转C4植物光合关键基因PEPC杨树的初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是我国重要的速生用材树种之一,用途广泛。磷酸烯醇式丙酮酸羧化酶基因(PEPC)是C4植物光合作用途径中的关键基因,利用PEPC基因开展杨树(C3植物)高光效基因工程研究具有重要的意义。
     本研究以转PEPC基因南林895杨(Populus×euramericana cv.‘Nanlin895’)为材料,将转基因植株与对照(未转基因杨树)在苗期生长、C4光合作用相关酶活性、光合作用相关参数等方面进行了初步的对比分析,为选育高光效转基因杨树新品种提供依据。主要研究结果如下:
     (1)转基因杨树的PEPCase活性比对照增加显著,最高达38.6%,而其他与C4光合作用相关的酶活性增加不明显;
     (2)转基因杨树表现出较强的对强光利用能力,其光饱和点比对照提高约10%~20%,饱和点时的光合速率比对照高;且光补偿点低于对照,表明转基因杨树利用弱光的能力较强;
     (3)转基因杨树CO_2饱和点与CO_2补偿点均较低;其光呼吸比对照减少,有利于光合形成有机物积累;羧化效率也较高,比对照增加最高达62.3%,表明转基因杨树利用CO_2的能力较强;
     (4)光氧化处理后,转基因杨树的PSⅡ原初光化学效率、PSⅡ实际光化学效率和光化学猝灭下降幅度比对照显著减少;而转基因植株的非光化学猝灭上升幅度比对照显著增加。表明转基因杨树具有较好的热耗散能力与耐光氧化能力。
Poplar is one of important timber species with fast-growing in China, and a wide range of uses. Phosphoenol pyruvate carboxylase (PEPC) plays a key role in C4 plant high efficiency photosynthesis. It is of a great significance to carry out poplar (C3 plants) high-efficiency genetic engineering research by use of C4 plants PEPC gene.
     In this study, Transgenic Poplar with PEPC gene for materials with the control transgenic plants (non-transgenic poplar) in the seedling growth, C4 photosynthesis-related activity, photosynthesis relevant parameters of a preliminary comparative analysis of high efficiency for selection of transgenic poplar provide the basis for new varieties. The main findings are as follows:
     (1)The enzymes in transgenic poplars related to C4 photosynthesis increased than the control, and PEPC activity increased significantly as high as 38.6 %.
     (2)Transgenic poplars have strong capacity for using high light intensity, and its light saturation point increased than the control by about 10% to 20%. The photosynthetic rates of transgenic poplars in light saturation point were higher than that of the control, and the light compensation points of transgenic poplars were lower than that of control.Also,the ability of transgenic poplars to use low light were stronger than the control.
     (3)CO_2 saturation point and CO_2 compensation point of transgenic poplars were lower than the control. The photorespiration of transgenic poplars was lower than that of control, which is favourable to photosynthetic formation and organics accumulation. In addition, the transgenic poplars had higher efficiency of carboxylation, the highest of which was higher than that of the control by 62.3 %, indicating that transgenic poplars have the ability to use more CO_2.
     (4)Photo-oxidation treatment, transgenic poplars original PSⅡphotochemical efficiency, PSⅡphotochemical efficiency and the actual decrease in photochemical quenching significantly reduced compared to the control; and transgenic plants increased the rate of non-photochemical quenching increased significantly than control.The show that the transgenic poplar with better heat dissipation capability and light oxidation.
引文
[1]潘瑞炽,董愚得.植物生理学(第二版)[M].北京:高等教育出版社,1993: 102~103.
    [2]Black C.C.. Photosynthetic carbon fixation in relation to net CO2 uptake[J]. Annu. Rev. Plant. Physiol., 1973,24: 253~286.
    [3]Brown R H, Bassett C L, Cameron R.G., Evans R.T., Bouton J.H., Black C.C., Sternbery L.D.and Denino M.J. Photosynthesis of F1 hybrids between Haveria brownii (C4 Like) and Haveria linearis (C3-C4) [J]. Plant Physiol, 1986, 82: 211~217.
