEPC的蜀恢881、蜀恢527、蜀恢955比原品种高8~20倍,表明在杂交后代中玉米PEPC基因不仅能够稳定的遗传而且得到充分表达。
     4.在自然条件下,导入玉米PEPC基因的不同世代植株的光合速率均得到大幅度提高。BC_2F_1代植株的净光合速率达到了12~17.3μmol·m~(-2)·s~(-1),比蜀恢881的7μmol·m~(-2)·s~(-1)提高了50%;在不同光强及不同CO_2浓度下,净光合速率都比蜀恢881高,表现出利用光能和CO_2的能力得到了提高;光量子效率、CO_2羧化效率分析表明分别比蜀恢881提高了75%和40%,而CO_2补偿点却降低了30μmol·m~(-2)·s~(-1)。表明杂交导入玉米PEPC基因后,植株的光合特性得到了改善。
     5.导入PEPC基因后,植株的耐光抑制的能力得到改善。植株剑叶叶片经光抑制处理7天后,仍然保持绿色,而蜀恢881的叶片从叶尖开始变黄,叶绿素含量大幅下降。
     6.导入玉米PEPC基因后引起植株性状发生较大的变化。BC_2F_1代植株光合作用功能叶叶面积降低了18%,分蘖和有效分蘖分别比蜀恢881增加了21%,50%;而千粒重增加了17%,单株产量增加了30%。回交后代千粒重增加是充实度提高引起的结果(粒长和粒宽无显著变化,粒厚增加)。这些变化可能是玉米PEPC基因导入蜀恢881引起光合效率提高的结果。
     论文还讨论了从遗传背景筛选、酶活与光合性状的相关性以及多种遗传背景下深入研究玉米PEPC基因对提高水稻光合效率的作用及其在水稻超高产育种中的应用。
Rice(Oryza saliva L)is one of the important food crops. But the analysis of photosynthesis efficiency to high yield rice varieties showed that its photosynthesis efficiency was 1-1.5%, while its potential photosynthesis efficiency was 3-5%. In this research, restorer lines Shuhui881, Shuhui527 and Shuhui955, as gene acceptors were crossed with the transgenic rice Kitaake containing the PEPC gene from maize. In this study, photosynthetic characteristics and agronomic traits of Shuhui 881 were systematically analyzed, the main results as below:
    ? The seeds of BC1F1 were screened on the medium with 40mg/L Hygrimycin for the first selection of the plants obtaining foreign PEPC gene.
    ? The PCR analysis of F1, BC1F1, BC2F1 hybrids and parents indicated that the PEPC gene of maize had been integrated and could be inherited in the progenies.
    ? In the plants obtaining maize PEPC gene, the activity of PEPCase was increased evidently compared to the check plants, it was increased as much as 8-20 folds. It could be seen that PEPC gene from maize was not only inherited, but also expressed in the progenies plants.
    ? The light-saturated photosynthetic rates of BC2F1 plants were nearly 100% higher than that of Shuhui881 under natural conditions; The physiological indexes of the BC2F1 plants were markedly superior to that of Shuui881, increased 75% in quantum efficiency and 40% in the carboxylation efficiency, decreased 30 umo昺~-2晄~-1 in CO2 compensation. It demonstrated that the photosynthetic characteristics had been improved after the introducing of maize PEPC gene.
    ? In the test of the tolerance to photoinhibition, plants containing the PEPC gene from maize exhibited a slighter photoinhibition than the check plants; After test, the leaves of color of the check plants turned yellow, while the leaves of plants containing the PEPC
    
    
    
    gene from maize still kept green; The chlorophyll content in the check plants was greatly decreased.
    The analysis of hybrids and Shuhui881 showed that the introducing of PEPC gene had some effects on the agronomic traits .The areas of BC2F1 plants were decreased remarkably, while the 1000-grain weight increased 17%, at the same time, the tiller and the panicle forming rate increased. The analysis of grain shape identified that grain length and grain width were not changed, but grain thickness was increased, so the increase of 1000-grain weight was the results of the improvements of photosynthetic characteristics. So, the improvements of the 1000-grain weight, the tiller, the panicle forming rate and the yield per hill maybe were the result of the introducing of PEPC gene from maize.
