优化人α-突触核蛋白核酸疫苗免疫MPTP帕金森病小鼠的神经保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     帕金森病(Parkinson’s disease,PD)是第二个最常见的神经系统变性疾病, 65岁以上人口中的患病率超过1%以上。关注占全国人口10%的60岁以上老年人的健康是个不容忽视的问题。
     帕金森病的主要病理性标志物是黑质区出现异常聚集的α-突触核蛋白(alpha-synuclein,α-syn)为主要成分的Lewy小体。α-syn异常聚集参与了PD多巴胺能神经元的变性过程。在家族性和散发性PD的发病机制中,α-syn的异常聚集起到了重要的作用。帕金森病目前尚无根本治疗方法,针对α-syn的疫苗是治疗PD的新方法。近年来,核酸疫苗在退行性病变的防治中显示出诱人的前景。我们课题组前期实验成功地构建了人α-syn(hα-syn)核酸疫苗,并在哺乳动物体内表达,观察到hα-syn核酸疫苗治疗MPTP慢性帕金森病模型小鼠取得了较好的疗效。为了提高核酸疫苗的免疫效果,并对核酸疫苗的神经保护作用机制进行探讨,我们欲对该疫苗作进一步的优化,以期为帕金森病的临床防治提供实验基础和理论依据。
     α-syn由大量无序的异构体组成,呈现为非紧密的混合体。自然状态下,α-syn是一种富含疏水区域的天然伸展的蛋白质。其氨基端(1~60)包含四个不完全重复序列,易形成两性螺旋。NAC区(61~95)为中心区,是α-syn序列中疏水性最强的一段。羧基端(96~140)富含酸性氨基酸,如脯氨酸,带有大量负电荷,与正常状态下α-syn保持无规则卷曲状态有关。a-syn蛋白中的这三种结构域是否具有不同的免疫效价?对疫苗的神经免疫防护效果是否有不同的影响?因此对α-syn蛋白结构和功能的了解,会对核酸疫苗的优化构建,以及疫苗的免疫效果造成重要的影响。
     我们初期研究中,尽管发现核酸疫苗免疫治疗MPTP慢性帕金森病模型小鼠取得了一定的效果。但是,由于α-syn分子量仅14kD,只有140个氨基酸残基组成的小分子蛋白质。因α-syn分子量小,免疫活性弱,需要较大剂量才能诱导足够的免疫效应。Ig Kappa链信号肽(Ig ksp)可使细胞内hα-syn向细胞外移动,增加hα-syn的分泌能力,必将会有助于抗体效价的提高,促使更多的异常聚集的α-syn蛋白被降解和清除。因此,在hα-syn基础之上增加小鼠Ig ksp基因序列,构建高效分泌型hα-syn真核表达载体,增强免疫治疗效果,提升疫苗的安全性,成为了我们深入研究的重点内容。
     异常聚集的α-syn可以通过泛素蛋白酶体系统和溶酶体途径降解和清除。在PD发病中,α-syn的降解通路受损可引起α-syn的异常聚集,形成Lewy小体。若使用蛋白酶体抑制剂抑制酶的活性,可产生剂量依赖性选择性多巴胺(Dopamine,DA)神经元死亡。在清除α-syn的积聚和降解过程中,溶酶体也发挥了重要作用。对于α-syn寡聚体介导的毒性,溶酶体降解通路是一个重要的保护机制。Masliah等发现,使用重组hα-syn接种hα-syn转基因小鼠,产生的抗体可通过溶酶体途径清除α-syn,减少α-syn在DA能神经元胞体和突触的聚集。优化构建的hα-syn核酸疫苗是否也可通过增加异常聚集的α-syn降解清除来发挥神经保护作用?抗原与抗体结合后,是否必定要通过溶酶体或/和蛋白酶体途径代谢分解?它们的分解代谢特点是什么?需要作进一步的研究。
     免疫炎症反应与PD的发病机理有着密切的关系,帕金森病可以说是一个动态的炎症变化过程。小胶质细胞(microglia,MI)被激活,大量增殖是中枢神经系统疾病炎症反应的一个最重要表现。黑质内MI被激活,特别是吞噬了异常聚集的α-syn之后可被持续激活,引起DA能神经元变性,导致帕金森病发生。MI被激活、增殖,可产生炎症细胞因子,如α-肿瘤坏死因子、活性氧簇、白细胞介素-1β、白细胞介素-6等。炎症细胞因子反过来又可加剧MI的激活,共同参与脑局部炎症过程。因此在PD的病理生理过程中,炎症发挥了重要作用。优化核酸疫苗对神经细胞起到保护作用,那么核酸疫苗对PD病理过程中的炎症反应会产生哪些影响?在优化核酸疫苗免疫治疗过程中,对MI活性和炎症反应的调节情况如何?对这些问题的深入了解,将有助于我们对核酸疫苗的治疗作用和神经保护机制的理解。
