水稻幼苗耐盐性的定量鉴定及耐盐生理生化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海南大学生物技术研究所一直致力于通过花粉管通道技术将耐盐或盐生植物总DNA导入农作物进行耐盐作物选育的工作,已经首次获得了能耐海水浇灌的耐盐番茄,通过相关研究已经证明外源DNA转入了番茄。本工作受国家教育部科技研究重点项目(地方02156)和国家海洋局耐海水浇灌的作物新种质培育研究项目(20094)资助。
     本研究工作分为三个部分:
     第一部分,建立水稻幼苗耐盐性的定量测定。通过在较低浓度的盐胁迫下,对海香稻14个农艺性状及生理生化指标的测定,发现海香稻在一定的盐浓度下(25mmol/L NaCl)具有最佳的生长状态。对于选定的浓度梯度,该盐度下的农艺性状及生理生化指标与其两侧的相比具有显著性,此时的盐浓度为水稻幼苗的最佳生长盐度。以此作为耐盐性定量测定的依据,选取了较为典型和容易测定的7个指标,建立了定量测定水稻幼苗耐盐性的方法,并用该法对其它四种水稻进行了耐盐性的定量鉴定,四种水稻的最适盐度依次为:US茉莉香20mmol/L、316B 15mmol/L、浓香16 15mmol/L和南341-糯12.5mmol/L。
     第二部分,外源脯氨酸和盐对水稻耐盐性的影响。通过在不同盐胁迫条件下施加不同浓度的脯氨酸,对其生理生化指标进行测定,结果表明,脯氨酸对水稻幼苗的生长有一定的抑制作用,但在最适生长盐度附近,两者产生互作,对水稻幼苗的根系发育有促进作用。25mmol/LNaCl与0.4g/L Pro互作时,其根长平均数分别是只含25mmol/LNaCl及0.48/L Pro的1.07和1.35倍。因此,脯氨酸对水稻耐盐性的影响决不仅是盐害情况下产生的积累或单纯是调渗物质,胁迫下植物体内增加的脯氨酸可能有其独特的作用,这有待于进一步的研究。
    
     第三部分,体外活性氧对水稻幼苗叶绿素的影响。实验发现,与以往的
    研究不同的是,短时间或剂量较小的活性氧处理可以促进高体的水稻幼苗叶
    绿素a向叶绿素b的转化,使叶绿素含量增加,表明活性氧有可能参与了叶
    绿素的合成。但是长时间和较大浓度的活性氧处理对离休叶绿素有破坏作用,
    活性氧的“角色”转化可能是盐胁迫信号传递的方式之一。
     上述工作对水稻耐盐机制的研究来说只是揭开了“冰山的一角”,还有大
    量艰苦的工作需要进一步深入地研究,随着科学技术的迅猛发展,植物耐盐
    机制的神秘面纱终将被揭开。
In the Institute of Biological Science and Technology of Hainan University, the pollen tube introduction method had been used to breed salt-tolerant crops with total DNA of halophytes or salt -tolerant plants. The salt-tolerant transformed tomato was firstly obtained and planted on the seashore beach and watered directly with full seawater. It was demonstrated that the introduction of total foreign DNA was successful through correlative researches.
    This thesis contains three parts. In the first part, the method for quantitative analysis on salt-tolerant property of rice seedling was established. The fourteen kinds of agronomic characters and other physiological and biochemical properties of rice seedlings of variety Haixiang Nol had been measured under lower salt concentration, which Was the most vegetal suitable for their growth. Under selected salt gradient, the tested agronomic characters and physiological and biochemical properties of Haixiang No 1 had a terribly prominent differentia than that of the adjacent area of salt gradient. The salt gradient was determined as a criterion of quantitative analysis on salt-tolerant properties of rice seedling. The method was established with seven properties, which was typical and easily got. With this method, the seedlings of four other rice varieties were analyzed quantitatively.
    The second part was the influences of foreign proline and salt on the salt-tolerance of rice seedlings. The agronomic characters and physiological and biochemical properties of the seedlings of Haixiang Nol had been measured under different salt and proline gradient. It was found that the rice seedlings were restrained by foreign proline However, when the seedlings growing under their optimum salt concentration, rroline promoted the development of the roots through the interaction between proline and salt. Therefore, besides as an accumulated substance or osmotic responsive to salt stress, the proline should have other functions, which needed to be studied further.
    The last part was the influences of foreign reactive oxygen species (ROS) on vitro chlorophyll of rice seedlings. It was found that ROS promoted the
    