    In order to identify whether and how did the PEPC gene play a great role on the increase of photosynthetic efficiency, it was very necessary to study the backgrounds of hybrids, the correlation between the activity of PEPCase and photosynthetic characteristics, effects on the other rice materials introducing PEPC gene, such as restorer lines, sterile lines, and the photosynthetic characteristics under different conditions.
引文
1 曹树青,翟虎渠 张红生等。不同类型水稻品种叶源量及有关光合生理指标的研究,中国水稻科学,1999,13(2):91—94.
    2 陈秉发,陈建民等,高产水稻株型特征和光合特性的初步研究,福建农业学报,2000,15 (2):13-18
    3 陈帅,储成才等,C3-C4中间型植物 Flaveria anomala 中甘氨酸脱羧酶P-蛋白亚基上游调控序列在转基因水稻中的表达,科学通报,2001,46 (11):939-942
    4 陈温福,徐正进,张龙步编著。水稻超高产育种生理基础。科学技术出版社,1995
    5 陈文峻,蒯本科,植物叶绿素的降解,植物生理学通讯,2001,37 (4):336-339
    6 陈信波,廖爱君等,外源DNA导入水稻的变异系生育中后期叶片光合及呼吸特性,湖南农业大学学报,1997,23 (3):219-224
    7 陈友订,李晓方等,用AFLP技术进行水稻光合作用光保护有关基因候选分子标记的研究初探,农业生物技术学报,2000,8 (1):95-98
    8 迟伟,焦德茂等,转PEPC基因水稻的光合生理特性,植物学报,2001,43 (6):657-660
    9 邓向前等,不同光照强度和温度对水稻光合作用和光呼吸影响,华南农学院学报,1984,5,1:32—38。
    10 董龙英等,植物生理学报,1995,21:281-288
    11 杜维广等。大豆光合速率的遗传。黑龙江农业科学,1981,(5):34-38。
    12 付永彩,刘新仿等,水稻中抑制衰老的嵌合基因的基因枪转化合表达分析,农业生物技术学报,1999,7 (1):17-22
    13 傅春霞、李黄振,水稻籼粳杂种光合作用对强光适应力的比较研究,中国水稻科学,1990,(3):136~138
    14 傅春霞、谭秀云等,强光下籼稻叶片色素光漂白及其组分变化,中国水稻科学,1993,7(2):83-87
    15 广东农科院高光效育种组.水稻净光合速率的品种间差异及高光效育种.植物生理学报,1977,4:113—121
    16 广东农科院水稻生态室高光效育种研究组,单叶光合速率与高光效育种,中国农业科学,1979,2:19—28
    17 广东省农科院水稻所水稻高光效育种组,水稻高光效品种的光合特性及产量表现,广东农业科学,1984,2:15—17,10。
    18 韩庚辰,玉米主要光合性状与产量的关系及遗传效应分析,1982,8 (4):237-243
    19 郝乃彬,杜维广等,大豆高光效育种研究进展,植物学报,2002,44 (3):253-258
    20 黄秋妹、林秀珍,高光效水稻种质早籼叶青伦,作物品种资源,1994,(1):35-36
    21 黄秋妹、张旭、陈耀华等,水稻高光效高产量潜力新种质叶青伦有关血缘品种的重要光合特性初步研究,广东农业科学增刊:1994,60—65
    22 黄秋妹、张旭、陈耀华等,水稻高光效高产量潜力新种质叶青伦重要光合特性的配合力分析(1),(2),广东农业科学增刊:1994,66-77
    23 黄雪清,焦德茂等,在光氧化条件下不同类型高产稻的叶绿素荧光特性和膜脂过氧化特点,植物学报 2002,44 (3):279-286
    24 黄雪清,焦德茂等,转C4光合酶基因水稻的CO2交换和荧光特性,植物学报,2002,44 (4):405-412
    25 D. O. 霍尔等著,张永平译,1984,光合作用(第二版),科学出版社。
    
    
    26 季本华,焦德茂,光抑制条件下水稻籼粳亚种及其正反交F1杂种的PSⅡ光化学效率CO2交换特点,植物学报,1999,41 (5):508-514
    27 季本华,焦德茂,水稻抗光破坏能力与D1蛋白和叶黄素循环的关系,科学通报,2000,45 (5):510-515