     研究目的
     根据α-syn结构中折叠的特点,构建三种高分泌表达型hα-syn蛋白的优化核酸疫苗;通过接种MPTP慢性PD模型小鼠,观察核酸疫苗的防治效果和神经保护作用,并对其作用机制进行探讨。本实验的主要内容包括:①将扩增出的人α-syn(1-140)基因、α-syn(84-140)基因、α-syn(34-140)基因与Ig ksp基因克隆到质粒pVAX1上,优化构建成三种重组质粒。在哺乳动物细胞中表达并鉴定其生物学活性;②观察三组疫苗诱导体液免疫的效果、不同特点和免疫特异性;③大量制备三种优化核酸疫苗接种PD小鼠模型,观察三种疫苗的神经保护作用以及对溶酶体功能的影响,炎症反应的影响和调控等;④将微量溶酶体抑制剂与蛋白酶体抑制剂,通过脑立体定向技术注射中脑黑质区以阻断α-syn的降解通路,观察溶酶体抑制剂不同剂量、不同时间段对DA神经元功能的影响和小鼠行为学改变特点;⑤溶酶体和蛋白酶体通路阻滞对核酸疫苗免疫保护作用的影响,运用免疫组化等技术,了解hα-syn核酸疫苗诱导特异性神经保护性免疫所产生的抗体,降解清除过表达α-syn,阻抑PD的病理进程的机制。
     方法
     1.三种重组质粒的优化构建和表达
     从重组质粒中扩增人α-syn1-140、84-140、34-140基因,根据已知序列合成Ig ksp基因;将上述融合基因序列克隆到质粒pVAX1上,构建成三组重组质粒:A组(pVAX1-Igk-hαS1-140)重组质粒;B组pVAX1-Igk-hαS84-140)重组质粒;C组pVAX1-Igk-hαS34-140)重组质粒。进行限制性内切酶酶切分析和DNA测序鉴定。转化大肠杆菌DH5α,抽提质粒后转染COS-7细胞,用Western Blot法检测其生物学活性。
     2.重组质粒对体液免疫的诱导
     分别用A、B、C三种优化核酸疫苗、空质粒pVAX1免疫正常的C57/BL小鼠。采用股四头肌肉注射,100μg/只/次,每三周加强免疫一次,共免疫5次。在每次免疫后二周各采血一次,分离血清用于抗体测定。并用免疫后的小鼠血清和能表达α-syn的小鼠脑组织行免疫组化反应及中和反应,观察免疫血清抗体的特异性。
     3.观察优化核酸疫苗免疫防治的神经保护作用
     正常C57/BL小鼠注射MPTP 25mg/kg·d,每周2次,共10次,建立MPTP慢性PD小鼠动物模型。建模成功后分别接种三种优化核酸疫苗。观察免疫治疗小鼠模型行为学改变特点,DA细胞酪氨酸羟化酶(TH)和α-syn蛋白表达水平;并且检测免疫保护作用后的炎性反应,以及了解对溶酶体组织蛋白酶D (Cathepsin D,Cath D)活性的影响。
     4.观察溶酶体和蛋白酶体抑制剂对正常小鼠DA神经元作用特点于小鼠右侧中脑黑质(SN)区,分别立体定向微量注射不同剂量溶酶体抑制剂磷酸氯喹溶剂,或者蛋白酶体抑制剂。观察阿朴吗啡(apomorphine,APO)诱导的小鼠旋转行为改变以及行为学变化;于溶酶体抑制剂注射后不同时间段,检测小鼠黑质区TH阳性细胞数、α-syn和Cath D表达水平。
     5.探讨溶酶体和蛋白酶体通道阻滞后,核酸疫苗对α-syn降解和清除的影响
     同上方法建立慢性模型成功后接种优化核酸疫苗pVAX1-Igk-hαS1-140,共3次。于第三次接种的前三天,小鼠右侧SN区,分别立体定向微量注射溶酶体抑制剂或蛋白酶体抑制剂。检测通道阻滞后,小鼠SN区TH和细胞核形态学的变化,了解对细胞凋亡的影响。
     结果
     1.重组质粒pVAX1-Igk-hαS1-140、pVAX1-Igk-hαS84-140、pVAX1-Igk-hαS34-140的成功优化构建和表达
     成功扩增了hα-syn1-140、84-140、34-140基因,并合成了Ig ksp基因。分别将两者的融合基因克隆到表达载体pVAX1上,经酶切分析和DNA测序证明三组重组质粒的大小、方向和序列完全正确,成功构建了三种重组质粒。经Western blot检测具有较好的生物学活性。
     2.重组质粒诱导的体液免疫