    
    
    transformation from chlorophyll a to b and increased their contents, so they maybe participated in the chlorophyll synthesis. But when acted by higher concentrate and longer time, ROS spoiled chlorophyll. Perhaps, the switching role was one of the methods on the signals transferring of salt stress.
    These studies on the mechanism of rice saline tolerance were only a bit of ar iceberg, and there are a lot of painstaking efforts to do. With the rapid development of science and technology, the secret veiling of plant salt-tolerant mechanism would be unclosed.
引文
1.Moran JF, Becana M, Iturke-Onnaetxe Ⅰ, Frechilla S, Klucas RV, Aparico-Tejo P. Drought induces oxidative stress in pea plants, Planta. 1994,94:346-352
    2.吕庆,郑荣梁,干旱及活性氧引起的膜脂过氧化与脱酯化.中国科学(C辑),1996,26(1):26-30
    3.Davies WJ, zhang J. Root signal and the regulation of growth and development of plants in drying soil.Annu Rev Plant Physiol Plant Mol Boil, 1991,42:55-76
    4.Bush DS. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Boil, 1995,46:95-122
    5.Yahraus T, Xhandra L, Legendre L et al.Evidence for a mechanically induced oxidative burst. Plant Physiol, 1995,109:1259-1266
    6.Jabs T, Tschope M, Colling C et al .Elicitor-stimulated ion fluxes and O_2 from the oxidative burst are essential components in triggering defense gene acctiveation and phytoalexin synthesis in parsley. Proc Natl Acad USA, 1997,94:4800-4805
    7.李美茹,刘鸿先,王以柔,氯化镧对水稻幼苗耐冷性的影响.热带亚热带植物学报.,1997,5(4):62-64
    8.Roger RL. Pressure regulation of the electrical properties of growing Arabidopsis thaliana root hairs. Plant Physiol, 1996,112:1089-1100
    9.Xu JX, Li X, Zhang XY, et al. In: Lester P eds. Mitochondrial respiratory chain: A Self-defense system against oxygen toxicity. Proceedings of the international symposium on natural antioxidants: moleculer mechanism and health effects. Champaign, Illinois: AOCS Press. 1996,503-539
    10.赵云罡,徐建兴.线粒体,活性氧和细胞凋亡.生物化学与生物物理进展.2001,28(2):168-171
    11.赵骁,张霖,安国勇,高俊风,宋纯鹏.共聚焦显微技术研究ABA诱导蚕豆气孔保卫细胞H_2O_2的产生.实验生物学报.,2001,34(1):71-73
    12.Elaster, EF & W Osswald. Mechanism of oxygen activation during plant stress. Proceedings of Roral Socity of Edinburgh.,1994,10(B):131-154
    13.Foyer CH, Lelandais M, Klunert KJ. Photooxidative stress in plant. Physiol Plant, 1994, 92:696-717
    14.Asada K. The Water-Water Cyclein Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons Annu Rev Plant Physiol Plant Mol Biol, 1999,50:601-639
    15.廖祥儒,王越.叶绿体内活性氧产生及消除的酶系统.生命的化学.,2000,20(6):260-262
    