    28 蒋德安,陆庆等,水稻剑叶衰老期Rubisco活化酶对Rubisco活力和光合速率的调节,浙江大学学报(农业与生命科学版),2000,26 (2):119-124
    29 蒋德安,许银发,稻叶衰老期间光合衰退的主要内在因素,浙江农业大小学报,1995,21 (5):533-538
    30 焦德茂,季本华等,水稻对高低光强适应的品种间差异。作物学报,1996,22(6):668-672
    31 焦德茂,李霞等,转PEPC基因水稻的光合CO2同化和叶绿素荧光特性,科学通报,2001,46 (5):414-418
    32 焦德茂、季本华等,水稻耐光抑制种质的简易筛选技术的原理和应用,作物学报,1994,20(3):322-326
    33 金信忍,侯养香等,超级稻育种研究中的问题及出路,延边大学农学学报,2000,22(1):48-54
    34 李卫华,郝乃斌等,C3植物中C4途径的研究进展,植物学通报,1999,16 (2):97-106
    35 李霞,焦德茂等,转育PEPC基因的杂交水稻的光合生理特性,2001,27 (2):137-143
    36 李霞,焦德茂等,自然条件下高产稻生育后期剑叶叶绿素荧光和膜肢过氧化德表现,植物学报,2002,44 (4):413-421
    37 李霞,严建民等,光氧化和遮荫条件下水稻的光合生理特性的品种差异,作物学报,1999,25 (3):301-308
    38 李振声,新农业科技革命和作物超高产育种,中国科学基金,2000,1:40-42
    39 林荣成,许长成等,叶黄素循环及其在光保护中的分子机理研究,植物学报,2002,44 (4):379-383
    40 刘良式等著,植物分子遗传学,1997,科学出版社
    41 刘彦卓,黄农荣等,晚季不同类型高产水稻品种光合速率和叶绿素含量变化研究初报,广东农业科学,2000 (1):37-39
    42 刘贞奇,刘振业等,水稻叶绿素含量及其与光合速率关系的研究。作物学报,1984,10(1):57—62
    43 刘贞琦等,水稻叶绿素含量及其与光合速率关系的研究,1984,作物学报,10,1:57—62。
    44 刘振业,刘贞奇。光合作用的遗传与育种。贵州人民出版社,1984。84—85
    45 刘振业,刘贞奇。作物光合作用的遗传和育种研究进展。贵州农学院学报,1991,10(2):20—38
    46 刘祚昌,赖世登,于彦波等。小麦光合性状遗传的初步研究。遗传 1980,(1):29
    47 娄成后,王学成主编,作物产量形成得生理学基础,中国农业出版社,2001
    48 卢荣禾,余辉,唐崇钦等,水稻品种Lemont和七桂早光抑制特性的比较研究.中国水稻科学,1998,12,(2): 125—128
    49 缪有刚,李立人,水稻和烟草核酮糖1,5-二磷酸羧化酶/加氧酶大小亚基之间的分子杂交,植物生理学报,1996,22 (1):40-44
    50 缪有刚,李立人等,光合蛋白抑制剂对水稻Rubisco大小亚基和Rubisco大亚基结合蛋白基因表达的影响,植物生理学报,1993,19 (3):243-249
    51 农业试验与统计分析,四川科学技术出版社,1993
    52 潘瑞轵,董愚得编著,植物生理学,高等教育出版社,1995
    
    
    53 秦发兰,张启发。稻麦玉米重要基因的鉴定、发掘和高效率利用途径研究,2000,1:27-30
    54 任光俊,水稻重要性状的遗传基础分析,四川农业大学博士学位论文,2001
    55 沈成国,张福锁等,植物叶片衰老过程中基因的表达与调控,植物生理学通讯,1998,34(4):304-311
    56 沈成国等编著,植物衰老生理与分子生物学,中国农业出版社,2001
    57 苏宁等,植物叶绿体基因组基因表达调控的研究,生物技术通报,1999,(3)
    58 滕胜,钱前等,C4光合途径的分子生物学和基因工程研究进展,农业生物技术学报,2001,9(2):198-201
    59 屠曾平,水稻光合特性研究与高光效育种,中国农业科学,1997,30(3):28—35
    60 屠曾平、林秀珍等,水稻高光效育种的再探索,植物学报,1995,37(8):641-651
    61 王关林,方宏筠主编,植物基因工程原理与技术,科学出版社,1998
    62 王空军,董树亭等,我国1950s—1990s推广玉米品种叶片光合特性演进规律研究,植物生态学报,2001,25(2):247-251
    63 吴乃虎主编,基因工程原理(上),科学出版社,1998
    64 吴乃虎主编,基因工程原理(下),科学出版社,2001
    65 现代植物生理学实验指南,科学出版社,1999
    66 肖凯,谷俊涛,邹定辉等.杂种小麦及其亲本光合同化特性研究,作物学报,1998,24(4):503-508.