    [4]Koltunow AM,Truettner J,CoxKH etal. Different temporal and spatial gene expression patterns occur during anther development [J]. Plant Cell, 1990, 2:1201~1224.
    [5] Ku MSB, Sakae A, Mika N, Hiroshi f, Hiroko T, Kazuko O, SakikoH, Seiichi T, Misue M, Makoto M. High- level expression of maize phosphoenopyruvate carboxylase in transgenic rice plants[J]. Nature Biotechnology, 1999, 17: 76~80.
    [6]焦德茂,李霞,黄雪清,迟伟,匡廷云,古森本.转PEPC基因水稻的光合CO2同化和叶绿素荧光特性[J].科学通报,2001, 46(5): 414~418.
    [7] Jiao D M, Huang X Q, Li X, Chi W, Kuang T Y, Zhang Q D, Ku S B M, Cho D G. Photosynthetic characteristics and tolerance to photooxidation of transgenic rice expressing C4 photosynthesis enzymes[J]. Photosynthesis Research, 2002, 72: 85~93.
    [8]李霞,焦德茂,戴传超,王守海,吴爽,李成荃.转育PEPC基因的杂交水稻的光合生理特性[J].作物学报,2001,21(2):137~142.
    [9] TsuchiyaT,ToriyamaK,EjiriS,etal. Molecular characterization of rice genes specifically expressed in the anther tapetum [J].Plant Mol Biol, 1994,26:1737~1746.
    [10] Ursin V M,Yaamaguchi J,Mc Cormick S . Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers [J].Plant Cell, 1989,1:727~736.
    [11] Hanson D D, Hamiton D A,Travis J L,etal. Characterization of apollen-specific cDNA clone from Zea ma ysandits expression [J].Plant Cell,1989,1:173~179.
    [12]张方,迟伟,金成哲,王强,张其德,吴乃虎.高粱C4型磷酸烯醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育[J] .科学通报,2003, 48(14):1542~1546.
    [13]陈绪清,张晓东,梁荣奇,张立全,杨凤萍,曹鸣庆.玉米C4型PEPC基因的分子克隆及其在小麦的转基因研究[J].科学通报, 2004, 49(19): 1976~1982.
    [14]凌丽俐,林宏辉,焦德茂.转PEPC基因水稻种质的稳定光合生理特性[J].作物学报,2006,32(4): 527~531.
    [15]闫新甫主编.转基因植物[M].北京科学出版社,2003;214-238.
    [16]朱素琴,季本华,焦德茂.外源C4二羧酸对转玉米PEPC基因水稻C4光合途径的促进作用[J].中国水稻科学, 2004 , 18 (4) :326~332.
    [17]焦德茂,刘蔚,周月兰.转玉米PEPC基因水稻的农艺性状及生理特性[J].江苏农业学报,2007,23 (2): 87~92.
    [18] Deminig-Adams B, Adams Ill W W. Photoprotection and other response of plants to high light stress[J]. Annual Review of Plant Physiology and Molecular Biology, 1992, 43: 599~626.
    [19] Krause G. H. Photoinhitition of photosynthesis. An evalution of damaging and protective mechanisms[J]. Physiologia Plantarum, 1988, 74: 566~574.
    [20] Long S P, Humphries S. Photoinhibition of photosynthesis in nature[J]. Annual Review of Plant Physiology and Molecular Biology, 1994, 45: 633~662.
    [21]李霞,焦德茂,戴传超.转PEPC基因水稻对光氧化逆境的响应[J].作物学报, 2005,31(4): 408~413.
    [22]黄雪清,焦德茂.转C4光合酶基因水稻株系的抗光氧化特性[J].植物生理学报,2002,27:393~400.
    [23] Hatch M.D., C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure, Biochim. Biophys,Acta, 1987, 895: 81~106.
    [24] Aoyaki K., and Bassham J.A., 1986, Appearance and accumulation of C4 carbon pathway enzymes in developing wheat leaves, Plant Physiol., 80: 334~340.