    
    16.Kyle DJ, Ohad Ⅰ, Arntzen CJ. Membrane protein damage and repair: Selective lose of quinine-protein function in chloroplast membrane. Pro Natl Acad Sci USA, 1984, 81:4070-4074
    17.Kyle DJ. The biochemical basis for photoinhibition of photosystem Ⅱ. Kyle DJ, Osmond CB, Arntzen CJ. Photoinhibition. Amsterdam: Elsevier, 1987, 197-226
    18.靳月华,陶大立.光系统Ⅱ的光抑制和超氧的产生.,植物学报.,2000,42(10):10-14
    19.Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins byradiolysis and by metal-catalyzed reactions. Ann Rev Biochem, 1993,62:797-821
    20.杨淑慎,高俊凤.活性氧、自由基与植物的衰老.西北植物学报.,2001,21(2):215-220
    21.陈由强,叶冰莹,朱锦懋等.水分胁迫对木麻黄小枝活性氧伤害的定量分析.生命科学研究.,2000,4(4):343-350
    22.刘晓麒,曹恩华.脂质过氧化引起的DNA损伤研究进展.生物化学与生物物理进展.,1994,21(3):218-222
    23.赵晨阳,郑荣梁,DNA氧化性损伤与端粒缩短.生物化学与生物物理进展.,2000,27(4):351-354
    24.von Zglinicki T, Saretzki G, Docke W, et al. Telomere length predicats the replicative capability of human fibmblasts. Proc Natl Acad Sci USA, 1992, 89(21): 10114-10118
    25.郭培国,李荣华,夜间高温胁迫对水稻叶片光合机构的影响。植物学报.,2000,42(7):673-678
    26.柯玉琴,潘廷国.NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响.植物生理学报.,1999,25(3):229-234
    27.Angelika F, Paul CB&Russell LJ. Enzymes that scavenge reactive oxygen species are down-regulated prior-induced programmed celldeath in barley aleurone. Plant Physiol, 2001,126:156-166
    28.Yeo A. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot, 1998, 49 (323): 915-929
    29.Dvorak J and Gorham J. Methodology of gene transfer by homologous recombination into Triticum tugidum: Transfer of K~+/Na~+ discrimination from T.aestivum. Genome, 1992, 35:639-646
    30.Rubio F, Gassmann W and Schroeder JI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995, 270:1660-1663
    31.Haro R, baneulos M A, Quintero F J, et al .Genetic basis of sodium exclusion
    
    and sodium tolerance in yeast. A model for plants. Physiol Plant, 1993,89:868-874
    32.Hayashi H, Alia ,Mustardy L, Deshnium P, Ida M, Murata N. Transfomation of Arabidopsis thaliana with the CodA gene for choline oxidase: accumulation of giycinebetaine and enhanced tolerance to salt and cold stress. Plant J.,1997,12:133-142
    33.郭岩,张莉,肖岗,曹守云,谷冬梅,陈受宜,甜菜碱脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.,中国科学(C辑),1997,27(2):151-155
    34.Petrusa LM and Winicol L. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaC1. Plant Physiol Biochem, 1997, 35:303-310
    35.Soussi M,Ocana A and Liuch C.Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Bot, 1998, 49 (325): 1329-1337
    36.Sanada Y, Veda H, Kuribayashi K et al. Novel light-dark change of proline levels in halophyte (Mesembryanthemum crystallinum L.) and glycophytes (Hordeum vulgare L. and Triticum aestivum L.) leaves and roots under salt stress. Plant Cell Physiol, 1995, 36 (6): 965-970
    37.Santa-Cruz A, Acosta M, Rus A et al. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem, 1999, 37(1):65-71
    38.Maurel C, Kado RT, Guern J et al. Phosphorylation regulates the water channel activity of the seed-specific aquaporin T-TIP. EMBO J, 1995, 14:3028-3035
    39.Zhang J-S, Xie C, Li Z-Y, Chen S-Y, Expression of the plasma membrane H~+-ATPase gene in response to salt stress in a rice salt tolorant mutant and its original variety. Theor Appl Genet, 1999,99:1006-1011
    40.Wolf B. Frommer, Uwe Ludewig, Doris Rentsch. Taking transgeniplants with a pinch of salt., Science, 1999,285:1222-1223
    41.Apse M P, Aharon G S, Snedden W A, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabdopsis.,Science, 1999, 285(5431): 1256-1258
    42.Nobuyuki Uozumi, Eugene J. Kim, Francisco Rubio, et al. The Arabidopsis HKT1 gene homolog mediates inward Na~+ currents in Xenopus laevis oocytes and Na~+ uptake in Saccharomyces cerevisiae.,Plant Physiol, 2000,122(4):1249-1260
    43.Hong-Xia Zhang and Eduardo Blumwald. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 2001,19:756-764
    44. Aha Rus, Shuji Yokoi, Altanbadralt sharkhuu et al. AtHKT1 is a salt tolerance
    