    67 徐庆章,王庆成,等,玉米株型与群体光合作用的关系研究。作物学报,1995,21(4):492—495.
    68 许大全,光合作用研究进展:从分子机理到绿色革命,植物生理学报,2001,27(2):97-108
    69 严建民,焦德茂等,水稻光合对不同光强的响应及品种间差异。中国水稻科学,1992,6(2):53—56
    70 阎成士,李德全等,植物叶片衰老与氧化胁迫,植物学通报,1999,16(4):398-404
    71 杨惠杰,李义珍等,超高产水稻的产量构成和库源结构,福建农业学报,1999,14(1)
    72 杨胜铭,高辉远等,状态转换对光合作用中激发能分配的调节及其与光破坏防御的关系,植物生理学通讯,2001,37,(2):89-94
    73 杨守仁,张龙步等,水稻超高产育种的理论和方法,作物学报,1996,22(3):295-304
    74 杨松涛,李彦舫等,CO2年度倍增对10种禾本科植物叶片形态结构的影响,植物学报,1997,39(9):859-866
    75 姚真,高燕萍等,植物叶片衰老过程中的基因表达与调控,遗传,1999,21(4):63-65
    76 叶济宇,1985,关于叶绿素含量测定中的Arnon计算公式,植物生理学通讯,6:69。
    77 余书文,汤章城主编,植物生理与分子生物学(第二版),科学出版社,1999
    78 张荣铣,程在全,方志伟等,关于光合速率高值持续期的初步研究,南京师范大学学报,1992,15:76-86.
    79 张荣铣,戴新宾,许晓明等.叶片光合功能期与作物光合生产潜力,南京师范大学学报,1999,22(3):250-260.
    80 张贤泽,马占峰等,大豆不同品种光合速率与产量关系的研究。作物学报,1986,12(1):43-48
    81 张旭等编著,水稻光温生态与品种选育利用,中国农业出版社,2000
    82 张旭等编著,水稻生态育种,农业出版社,1986
    83 张旭等编著,作物生态育种学,中国农业出版社,1998
    84 赵玖,水稻单叶净光合速率遗传规律的研究,贵州农学院学报,1984,(1):8—20
    85 赵镇林,水稻不同品种叶绿素含量的变异及遗传表现,贵州农学院学报,1982,(1):11—25
    86 郑少清,曾广文,植物叶片衰老及其延缓的分子途径,植物生理学通讯,1999,35(2):152-157
    87 中国科学院植物生理研究所,植物研究所,1980,光合作用研究进展(第二集),科学出版社。
    
    
    88 中国农学会、中国水稻研究所等编著,21世纪水稻遗传育种展望——水稻遗传育种国际学术讨论会文集,中国农业科学出版社,1999
    89 中国植物生理学会,光合作用研究进展(第三集),1984,科学出版社。
    90 钟珍萍,吴乃虎,植物光合基因psbA的结构及表达调控综述,福建农业大学学报,1997,26(3):257-261
    91 周开达等,杂交水稻亚种间重穗型组合的选育——杂交水稻超高产育种的理论与实践。四川农业大学学报,1995,13(4):403—407
    92 周文麟,倪建福等,外源C4作物DNA导入小麦的研究,作物学报,1992,18(6):418-423
    93 曹树青,翟虎渠,张荣铣等。不同产量潜力的水稻品种剑叶光合特性的研究,南京农业大学学报,2000,23(4):1-4.