     大量制备A、B、C三种重组质粒和空质粒pVAX1。重组质粒免疫动物后产生了较高的抗体滴度,pVAX1-Igk-hαS1-140为(3.76±0.33)×103、pVAX1-Igk-hαS84-140为(3.87±0.12)×103、pVAX1-Igk-hαS34-140为(3.79±.022)×103,三组之间差异没有显著性意义(p>0.05),与空质粒pVAX1(0.09±0.01)×103组相比,差异有显著意义(p<0.05)。重组质粒免疫小鼠的血清能与α-syn过表达小鼠的脑组织发生特异性免疫组化反应,被α-syn蛋白中和的血清则不发生反应。
     3.核酸疫苗免疫保护作用的观察
     与空质粒pVAX1组比较,三种优化核酸疫苗均可以提高小鼠的爬杆能力,提高TH细胞数目达60-65%,减少α-syn表达量44-47%,增加Cath D表达量46-50%,差异均有显著性(P<0.05),但三组疫苗之间上述检测指标差异没有显著性(P>0.O5)。三组核酸疫苗与PBS对照组相比,TNF-α表达量减少27-55%(P<0.05)。B组、C组与A组相比,差异亦有有显著性(p<0.05),显示B组、C组安全性更高。
     4.溶酶体和蛋白酶体抑制剂对正常小鼠多巴胺神经元的作用特点
     ①溶酶体抑制剂只有在400μmol/L浓度时才可出现较明显的由药物诱发的旋转行为,7-8次/分。而蛋白酶体抑制剂组小鼠清醒后即出现明显的旋转行为,甚至不需要药物就可自发出现旋转症状;②毁损侧与黑质区内TH阳性细胞数目正常相比有明显的不同程度减少。脑立体定向注射后的第三周内可以观察到,随着溶酶体剂量25μmol/L~400μmol/L增加,DA神经元的损害程度呈正比例上升。从溶酶体100μmol/L立体定向注射一周到四周可以观察到,多巴胺的数量随时间逐渐恢复。③毁损侧与正常黑质区比较,Cath D阳性细胞数目存在不同程度的明显减少。注射溶酶体25μmol/L~400μmol/L的第三周内,Cath D阳性数量随剂量的增加而明显减少,同时TH损害程度也增加。而且Cath D阳性细胞数与TH阳性细胞数成正比,Cath D阳性表达量与TH损害程度呈正比例关系。
     5.α-syn降解通道阻滞后,核酸疫苗的作用特点
     当α-syn降解通道阻滞后,与未注射侧相比,溶酶体抑制剂损害较轻,蛋白酶体抑制剂损害略重,溶酶体加蛋白酶体抑制剂相对损害较重,但是在注射局部仍然有TH阳性数目的表达。TH与Hoechst荧光染色显示,抑制剂组小鼠脑黑质部位有大量阳性细胞核固缩呈不规则形,核碎裂,部分裂解为多个凋亡小体。各组小鼠中脑黑质核形态中可以看出,与未注射侧的核形态,PBS组与它没有明显区别。与未注射侧相比,溶酶体抑制剂损害较轻,蛋白酶体抑制剂损害略重,溶酶体加蛋白酶体抑制剂相对损害较重。
     结论
     1.成功优化构建了三组真核表达质粒并具有较好的生物学活性。
     2.三组核酸疫苗免疫小鼠均产生了较高的抗体滴度,并且具有抗α-syn特异性。
     3.三组核酸疫苗免疫均可减少慢性PD小鼠模型脑内异常聚积的α-syn表达,改善溶酶体的功能,阻扰MI激活所致前炎症因子的释放,从而减轻神经毒素对神经细胞的损害作用。并且pVAX1-Igk-hαS84-140与pVAX1-Igk-hαS34-140核酸疫苗可能具有更安全的免疫效果。
     4.溶酶体和蛋白酶体抑制剂对正常小鼠DA神经元有损害作用,但两种抑制剂的损害具有不同的作用特点。溶酶体抑制剂对DA神经元的损害具有剂量和时间依赖性。DA神经元损害程度与Cath D的活性呈正相关。单侧溶酶体抑制剂损伤小鼠,注射APO可以诱导出旋转行为,但是没有蛋白酶体明显。
     5.核酸疫苗可能通过其它的降解清除途径,具有一定的拮抗溶酶抑制剂和蛋白酶体抑制剂对多巴胺神经元损害的作用,可减少细胞凋亡,对神经元起到保护作用。
Backgound
     Parkinson's disease (PD) is the second most common neurodegenerative disease, which affects over 65 years old among more than 1% of the population. It’s can’t be ignored which concerned about the health of the elder of more than 60 years making up about 10% of total population.