    determinant that controls Na~+ entry into plant roots. PNAS, 2001,98:14150-14155
    45.Hong-Xia Zhang, Joanna N. Hodson John P et al. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants withincreased vacuolar sodium accumulation. PNAS, 2002,99(6):4109-4114
    46.Mizoguchi T, Irie K, Hirayama T et al. A gene encoding a mitogen-activeed Protein kinase is induced simultaneously with genes for a mitogen-actived Protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsfs thaliana. PNAS, 1996, 93:756-769
    47.Alscher RG, Donahue JL., Reactive oxygen species and anti-oxidants: Relationship in green cells. Physiol Plant, 1997, 100:224-233
    48.赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报.,1999,16(5):540-546
    49.Shen B, Jensen R G, Bohnert H J. Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol, 1997,115:527-532
    50.田长恩,梁承邺.多胺对水稻CMS系极其保持系幼穗蛋白质、核酸和活性氧代谢的影响.植物生理学报.,1099 25(3):222-228
    51.吴珍龄,胡国权 王康.激动素(KT)对冷害稻苗的保护作用研究.西南农业大学学报.,1998,20(4):351-354
    52.Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot.,1989,39: 1097-1108
    53.Shen B, Jensen R G. Bohnert H J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol, 1997,113:1177-1183
    54.Alia, Drasad KVSK, Saradhi PD. Effect of zinc on free radicals and proline in Brassica and Cajanus. Phytochem, 1995,39:45-47
    55.蒋明义,郭邵川,张学明.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用.植物生理学报.,1997,41(3):347-352
    56.Drolet G, Dumbroff EB, Legge RL, Thompson JE. Radical scavenging properties of polyamines. Phytochemisty., 1986,25:367-371
    57.张木清,陈凯如,余松烈,水分胁迫下多胺代谢变化及其与抗旱性的关系.植物生理学报.,1996,22(3):327-332
    58.Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol. 1997,115 (1): 327-334
    
    
    59.Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought stress. In: Sato K, Murata N, eds. Stress Responses of Plotosynthetic Orgnaiisms. Amesterdam: Elsevier, 1998:.141-163
    60.Lingqiang M, Guan et al. Cis-elements and trans-factors that regulate expression of the maize Catl antioxidant gene in response to ABA and osmotic stress: H_2O_2 is the likely intermediary signaling molecule for the response. The Plant Journal, 2000,22(2): 87-95
    61.Chen ZX, Silva H, Klessig., Active oxygen species in the induction of plant systemic acquired-resistance by salicylic-acid., Science.,1993,262: 1883-1886
    62.Levin A, Tenhaken R, Dixon R et al.H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell,1994,79(5):583-593
    63.Tottempudi K et al, Plant cell,1994 6:65-74
    64.宁顺斌,宋运淳,王玲,李霞.盐胁迫诱导的植物细胞凋亡——植物抗盐的可能生理机制.实验生物学报.2000a,33(3):245-253
    65.宁顺斌,宋运淳,王玲,刘立华.药物诱导的玉米根尖细胞凋亡.植物学报.,2000b,42(7):693-696
    66.Budhi ST, Beatrice B& Alex L Oxidative Stress Increased Respiration and Generation of Reactive Oxygen Species, Resulting in ATP Depletion, Opening of Mitochondrial Permeability Transition, and Programmed Cell Death. Plant Physiol, April 2002, Vol. 128:1271-1281
    67.Ma YX, Ogino T, Kawabata T, et al. Cupric nitrilotriacetate-induced apoptosis in HL-60 cells association with lipid peroxidation, release of cytochrome c from mitochondria, and activation of caspase-3. Free Radic Biol Med, 1999,27(1/2):227-233
    68.Skulachev VP. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett, 1998,423(2):275-280[64] FinucaneDM, Wetzel EB, Waterhouse NJ, et al. Bax-induced caspase activation and apoptosis via cytochrome c release from miyochondria is inhibitable by Bcl-X_L. J Biol CHem, 1999,274(4):2225-2233
    69.Finucane DM, Wetzel EB, Waterhouse NJ, et al. Bax-induced caspase activation and apoptosis via cytochrome c release from miyochondria is inhibitable by Bcl-X_L. J Biol CHem, 1999,274(4):2225-2233
    70.Jabs T, Dietrich RA, dangl JL. Intiation of runaway cell death in an Arahidopsis mutant by extracelluar superoxide. Sci, 1996,273(2583):1853-1856
    