    94 陆巍,曹数青等,水稻剑叶叶源量及其与产量性状关系的研究,南京农业大学学报,2001,24(1):1-4
    95 李凳海,从事紧凑型玉米育种的回顾与展望,作物杂志,2000,(5):1-5
    96 吴长艾,孟庆伟等,叶黄素循环及其调控,植物生理学通讯,2001,37(1):1-5
    97 周开达,四川水稻超高产育种的发展趋势,西南农业学报,1998,11(育种和栽培专辑):1-6
    98 李明启,作物光合效率与产量的关系及影响光合效率的内在因子,植物生理学通讯,1980,2:1-8
    99 谭中和,方文等,四川水稻栽培六十年,西南农业学报,1998,11(院庆专辑):1-8
    100 高亮之,金之庆等,水稻最佳株型群体受光量与光合量的数值模拟,江苏农业学报,2000,16(1):1-9
    101 刘建丰,水稻超高产育种研究概况及问题讨论,杂交水稻,2000,15(1):4-6
    102 曹显祖,朱庆深,提高杂交稻结实率的田间试验,江苏农业科学,1981,5:5-6
    103 谢家雍,水稻单叶净光合率与籽粒产量的相关性,贵州农业科学,1983,3:5-8
    104 王文明,水稻超高产育种的现状与展望,西南农业学报,1998,11(育种和栽培专辑):7—11
    105 杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究。中国农业科学,1992,25(4):7—14
    106 屠曾平,陈冠华,郭培森等,水稻高光效育种研究,Ⅰ.水稻单叶净光合速率的遗传.广东农业科学.1984,(4):8—13
    107 季本华,李传国等,籼粳稻光合作用的光抑制特性及在正反交杂种F_1中的表现,植物生理学报,1994,20(1):8-16。
    108 赵银锁,吴相钰,C4植物基因的特异性表达,植物生理学通讯,1995,31(1):9-14
    109 陶宗娅,周琦,植物光合作用光抑制分子机理及其光保护机制,西南农业学报,1999,12(9):9-18
    110 凌启鸿等,中稻各叶位叶片对产量形成作用的研究。江苏农学院学报,1982,3(2):9—19。
    111 靳月华,陶大立,光系统Ⅱ的光抑制和超氧的产生,植物学报,2000,42(1):10-14
    112 刘振业等,作物光效遗传的研究——Ⅰ.C_3和C_4作物的杂交结实率,贵州农业科学,1980,2:12-16。
    113 :Murchie E H, Horton P. Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant cell and Environment, 1998, 21:139-148
    114 Adir N, Shochat, Inoue Y et al. Mechanism of the Light dependent turnover of the D_1 protein. Current Research In Photosynthesis. 1990, VOl Ⅱ: 409
    115 Black C C, Tu Z P Counce P A, Yao P F, Angelov M N. An integration of photosynthetic traits and
    
    mechanisms that can increase crop photosynthesis and grain production. Photosynthesis Research, 1995,46:469-175
    116 Cameron RG, Bassett CL, Bouton JH, Brown Rid. Transfer of C4 photosythetic character through hybridization of Flaveria species. Plant Physiol, 1989, 90:1538-1545
    117 Donald, C. M., The Breeding for Crop Idotypes, Euphytica, 1968, 17, 385--403.
    118 Dong LY, MasudaT, KawamuraT, Hata S, Izui K. Cloning,expression, and characterization ora root-form phosphoenolpyruvate carvoxylase fromZea mays: comparison with the C4-form enzyme. Plant and Cell Physiol, 1998, 39 (8) : 865-873
    119 Dornhoff G M, Shibles R M. Varietal differences in net photosynthesis Soybean leaves. Crop Sci. 1970, 10:42-45
    120 Drincovich MI:, Casati P, Andreo CS, Chessin S J, Franceschi.VR, Edwards GE, Ku MSB. Evolution of C4 photosynthesis in Flaveria species: isoforms of NADP-malic enzyme. Plant physiology, 1998, 117 (3) : 733-744
    121 Eihide Monma and Shigesaburo Jsonoda. Photosynthetic Heterosis in Malz Japan ./Breed, 1979, 29(2) : 159-165
    122 Ernst K, WesthoffP. The posphenolpyruvate carboxylase (ppc)gene family of Flaveria trinervia (C3) and E pringlei (C4) molecular characterization and expression analysis of the ppcB and ppcC genes. Plant Mol Biol, 1997, 34 (3) : 427-443
    123 Fukayama, Tuchida H, Onodera H, Ono K, Makino A, Ma-tsuoka M, Tokutomi-Miyao M. Effect of high level cxpressionof the maize pyruvate, orthophosphate dikinase on photosynthesis rate and nitrogen partitioning in transgenic rice plants. Jpn J Crop Sci, 1999, 68 (supp2) : 80-81
    124 Gehlin J, Panstruga R, Smcts H, Merkelbach S, Kleines M.Porsch P, Fladung M, Becker 1, Rademacher T, Hltusler PE.Hirsch H-J. Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solarium tuberosum. PlantMol Biol, 1996, 32:831-848