     The major pathological markers of PD is the abnormal accumulation ofα-synuclein (α-syn) in substantia nigra(SN) as the main component of Lewy bodies. Abnormalα-syn aggregation in PD involved in dopaminergic (DA) neuron degeneration process, and abnormal accumulation ofα-syn in familial and sporadic PD pathogenesis has played an important role. So far a fundamental treatment hasn’t been found for the PD. In recent years, the DNA vaccine in the prevention and treatment of degenerative diseases show attractive prospects. Our research’s pre-experiment successfully constructed a humanα-syn DNA vaccine which experimented on mammals, and obverted thatα-syn DNA vaccine can obtain a better effect on chronic MPTP mouse PD model. Therefore, further optimization of vaccine to improve performance, as well as the protection mechanisms of neurons will be a focus on research.
     In the natural state, a-syn conformation consists of a large number of disordered non-closed to the isomer mixture, is riches in hydrophobic region of natural extension protein: N-terminal (1~60), it contains four incomplete repeats, which are easy to form spiral amphoteric alone. NAC area (61~95), which is a sequence of a-syn in the strongest of hydrophobic section; Carboxy-terminal (96~140), which is rich in acidic amino acids such as proline, with large number of negative charge, and maintain a-syn to a random coil in the normal state. So do these three structures have different immune potency? Do they have an impact on the different immunization? It remains our exploration and study.
     At the early stage of our research, in spite of hα-syn DNA vaccine immunotherapy to chronic MPTP mouse PD model has achieved successfully. However,α-syn is the molecular weight of 14kD, containing 140 amino acid residues which composed of small molecule protein, because ofα-syn covers small molecular weight, as well as immunological activity of the weak, all those made it needs a larger quantity inducing a sufficient immune response. Ig Kappa chain signal peptide (Ig ksp) can increased the movement from the intracellular to the extracellular cell of hα-syn, and increased secretion capacity, it will contribute to the improvement of antibody titer to degrade and remove more abnormalα-syn protein. Therefore, add mouse Ig ksp gene sequence based on hα-syn, building a highly efficient secretion of hα-syn-based eukaryotic expression vector, and enhancing the effect of immunotherapy, increasing the safety of vaccines, those is the key research project.
     The study clearly shows that the abnormalα-syn aggregation can be degraded by ubiquitin-proteasome system, as well as lysosomal degradations.The block ofα-syn pathway of degradation may lead to an abnormalα-syn aggregation to result in the formation of Lewy bodies. The application of protease inhibitors which inhibit proteasome activity can produce dose-dependent selective death of DA neurons. Lysosome also plays a key role in the process ofα-syn degradation. The Lysosomal pathway is a major protective mechanism againstα-syn oligomer-mediated toxicity, and lysosomal degradation pathway could remove the accumulation ofα-syn. Masliah found that the recombinant hα-syn immunized the hα-syn transgenic mice produced the antibody againstα-syn that can be removed by means of lysosomal pathway, will decrease the aggregation ofα-syn in DA neuron cell body and synapse. Does the optimization of hα-syn DNA vaccine can play a neuroprotective effect by increasing the degradation of abnormal accumulation ofα-syn? The combination of antigen and antibody bound to catabolism through the lysosomal pathway and UPS? It also needs a further study.
     The Immune inflammatory response links closely to the pathogenesis of PD. So PD can be considered to be a dynamic process of imflammation change. The activation and proliferation of MI is the most important embodiments of central nervous system (CNS) response. The activation of MI in SN can be sustained by the abnormalα-syn, which would contribute to the degeneration of DA neurons and finally lead to the occurrence of PD. The activatation and proliferation of MI can induce inflammatory cytokines, such asα-tumor necrosis factor (TNF-α), reactive oxygen species, IL-1β, IL-6, etc. Conversely, the inflammatory cytokines can exacerbate the activation of MI, which involve in the process of brain inflammation. For this reason, the inflammation acts a main role in the pathophysiology of PD process. If the DNA vaccine palys a role in the protection of neurons, what is the impact imposed by the inflammatory characterisctis in PD pathology? We will get a better understanding of the mechanism of vaccine if we have the clarification of the process of the activated MI and the regulation of inflammatory response.