    
    71.Karbowski M, Kurono C, Wozniak M, et al. Free radical-induced megamitochondria formation and apoptosis. Free Radic Biol Wed, 1999,26(1/2):396-409
    72.Panavas T. Oxidative events during programmed cell death in dayliy petals. Plant physiol. 1997,114(3):suppl 298-312
    73.夏慧丽,陈皓明,吴逸等.羟自由基诱导烟草细胞凋亡.植物生理学报,1999,25(4):339-342
    74.Mittler R, Lam E, Shulaev V, et al. Singals controlling the expression of cytosolica scorbate peroxidase during pathogen induced programmed cell death in tabacco. Plant Mol Bio1,1999,39(5):1025-1035
    75.Brisson LF. Tenhaken R, Lamb C. Function of oxidative crosslinking of cell wall structural protein in plant disease resistance. Plant Cell, 1994, 6: 1703-1712
    76.林文生,王根轩.CO_2倍增对渗透胁迫下小麦叶片抗氧化酶类及细胞程序性死亡的影响.植物生理学报.,2000,26(5):453-457
    77.柯玉琴,潘廷国.鉴定水稻发芽种子成苗过程中耐盐性的NaCl琼脂固定法.植物生理学通讯.,2001,37(5):432-434
    78.Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein ulitizing the principle of protein-dye binding. Anal Biochem. 1976,72(1):248-254
    79.王韶唐主编.植物生理学实验指导,西安:陕西科学技术出版社,1987.149~151
    80.朱广廉,邓兴旺,左卫能.植物体内脯氨酸的测定.植物生理学通讯,1983,1:35-37
    81.林植芳,李双顺,林桂珠等.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系.植物学报,1984,26(6):605-615
    82.施教耐,吴敏贤,查静娟.植物磷酸烯醇式丙酮酸羧化酶的研究.植物生理学报.1979,5(3):225-235
    83.武宝轩,格林·托德.小麦幼苗中SOD酶活性与幼苗脱水忍耐力相关性的研究.植物学报,1985,27(2):152-160
    84.Droillard W J, Paulin A, Wassort J C. Free radical production, eatalase and r superoxide dismutase activities and membrane integrity during senescence of cut carnations. Physiologia Plantrum, 1987,71:197-202
    85.北京农业大学植物生物化学教研室主编.基础生物化学实验,1987,15-17
    86.杨敏文.快速测定植物叶片叶绿素含量方法的探讨.光谱实验室.2002.19(4):478-481
    87.苏正淑.几种测定植物叶绿素含量的方法比较.植物生理学讯,1989,25(5):77-78
    88.萧华山,何文锦,傅文庆等.一种用分光光度计检测氧自由基的新方法.生物化学与生物物理进展.1999 26(2):180-182
    
    
    89.Stewar CR, Lee JA. Therole of proline accumulation in halophytes. Planta, 1974:120-279
    90.Watad AA, Reinhold L, Lerner HR. Comparision between as table NaCl selected Nicotianacell lieand wild type. Plant Physiol, 1983,?3:624-632
    91.汤章城.逆境条件下植物脯氨酸累积及其可能的意义.植物生理学通讯,1984(1):15-21
    92.Hanson AD, Nelsen CE, Everson EH. Evalution of free proline accumulation as an index of drought resistance using two contrasting barley cultivars. Crop Sci,1977,17:720-734
    93.陈洁,林栖凤.植物耐盐生理及机制研究进展.海南大学学报(正印刷),2003,(2):
    94.陈少裕.膜脂过氧化与植物逆境胁迫.植物学通报,1989,6(4):211-217
    95.陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90
    96.赵可夫,植物抗盐生理.中国科学技术出版社,1993,160-162
    97.黄雪清,焦德茂.转C4光合酶基因水稻株系的抗光氧化特性.植物生理学报,2001,27(5):393-400
    98.林栖凤,李冠一.植物耐盐性研究进展,生物工程进展,2000,20(2),20
    99.生物统计学.科技出版社,1996,126-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700