    125 Glycine max(L.)Merr, in Response to Oxygen Concentration, Plant Physiol., 55, 1:102-107.
    126 Hayashi K T. Genetics Control for leaf photosynthesis in rice Oryza sativa L. Japan J Breed,1991, 27(13) :49-56
    127 Hiiusler PE, Kleines M, Uhrig H, Hirsch H-J, Smets H.Overecpression ofphosphoenolpyruvate carboxylase fromCorynebacterium glutamicum lowers the CO2 compensationpoint (F*)and enhances dark and light Respiration in transgenic potato. J EXP BOT ,1999,50(336) : 1231-1242
    128 Hirai A, Isshibashi T, Morikami A et al. Rice Chloroplast DNA:a physical map and the location of the genes for the large subunit of ribulose 1,5-bisphosphate Carboxylase and the 32 kb photosystem II reaction center protein. Theor Appl Genet, 1985, 70:117-122
    129 Hirao K. Evalution of the heterosis on leaf photosynthesis of remote-cross F1 rice(Oryza sativa L.). J of Agronomy & Crop Sci, 1995, 175(43:265-270
    130 Honda H, Akagi H, Shimada H. An isozyme of the NADPmalic enzyme ora CAM plant, Aloe arborescens, with variation on consdfvative amino acid residues. Gene, 2000, 243:85-92
    131 Hossain M A, Nakano Y, Asada K. Mono dehydrnascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate of scaveagering hydrogen peroxide. Plant Cell Physiol, 1984, 25:385
    132 Hudspeth RL, Grula W J, Dai Z, Edwards G, Ku MSB, Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco. Plant Physiol, 1992, 98:458-464
    133 Ishimaru K, Ichikawa H, Matsuoka M, Ohsugi R. Analysisof a C4 maize pyruvate, orthophosphate
    
    dikinase expressed inC3 transgenic. Arabidopsisplants, Plant Sci, 1997, 129:57-64
    134 Ishimaru K, Ohkawa Y, Ishige T, Tobias DJ, Ohsugi R. El-evated pyruvate, orthophosphate dikinase (PPDK) activityalters carbon metabolism in C3 transgenic potatoes with a C-maize PPDKgene. Physiol Plant, 1998, 103:340-346
    135 Jen-Hsien Weng, Ching-yih Chen. Photosynthetic ability, grain yield an an esterase band in rice genotypes. Euphytica, 1989, 42:265-268
    136 Katsu Imai and Yoshio Murata, 1979,Effect of Carbon Dioxide Concentration on Growth and Dry Matter Production of Crop Plans VII. Influence of Light Intensity and Temperature on The Effect of Carbon Dioxide enrichment in Some C, and C, Species. Japan.]our. Crop Sci., 48, 3: 409-417.
    137 Kenichi Hayashi, Takakazu Yamamoto and MasahirNakagahra, 1977, Genetic Control for Leaf Photosyn-thesis in Rice, Oryza sativa L., Japan. J. Breed.,27,1, 49-56.
    138 Kogami H, Shono M, Koike T, Yanagisawa S,Izui K, Sentoku N, Tanifuji S.Uchimiya H, TokiS. Molecular and physiological evaluation of transgenic tobacco plants express hysiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35 S promoter. Transgenic Research, 1994, 3:287-296
    139 Krenzer, E.G., and Moss, D.N., 1975, Carbon Dioxide Enrichment Effects Upon Yield and Yield Components in Wheat, Crop Sci., 15, 1. 71-74.