     Research purposes
     According to the folding feature of a-syn, we construct the three groups of the optimized high secreted human alpha-synuclein DNA vaccine and immunize the chronic MPTP mouse PD model, to observe the neurological effects of immune protection, and explore the role of mechanisms. The main contents including:①Amplified humanα-syn 1-140、84-140、34-140 gene with the Ig ksp gene is cloned into the plasmid pVAX1, get the three groups of the recombinant plasmid,then expression in mammalian cells and identification of its biological activity;②Observe the effectiveness of immunization,the specificity and different characteristics of immunization;③Immunize the mouse model of PD, observe the neuroprotective effect ,lysosomal function, the effects of inflammatory response and regulation after immunization in the process of PD;④Observe the effect of Proteasome inhibitors and lysosome inhibitors on DA neurons in normal mice by stereotactic brain injection into SN in order to blockα-syn degradation pathway, observe the different doses and time of lysosomal inhibitors for the characteristics of behavior,TH,Cath D on the DA neurons ;⑤Observe the lysosome and the proteasome on the role of the hα-syn DNA vaccine-induced protection of neuron-specific antibodies generated by immunization, the characteristic of degrading and removing the overexpression ofα-syn or the characteristic of apoptosis.
     Methods
     1. The construction and expression of recombinant plasmid. Amplify the gene ofα-syn 1-140、84-140、34-140 from the recombinant plasmid in human and synthesize the sequence Ig ksp,then the two fusion gene will be cloned into plasmid pVAX1 to construct the three groups of recombinant plasmid namely, A group is pVAX1-Igk-hαS1-140; B group is pVAX1-Igk-hαS84-140; C group is pVAX1-Igk-hαS34-140.Restriction endonuclease digestion analysis and DNA sequencing.Transfer the recombinant plasmid into E.coliDH5α, extract the plasmid and transfecte COS-7 cells to assay its biological activity using Western blot.
     2. The activity of recombinant plasmid induced humoral immune We use the recombinant plasmid A, B, C of optimized DNA vaccines immunize the healthy C57/BL mice in the musculus quadriceps, every time 100μg/100ul, every three weeks to strengthen the immunity, totally five times. Take those mice blood before the first of immunization and two weeks after immunization; separate the serum for antibody determination. Immune mouse blood serum and the expression of mouseα-syn brain tissue neutralization reaction are used in order to observe immune serum’s specificity.
     3. Observe the neuroprotective effect optimizated DNA vaccine. C57BL mouse is injected MPTP twice every week, totally 10 times in order to the establishment of MPTP chronic mouse PD model; immunize three groups of vaccines. Observate the number of DA TH cell and the expression levels ofα-syn, the inflammatory reaction as well as the lysosome cathepsin D.
     4. Observation the characteristics of lysosome and proteasome inhibitors on DA neurons in health mice stereotactic injection into the right SN with different doses of lysosome inhibitor chloroquine phosphate(CQP), as well as the proteasome inhibitor MG-132.Observate the apomorphine(APO)-induced rotational behavior change; detecte the number of SN TH positive cells , the levels ofα-syn expression and cath D changes in different time periods after injection of lysosome inhibitors or proteasome inhibitors.
     5. Explore the vaccine’s influence to the degradation and elimination of a-syn after the block of the lysosome and the proteasome pathway C57BL mouse is injected with MPTP, 25mg/kg?d,twice every week, totally 10 times. Immunize the the chronic MPTP PD mouse with the vaccine of pVAX1-Igk-hαS1-140.Three days before the third immunization, stereotactic micro-injection into the right SN with 100μmol/L lysosome inhibitors and proteasome inhibitor. Detecte the SN TH, cell morphological changes and the impact on apoptosis
     Results
     1. Construction and expression of recombinant plasmidsΑ-syn 1-140, 84-140, 34-140 genes are amplified successfully, and Ig ksp gene is synthesized and the fused gene of the two is cloned into the pVAX1. The size, direction and sequence were completely correct with endonuclease digestion analysis and DNA sequencing.The recombinant plasmids are constructed successfully, and expressed effectively in mammalian cells COS-7with better biological activity.
     2. The induction of humoral immunity by recombinant plasmids
     Three recombinant plasmids and empty plasmid pVAX1 are preparated largescally. A higher antibody titer was produced in animals, pVAX1-Igk-hαS1-140:(3.76±0.33)×103,pVAX1-Igk-hαS84-140:(3.87±0.12)×103,pVAX1-Igk-hαS34-140:(3.79±0.22)×103. There was no obvious differences between them (p>0.05), while compared to empty plasmid (p<0.05). The minimized serum can generate immunohistochemical reaction with mouse brain tissue over-expressedα-syn.