    [25] Brown R.H., Bassett C.L., Cameron R.G., Evans R.T., Bouton J.H., Black C.C., Sternbery L.D., and Denino M.J.Photosynthesis of F1 hybrids between Haveria brownii (C4 Like) and Haveria linearis (C3-C4), Plant Physiol, 1986, 82: 211~217.
    [26] Matsuaka M., Furbank R.T., Fukayama H., and Miyao M., Molecular engineering of C4 photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001,52: 297~314.
    [27] M atsuokaM , EM inam i. E u r [J]Biochem , 1989, 181: 593~597.
    [28] M atsuokaM , J Kyozuka, K Sh imamo to, et al. P lant J , 1994, 6: 311~319.
    [29] Magnin N.C., Cooley B.A., Reiskind J.B.and Bowes G. Regulation and localization of key enzymes during the induction of Kranz-less C4-type photosynthesis in Hydrilla verticilata, Plant Physiol.,1997,115: 1681~1689.
    [30] Casati P., Lara M.V., and Andreo C.S., 2000, Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submerged aquatic species, Plant Physiol., 123: 1611~1622.
    [31]陈根云叶济宇.草酰乙酸和苹果酸对菠菜叶片和完整叶绿体光合作用的影响[J].植物生理学报,2001,27:478~482.
    [32] Glackin C A, Grula J W. Organ-specific transcripts of different size and abundance derive from the same pyruvate, orthophosphate dikinase gene in maize. Proc Natl Acad Sci USA, 1990, 87(8): 3004~3008.
    [33] Matsuoka M. The gene for pyruvate, orthophosphate dikinase in C4 plants: Structure, regulation and evolution. Plant Cell Physiol, 1995, 36(6): 937~943.
    [34] Fukayama H, Tsuchida H, Agarie S, et al. Significant accumulation of C(4)-specific pyruvate, orthophosphate dikinase in a C(3)plant, rice. Plant Physiol, 2001, 127 (3): 1136~1146.
    [35]陈绪清张晓东梁荣奇张立全杨凤萍曹鸣庆,玉米C4型PEPC基因的分子克隆及其在小麦的转基因研究[J],科学通报, 2004,49(19):1976~1980.
    [37]何立斌李平向珣朝李季航张楷正.转玉米PEPC基因水稻的某些光合特性[J].植物生理学通讯,2005,41(4):461~463.
    [38]季本华,朱素琴,焦德茂.转玉米C4光合酶基因水稻株系中的光合C4微循环[J].作物学报, 2004, 30(6): 536~543.
    [39] Huang X.Q., Jiao D.M., Chi W., and Ku M.S.B.Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C4 genes, ZhiwuXuebao (Acta Botanica Sinica), 2002,44(4): 405~412.
    [40] Moore P . Evolution of photosynthetic pathways in flowering plants. Nature, 1982, 295 : 647-648.
    [41] Ku MSB , Kano- Murakami Y, Matsuoka M. Evolution and expression of C4 photosynthesis genes .Plant Physiol,1996,111:949~957.
    [42] Matsuaka M., Furbank R.T., Fukayama H., and Miyao M..Molecular engineering of C4 photosynthesis[J].Annu.Rev. Plant Physiol. Plant Mol. Biol., 2001, 52: 297-314.
    [43] Gonzalez D H , Iglesias A A , Andeo C S. On the regulation of phos-phoenolpyruvate carboxylase activity from maize leaves by L-malate :effect of pH[J]. Plant Physiol, 1984 ,116 :425~429.
    [44] Hatch M D , Slack C R. Pyruvate , Pi dikinase from leaves. In : Wood W A. Method in Enzymology. Vol. 42. New York : Academic Press Inc , 1975. 212~219.