    140 Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H,level expression of maize phosphoenolpyruvate carboxylasein transgenic rice plants. Nature Biotech, 1999, 17:76-80
    141 Lawlor D W. Photosynthesis, productivity and environment [J]. J Exp Bot, 1995, 46 (special issue): 1449-1461.
    142 Lepiniec L, Keryer E, Philippe H, Gadal P, Cretin C. Sorghum phosphoenolpyruvate carboxylase gene family: structure.function and molecular evolution. Plant Mol Biol, 1993,(3) : 487-502
    143 IJanardhan K V, Murty K S, Rawlo S. Path coefficient analysis and heritability of photosynthetic rate and associated leaf chracters in rice varieties. Indian Journal of plant physiologoy, 1983, 26(2) : 168 176
    144 Magnin NC, Cooley BA, Reiskind JB, Bowes G. Regulation and localization of key enzymes during the induction of Kranz less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiology, 1997, 115(4) : 1681-1689
    145 Mann CC. Genetic engineers aim to soup up crop photosynthesis. Science, 1999, 283:314-316
    146 Mann G C. Genetic engineers aim to Soup up crop photosynthesis. Science, 1999b, 283:314-316
    147 Mario Thukasha Fukoshima, Kokichi Varietal Comparison on The Photosynthetic Rate and Leaf Water Different Soil Moisture Tensions in Rice, Japan. Jour. Breed., 1985,35, 2. 109-117.
    148 Marshall JS, Stubbs JD, Taylor WC. Two genes encode highly similar cholroplastic NADP-malic enzymes in Flaveria. Plant Physiol, 1996, 111:1251-1261
    149 MartyJF, Warwick B S, Allan TG, etal. Photosynthetic characteristics of three asparagus cultivars differing in yield[J]. Crop Sci, 1999, 39: 1070-1077.
    150 Matsuoka M, Minami E. Complete structure of gene for phosphoenolpyruvate carboxylase from maize. Eur J Biochem, 1989, 181:593-598
    151 Matsuoka M, Ozeki Y, Yamamoto N, Hirano H, Kano-Mur-akami Y, Tanaka Y. Primary structure of maize pyruvate orthosphate dikinase as deduced from cDNA sequence. J Biol Chem, 1988, 263:11080-11083
    152 Matsuoka M. The gene for pyruvate, orthophosphate dikinase in C4 plants: Structure, Regulation and
    
    Evolution. Plant Cell Physiol, 1995, 36 (6) : 937-943
    153 Matsuoka M., Molecular Engineering of C4 Photosynthesis, Annu. Rev. Plant Mol Biol 2001,52:297-314
    154 Maurice S B ku, Sakae Agarie, Mika Nomura et al. High-level expression of maize phosphoenolpyruvate carbboxylase in transgenie rice plants. Nature, 1999, 17:76-80
    155 Maurino VG, Drincovich MF, Andreo CS, NADP-malicen-zyme isoforms in maize leaves. Biochem Mol Biol 1ht, 1996,38 (2) : 239-250
    156 Murayama S, Miynzatv k, Nost A. Studies on matter Production of hybrid in rice. I. Heterosis in the single leaf photosynthetic rate. Japan J of Crop Sci, 1987, 56(2) : 198-203
    157 Murchie E H, Chen Y Z, Hubbart S, Peng S, Horton P. interaction between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiology, 1999,119:553-563
    158 Nelson, C. S., et al., Relationship of Leaf Photosynthesis to Forage Yeild of Tall Fescue.Crop Sci., 1975, 15,4:476-478.
    159 Nguyen Quoc Vong et al. ,1978, Studies On The Physiological Characteristics of C3 and C4, Crop Species.II: The Effects of Air Temperature and Solar Radia-tion On The Dry Matter Production of Some Crop,Japan. Jour. ,Sci. ,47, 1, 90-100.
    160 Ohno,Y., Varietal Differences of Photosynthetic Efficiency and Dry Matter Production of Indica Rice, Tech.Bull TARC, No.9, 1976
    161 Osmond CB, Bjorkman O, Anderson DJ. Physiological Processes in Plant Ecology. In Ecological Studies, Springer-Verlag,New York, 1980, 66-110
    162 Pcct, M. M., et al., 1977, Photosynthesis,Stomatal Resistance, and Enzyme Activities in Relation to Yield of Field grown Dry Bean Varieties,Crop Sci., 17, 2:287-293.