     3. Observe the protective effect of immunity by DNA vaccine Compare with empty plasmid, three vaccines elevate the ability of crawling pole, elevate TH-positive cells to 60-65%,diminute a-syn to 44-47%, and augmente Cath D 46-50%(p>0.05).Compared with PBS,the TNF-a decrease 27-55% (P<0.05). B、C vaccine show the higher safety.
     4. observe the characteristics of lysosome, proteasome inhibitors effect on DA neurons in healthy mice .(1) there have rotational behaviors 1 or 2 times occasionally below the 200μmol / L of lysosome inhibitor.More pronounced rotary behavior was shown in only 400μmol / L group. There is significant difference between proteasome inhibitor and 400μmol / L lysosome inhibitor group. Rotational behavior is shown in proteasome inhibitor group after the analepsia even needn’t APO, while lysosome inhibition group needed it. (2)An obvious variablely reduction in the number of TH-positive neurons in the damaged lateral SN is indicated with TH immunohistochemistry. In the third week after stereotactic injection, the degree of the damaged TH is aggratated according to the dose from the lysosome 25μmol/L to 400μmol/L.The gradual return of the amount of dopamine is discovered after stereotactic injection 100μmol/L from one week to forth week. (3) Contrast with the normal brain tissue in the SN of the results of cathepsin D, the damaged side of the SN region of cath D-positive cells exists in varying decreased degrees significantly. The number of the positive expression of cathepsin D is significantly reduced with the accumulating dose in the Lysosomes from the third week of 25μmol/L to 400μmol/L dose of stereotactic group, contrast with the number of damaged TH, we found that cathepsin D expression with the TH-positive of damage is directly proportional.
     5 Explore the characteristics of a-syn on channel blockers after DNA vaccine
     No significant difference is found between PBS group and others in the number of TH-expression neurons in the damaged lateral SN. To compare with normal lateral, the degree of damage is lighter in the lysosome inhibitor group, heavier in the proteasome inhibitor group, heaviest in the lysosomal and proteasome inhibitor group but still local expression of the number of TH-positive is observed in the injection. TH and Hoechst staining showe that part of a large number of positive nuclei in SN were irregular shrinkage, nuclear fragmentation, some cracking to multiple apoptotic bodies. Mice in each group in the SN can be seen in the nuclear morphology, and non-injection side of the nuclear morphology, PBS group were not significantly different. And non-injected side compared with less damage to the lysosome inhibitor, proteasome inhibitor slightly heavy damage, and lysosomal proteasome inhibitor increases the relative heavier harm.
     Conclusion
     1. The three eukaryotic expression plasmids pVAX1-Igk-hαS1-140, pVAX1-Igk-hαS84-140, pVAX1-Igk-hαS34-140 were successfully constructed and showed better biological activity.
     2. Optimized DNA vaccines produced higher antibody titers and the specificity ofα-syn.
     3. Optimized DNA vaccine were clear abnormal brain accumulation ofα-syn in the chronic mouse model of PD, and reduced the over-expression ofα-syn. PVAX1-Igk-hαS84-140 fusion plasmid showed better immune effect than the other two groups.
     4. Lysosome inhibitor can induce rotational behaviors, but less than proteasome. Lysosome inhibitor and proteasome inhibitor on DA neuronal damage depend on the dose and time. The positively correlated between the damage levels of DA neurons and the expression of cath D.
     5. Optimized DNA vaccines have a good neuroprotective effect on DA neurons, and apoptosis damaged by the lysosome inhibitors and proteasome inhibitor.
引文
[1]Thomas B,Beal MF.Parkinson's disease[J].Hum Mol Genet.2007;16(2):R183-194.
    [2]Kessler J C,Rochet J C,Lausbury P T.The N-terminal repeat domain of alpha-synuclein inhibits beta-sheet and amyloid fibril formation[J].Biochemistry,2003;42(3):672—678
    [3]Uversky VN.Alpha-synuclein misfolding and neurodegenerative diseases [J].Curr Protein Pept Sci.2008;9(5):507-540
    [4]Lee VM, Trojanowski JQ.Mechanisms of Parkinson's disease linked to pathological alpha-synuclein: new targets for drug discovery [J].Neuron.2006; 52(1):33-38.
    [5]Cookson MR.alpha-Synuclein and neuronal cell death [J]. Mol Neurodegener. 2009;4:9.