    [45] Chen J Z (陈景治) , Chen D L (陈冬兰) , Shi J N (施教耐) .Comparison of some characteristics of NADP malic enzyme from sorghum and wheat leaves. Acta Phytophysiol Sin (植物生理学报) ,1981 , 7 (4) : 345~350. (in Chinese with English abstract)
    [46] Li B (李斌) , Chen D L (陈冬兰) , Shi J N (施教耐) . Purification and molecular properties of NADP dependent malate dehydrogenase from sorghum leaves. Acta Phytophysiol Sin (植物生理学报) ,1987 ,13 (2) : 113~121. (in Chinese with English abstract)
    [47] Wei J C (魏锦城) , Wang R L (王仁雷) , Cheng G Y (程光宇) .Studies on the kinetic properties of ribulose-1 ,5-biphosphate carboxylase from F1 hybrid rice. Acta Phytophysiol Sin (植物生理学报) ,1994 , 20 (1) : 55~60. (in Chinese with English abstract)
    [48] Kung S D ,Chollet R , Marsho T V. Crystallization and assay procedures of tobacco ribulose -1 ,5-bisphosphate carboxlase-oxygenase. In:Pietro A S. Method in Enzymology. Vol.69. New York : Academic Press Inc , 1980.326~335.
    [49] Schreiber U , Schliwa W, Biger U. Continuous recording of photochemical and nonphotochemical chlorophyⅡflorescence quenching with a new type of modulation fluoremeter. Photosynth Res , 1986 ,10 : 51~62.
    [50] Genty B , Briantais J M , Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyⅡfluorescence. Biochem Biophys Acta, 1989, 990 : 87~92.
    [51]许大全.光合作用“午睡”现象的生态、生理与生化[J].植物生理通讯,1990,(6):510.
    [52] Teng S(滕胜) , Qian Q(钱前) , Huang D-N(黄大年) .Advance inmolecular biology and genetic engineering of C4 photosynthesis pathway J Agric Biotechnol (农业生物技术学报) , 2001 , 9(2) : 198~201. (in Chinese with English abstract)
    [53] Magnin N C , Cooley B A , Reiskind J B , Bowes G. Regulation and localization of key enzymes during the induction of Kranzless , C4 typephotosynthesis in Hydrilla verticillate. Plant Physiol , 1997 , 115 (4) :1681~1689.
    [54] Li X(李霞) , Jiao D-M(焦德茂) .Transgenic rice overexpressing C4 photosynthetic genes and their application in breeding. Mol Plant Breed(分子植物育种) , 2005 , 3 (4) : 550~556 (in Chinese with English abstract)
    [55] Wang D-Z(王德正) , Jiao D-M(焦德茂) , Wu S(吴爽) , Li X(李霞) , Li L(李莉) , Chi W(迟伟) , Wang S-H(王守海) , Li C-Q(李成荃) , Luo Y-C (罗彦长) , Wang X-F (汪秀峰) .Breeding for parents of hybrid rice with maize PEPC gene. Sci Agric Sin (中国农业科学) , 2002 , 35(10) : 1165~1170. (in Chinese with English abstract)
    [56] Wang D-Z(王德正) , Chi W(迟伟) , Wang S-H(王守海) , Jiao D-M(焦德茂) , Wu S(吴爽) ,Li X(李霞) , Li C-Q(李成荃) , Zhang Y-H(张云华) , Luo Y-C(罗彦长). Characteristics of transgenic riceoverexpressing maize photosynthetic enzymes for breeding two line hybridrice1 Acta Agron Sin (作物学报) , 2004 , 30(3) : 248~252 . ( in Chinese with English abstract)
    [57] Jiao D M, Huang X Q , Li X, Chi W, Kuang T Y, Zhang Q-D , Ku SB M, Chao D G. Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes.Photosynthesis Res , 2002 , 72 : 85~93.
    [58]吴乃虎编著.基因工程原理(下册)(第二版)[M].北京科学出版社,2001:183~189.
    [59]贾虎森,李德全,韩亚琴.高等植物光合作用的光抑制研究进展[J].植物学通报,2000,17(3):218-224
    [60]陈文荣.植物光合作用的午睡现象[J].生物学教学,2002,27 (10):36.
    [61]郑淑霞,上官周平.8种阔叶树种叶片气体交换特征和叶绿素荧光特征比较[J].植物生态学报,2006,26(4):1080~1087.