    163 Peng S, Cassman K G, Virmani S S, Sheely J and Khush G S. Yield potential Trends of tropical rice since the release of IR8 and the Challenge of increasing rice yield potential. Crop Sci, 1999, 39:1552-1559
    164 Peter Horton. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. Journal of Experiment Botany, 2000, 51:475-485
    165 Pettigrew W T, Meredith W R. Leaf gas exchange parameters vary among cotton genotypes [J]. Crop Sc4, 1991,34:
    166 Powles,S.B, Photoinhibition of Photosynthesis induced by Visible Light.Anu. Rev.Plant Physiol. , 1984,35:15-44
    167 Quebedeaux, B., and Chollet, R., 1977, Comparative Growth Analysis of Panicum species With Differing Rates of Photorespiration, Plant Physiol., 59,1,:42-44.
    168 Rajagopalan AV, Devi MT, Raghavendra AS. Molecular biology of C4 phosphoenolpyruvte carboxylase: structure, regu-lation and genetic engineering. Photosythesis Research, 1994,39 (2) : 115-135
    169 Richards R A. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 2000, 51:447-458
    170 Rosche E, WesthoffP. Genomic structure and expression of the pyruvate, orthophosphate dikinase gene of the dicotyledonous C, plantFlaveria trinervia (Asteraceae). Plant Mol Biol, 1995, 29 (4) : 663-678
    171 Rothermel BA, Nelson T. Primary structure of the maize NADPH-dependent malic enzyme. J Biol
    
    Che, 1989, 264 (33) :19587-19592
    172 Ryuichi Ishii and Yoshio Murata,Further Evidence in C3 Plant and Effects of Environmental Factors on It, Japan. Jour.Crop Sci. ,1978,47(4) :547-550
    173 Sharkey. T.D., Raschke, K., Separation and Measurement of Direct and Indirect Effects of Light on Stomata, Plant Physiol., 1981,68: 33--40.
    174 Sheen J. Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell, 1991, 3:225-245
    175 Sheriff A, Meyer H, Riedel E, Schmitt JM, Lapke C. The influence of plant pyruvate, orthophosphate dikinase on a C3 plant with respect to the intracellular location of the enzyme.Plant Science, 1998, 136(1) : 43-57
    176 Shigemi Akita and Ichiro Tanaka, 1979, Studies onThe Mechanism of Differences in Photosynthesis amog Species V. Stomatal Response in High Oxygen Concentration and Its Effect on The Rate of Apparent Photosynthesis, Japan. Your. Crop Sci., 48, 4,470-474.
    177 Shigesaburo Jsunoda. Photosynthetic efficiency in rice and wheat. Rice breeding (1RRI), 1972, 471-479
    178 Shouichi Yoshida, Physiological Aspects of Grain Yield, Annual Reviewof Plant Physiology, 1972, 23: 437-464
    179 Suzuki.S, Murai, N and Burnell, JN et al, Changes in photosynthetic carbon flow in transgenic rice plants that exprees C4-type phosphoenolpyruvate carboxylation from Urochloa panicoides , Plant Physiol, 2000,I24(I):163-172
    180 Tanabe M, Izui K, Toriyama K. Production and analysis of h'ansgenic C3-C4, intermediate Moricandia arvensis expressing a maize C, phosphoenolpytuvate carboxylase gene. Plant Bio technology, 2000, 17 (2) : 93-98
    181 Tausta SL, Nelson T. The root and leafisoforms of NADP-dependent malic enzyme are encoded by distinct genes. Maiza Genetics Cooperation Newsletter, 1997, 71:65-66
    182 WesthofTP, Svensson P, Ernst K, BlasingO Stockhaus J, Caemmerer S yon, Furvank RT Burscheidt J,Molecular evolution of C4 phosphoenolpyruvate carboxylase in the gunus Flaveria.Australian Plant Physiol, 1997,24(4) :429-436
    183 Yoji Takeoka, Kiyotaka Kondo, and Peter B. Kauf-man, 1983, Leaf Surface Fine-Structures in Rice Plants Cultured Under Shaded and Non-Shaded Conditions, Japan. Jour. Crop sci., 52,4: 534-543.
    184 Yoshio Murata, Dependence of Potential Pro-ductivity and Efficiency for Solar Energy Utiliza-tion on Leaf Photosynthetic Capacity in Crop Species, Japan. Jour. Crop Sci. 1981, 50, 2: 223-232.
    185 Zeiger, E., Field, C., Photo control of The Functional Coupling Between Photosynthesis and Stomatal Conductance in The Intact Leaf Blue Light and Par-Dependent Photosynstems in Guard Cells, Plant Physiol., 1982, 70, 2, 370-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700