    [6]周爱霞,周显青.a-syn在帕金森病中的研究进展[J].中国医学生物技术应用杂志.2004;3(3):13-17
    [7]Li W., West N., Colla E., et al. Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations [J]. Proc Natl Acad Sci U S A. 2005; 102(6):2162-2167.
    [8]Murray IV, Giasson BI, Quinn SM, et al. Role of alpha-synuclein carboxy-terminus on fibril formation in vitro [J]. Biochemistry.2003; 42(28):8530-8540.
    [9]Wakabayashi K, Tanji K, Mori F, Takahashi H.The Lewy body in Parkinson'sdisease: molecules implicated in the formation and degradation of alpha-synuclein aggregates[J]. Neuropathology. 2007; 27(5):494-506.
    [10]Shults CW. Lewy bodies [J].Proc Natl Acad Sci U S A. 2006; 103(6):1661-1668.
    [11]Zhou W, Milder JB, Freed CR.Transgenic mice overexpressing tyrosine-to-cysteine mutant human alpha-synuclein:a progressive neurodegenerative model of diffuse Lewy body disease[J].J Biol Chem. 2008;283(15):9863-9870.
    [12]Maguire-Zeiss KA.alpha-Synuclein: a therapeutic target for Parkinson's disease? [J] Pharmacol Res.2008; 58(5-6):271-280.
    [13]Lo AS, Zhu Q, Marasco WA.Intracellular antibodies (intrabodies) and their therapeutic potential[J]. Handb Exp Pharmacol. 2008 ;( 181):343-373.
    [14]Messer A, McLear J. The therapeutic potential of intrabodies in neurologic disorders: focus on Huntington and Parkinson diseases[J]. BioDrugs.2006;20(6):327-333.
    [15]Pan T, Kondo S, Le W, Jankovic J.The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease[J].Brain.2008;131(Pt 8):1969-1978.
    [16] Webb JL, Ravikumar B, Atkins J,et al. Alpha-synuclein is degraded by both autophagy and the proteasome [J]. J Biol Chem. 2003; 278(27):25009-25013.
    [17]He-Jin Lee,Farnaz Khoshaghideh,Smita Patel,et al.Clearance ofα-Synuclein Oligomeric Intermediates via the Lysosomal Degradation Pathway[J].J Neurosc.2004;24(8):1888-1896.
    [18]Cuervo A M ,Stefan is L,Fredenburg R,et a1.Impaired degradation of mutant alpha-synuclein by chaperone.mediated autophagy[J].Science.2004; 305(5688):1292-1295
    [19]Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N.Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice[J].Nature. 2006;441(7095):819-820.
    [20]Sun F,Anantharam V,Zhang D,et al.Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models[J].Neurotoxicology. 2006 ;27(5):807-815.
    [21]McNaught KS,Bjorklund LM,Belizaire R,et al.Proteasome inhibition causes nigral degeneration with inclusion bodies in rats[J].Neuroreport.2002;13:1437-1441.
    [22]McGeer PL, McGeer EG.Glial reactions in Parkinson's disease[J].Mov Disord. 2008;23(4):474-83.
    [23]Wu DC, Jackson-Lewis V, Vila M,et al.Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease[J]. J Neurosci. 2002,22(5):1763-1771
    [24]Sriram K, Miller DB, O'Callaghan JP. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha[J]. J Neurochem. 2006;96(3):706-718.
    [25]Zhang W,Shin EJ,Wang T,et al.3-Hydroxymorphinan,a metabolite of dextromethorphan,protects nigrostriatal pathway against MPTP elicited damage both in vivo and in vitro[J].FASEB J.2006;20:2496 -2511.
    [26]Casarejos MJ, Menendez J, Solano RM, et al. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline[J]. J Neurochem. 2006;97:934–946.
    [1]Wu KP, Kim S, Fela DA, Baum J. Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation[J].J Mol Biol. 2008;378(5):1104-1115.
    [2]Cookson MR. The biochemistry of Parkinson’s disease[J]. Annu Rev Biochem. 2005;74:29–52.
    [3]杨诺,张琳,沈丽.synuclein蛋白家族.生物化学与生物物理进展[J].1999;26(6): 523-524.
    [4]Davidson WS, Jonas A, Clayton DF, George JM.Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes[J]. J Biol Chem. 1998;273(16):9443-9449.
    [5]Chen M, Margittai M, Chen J, et al. Investigation of alpha-synuclein fibril structure by site-directed spin labeling[J]. J Biol Chem. 2007;282(34):24970-24979.
    [6]Abedini A, Raleigh DP.A role for helical intermediates in amyloid formation by natively unfolded polypeptides[J]. Phys Biol. 2009;6(1):15005.