    [62]马成仓,高玉葆,王金龙.等.内蒙古高原甘蒙锦鸡儿光合作用和水分代谢的生态适应性研究[J].植物生态学报,2004,28(3):306~311.
    [63]Nutbeam A R,Duffus C M,et al. Evidence for C4 photosynthesis in barley pericarp tissue.Biochemical and Biophysical Research Communication,1976,70:1198~1203.
    [64]Kogami H,Shono M,Koike T,et al. .physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter[J].Transgenic Research,1994,3:287~296.
    [65]Hudspeth RL,Grula WJ,DaiZ,Edwards G,et al..Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco [J].Plant Physiol,1992,98:458~464.
    [66]Gehlin J,Panstruga R,Smets H,et al.Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum[J].Plant Mol Biol,1996,32:831~848.
    [67]Cameron RG,Bassett CL,Bouton JH,et al..Transfer of C4 photosythetic character through hybridization of Flaveria species [J].Plant Physiol,1989,90:1538~1545
    [68]MatsuokaM,Ozeki Y,Yamamoto N,et al..Primary structure of maize pyruvate,orthophosphate dikinase as deduced from cDNA sequence[J].J Biol Chem,1988,263 ( 23 ):11080~11083.
    [69] Rothermel B A, Nelson T.Primary structure of the maize NADPH2 dependent malic enzyme [J].J Biol Chem,1989,264(33):19587~19592.
    [70]Hudspeth R L,GrulaW J,Dai Z,et al.Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco [J].Plant Physiol,1992,98:458~464.
    [71]Mann C.C.Genetic engineers aim to soup up crop photosynthesis [J].Science,1999,283:314~316.
    [72]Tanabe M.,Izui K..Production and analysis of transgenic C3~C4 intemediate Moricandia arvensis expressing a maize C4 phosphoenolpytuvate carboxylase gene [J].Plant Biotechnology, 2000,17(2):93~ 98.
    [73]Brown R.H.Bassett C.L.,Cameron R.G.,et al..Photosynthesis of F1 hybrids between C4 and C3~C4 species of Flaveria[J].Plant Physiol,1986,82(2) 11~21.
    [74]Ishimaru K, Ichikawa H, MatsuokaM, et al. Analysis of a C4 maize pyruvate, orthophosphate dikinase exp ressed in C3 transgenic arabidopsis plants[J]. Plant Sci,1997,129:57~64.
    [75]Ishimaru K, Ohkawa Y, Ishige T, et al. Elevated pyruvate, orthophosphate dikinase (PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene [J]. Physiol Plant, 1998, 103: 340~346.
    [76]ZHANG Fang,CHI Wei,WANG Qiang,et al..Molecular cloning of C4-specific PEPC gene of sorghumand its high levelexpression transgenic rice [J].Chinese Science Bulletin,2003,48(17):1835~1840.
    [77]Ku M.S.B,Cho D,Ranade U,et al..Photosynthetic performance of transgenic rice plants over expressing maize C4 photosynthesis enzymes [J].In:Sheehy J,Mitchell PL,Hardy B(eds) Redesign Rice Photosynthesis to Improve Yield,2000.193~204.Elsevier/ IRRI.
    [78]Sheriff A,Meyer H,Riedel E,et al..The influence of plant pyruvate,orthophosphate dikinase on a C3 plant with respect to the intracellular location of the enzyme[J].Plant Science,1998,136,(1):43~57.
    [79]Fukayama,Tuchida H,Onodera H,et al..Effect of high level expression of the maize pyruvate, orthophos- phate dikinase on photosythesis rate and nitrogen partitioning in transgenic rice plants[J].Jpn J Crop Sci,1999,68(supp2):80~81.
    [80]Matsuaka M.,Furbank R.T.,Fukayama H.,et al..Molecular engineering of C4 photosynthesis [J].Plant Mol. Biol,2001,52(5):297~314.
    [81]Honda H.,Akagi H.,Shimada H.,et al..An isozyme of the NADP-malic enzyme of a CAM plant,Aloe arborescens,with variation on consdfvative amino acid residues[J].Gene,2000,243:85~92.
    [82]Rikishi K.,Oquro H.,Samejima M.,et al..C4-like plants derived from a cross Atriplex rosea(C4)×Atriplex. Putula(C3)×Atriplex rosea[J].Japan J Breed,1988,38:397~408.
    [83]Takeuchi Y,Akagi H.,Kamasawa N.,et al..Aberrantchlorop lasts in transgenic rice plants expressing a high level of maize NADP-dependentmalic enzyme[J].Planta,2000,211:265~274.
    [84]Li Y SH, Li D M, Zhu Y G. Progresses of Molecular Biology for Super High Yield in Rice .Research of Agricultural Modernization,2001,22 (5):283~288.
    [85]Uemura K,Miyachi S.Ribulose 1,5-2 bisphosphate carboxylase /oxygenase from thermalphilic red algae with a strong specificity for CO2 fixation[J].Biochem Biophys Re Comm,1997,233 (2) :568~571.
    [86]Matsuoka M,Minami E.Comp lete structure of gene for phosphoenolpyruvate carboxylase from maize[J].Eur J Biochem, 1989,181:593~598.
    [87]Fukayama H,Tsuchida H,Agarie S,et al. Significant accumulation of C4-specific pyruvate,orthophosphate dikinase in a C3 plant rice[J].Plant Physiol,2001,127(3):1136~1146.
    [88]Stachel S E.Nerster E W.Zambryski P C.A plant cell factor induces Agrobacterium tumefaciens vir gene expression[J].Proc Natl Acad Sci.USA.1986,83(2):379~383.
    [89]Moore G A..Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants[J].Plant Cell Report, 1992,11:238~242.
    [90]Fedina I S,Popova A V. Photosynthesis,photorespiration and proline accumulation in water- stressed pea leaves[J].Photosynthetica,1996,32(2):213~220.
    [91]李丽莎.杨树光合特异性启动子克隆与转PEPC基因研究[C].南京林业大学研究生硕士学位论文,2007.
    [92]Confalonieri M,et al..Genetic transformation of populus nigra by Agrobacterium tumefaciens[J].Plant Cell Reports,1994,13:256~261.
    [93]Holforld P,Hemandez N.Factors influencing the efficiency of T-DNA transfer during cocultivation of Anturrhium majus with Agrobacterium tumefaciens[J].Plant Cell Rep,1992.11:196~199.
    [94]Gallardo et al. Expression of a conifer glutamine synthetase gene in transgenic poplars [J].Planta,1999, 210:19~26.
    [95]Lep iniec L, Keryer E,Philippe H,et al..Sorghum phosphoenolpyruvate carboxylase gene family:structure, function and molecular evolution[J].PlantMo1 Biol,1993, 21: 487~502.
    [96]MatsuokaM.Structure,genetic mapping,and expression of the gene for pyruvate, orthophosphate dikinase from maize[J].J Biol Chem,1990, 265 (28):16772~16777.
    [97]Gehlin J,Panstruga R,Smets H,et al..Effects of altered phosphenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum[J].PlantMol Biol,1996,32:831~848.
    [98]Tsuchida H,Tamai T,Fukayama H,et al..High level expression of C4 specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth of a C3 plant,rice[J].Plant Cell Physiol,2001,42:138~145.
    [99]James RR.Difazio SP,Brunner Am,et al..Environmental effects of genetically engineered woody biomass crops[J].Biomass and Bioenergy,1998,14(4):403~414.
    [100]Reiskind J.B.,Madsen T.V.,Van Ginkel L.C. et al..Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla,a submersed monocot[J].Plant,Cell& Environment,1997,20(2):211~220.
    [101]James R.R.,Croft B.A.,and Strauss S. H..Susceptibility of the cottonwood leaf beetle (Coleoptera: Chrysomelidae) to different strains and transgenic toxin of Bacillus thuringiensis [J].Environmental Entomology,1999 ,28(1):108~115.
    [102]Confalonieri M,et al..Factors affecting Agrobacterium tumefaciens-mediated transformation in several black poplar clones [J].Plant Cell Tissus Organ Culture,1995,43:215~222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700