    [7]Tofaris GK, Spillantini MG. Physiological and pathological properties of alpha-synuclein[J]. Cell Mol Life Sci. 2007;64(17):2194-2201.
    [8]Zibaee S, Jakes R, Fraser G, et al.Sequence Determinants for Amyloid Fibrillogenesis of Human alpha-Synuclein[J].J Mol Biol. 2007;374(2):454-464.
    [9]Park SM, Jung HY, Chung KC, et al.Stress-induced aggregation profiles of GST-alpha-synuclein fusion proteins: role of the C-terminal acidic tail of alpha-synuclein in protein thermosolubility and stability[J]. Biochemistry. 2002;41(12):4137-4146.
    [10]Ulmer TS, Bax A, Cole NB, Nussbaum RL.Structure and dynamics of micelle-bound human alpha-synuclein[J]. J Biol Chem. 2005;280(10):9595-9603.
    [11]Giasson BI, Murray IV, Trojanowski JQ,et al.A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly[J]. J Biol Chem. 2001;276(4):2380-2386.
    [12] Pawar AP, Dubay KF, Zurdo J,et al.Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases[J].J Mol Biol.2005;350(2):379-392.
    [13]Masliah E,Rockenstein E, Adame A, et al.Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease[J].Neuron.2005;46(6): 857-868
    [14]Beerens AM, Rots MG, Bermúdez B, et al.Secretion of thymidine kinase to increase the effectivity of suicide gene therapy results in the loss of enzymatic activity[J]. J Drug Target. 2008;16(1):26-35.
    [15]Okura Y, Miyakoshi A, Kohyama K, et al.Nonviral Abeta DNA vaccine therapy against Alzheimer's disease: long-term effects and safety[J]. Proc Natl Acad Sci U S A. 2006;103(25):9619-9624.
    [16]周淑萍,王清明,吴祖泽.有效引导肝细胞生成素分泌的外源信号肽的确定[J].中国病理生理杂志.2008; 24(7):1390-1393.
    [1]Schenk D.Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning.Potential mechanisms such as T-cell and microglial activation may be responsible and are under consideration to develop a safer anti-Abeta immunotherapy for AD [J]. Nat Rev Neurosci. 2002;3(10):824-828
    [2]Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization [J].Neurology. 2003;61(1):46-54.
    [3]Wolff JA, Malone RW, Williams P,et al..Direct gene transfer into mouse muscle in vivo[J]. Science. 1990;247(4949 Pt 1):1465-1468
    [4]Tang DC, DeVit M, Johnston SA.Genetic immunization is a simple method for eliciting an immune response[J]. Nature. 1992; 356(6365):152-154
    [5]摆茹,王希良,周亚. DNA疫苗免疫原性的研究策略[J].免疫学杂志. 2005,21(3):s28-31
    [6]Babiuk LA, Lewis J, van den Hurk S, et al.DNA immunization: present and future[J]. Adv Vet Med. 1999;41:163-179.
    [7]High expression of naked plasmid DNA in muscles of young rodents[J]. Hum Mol Genet. 1997; 6(9):1435-1443.
    [8]聂青和.基因疫苗的基础研究及应用现状.世界华人消化杂志[J].2003;l1(2):125- 129
    [1]王加才,王少君,彭国光等.hα-syn蛋白核酸疫苗pVAX1-hαS1-140的构建及其表达[J].重庆医学,2008;37(17):1953-1955
    [2]王少君,王加才,彭国光等.含CpG基元核酸疫苗免疫慢性MPTP帕金森病小鼠的治疗作用[J].2008; 16(3):179-182
    [3][Schenk D, 1999]Schenk D, Barbour R, Dunn W, et al.Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse[J]. Nature. 1999; 400(6740):173-177.
    [4] Sigurdsson EM, Brown DR, Daniels M, et al.Immunization delays the onset of prion disease in mice[J]. Am J Pathol. 2002,161(1):13-17
    [5] Miller TW, Shirley TL, Wolfgang WJ, et al.DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype [J].Mol Ther. 2003;7:572-579.
    [6]Manea M, Przybylski M, Hudecz F,et al.Design, structural, and immuno- analytical properties of antigenic bioconjugates comprising a beta- amyloid-plaque specific epitope[J].Biopolymers.2008;90(2):94-104.
    [7]Petrushina I, Ghochikyan A, Mktrichyan M, et al.Alzheimer's disease peptide epitope vaccine reduces insoluble but not soluble/oligomeric Abeta species in amyloid precursor protein transgenic mice [J].J Neurosci. 2007; 27(46):12721-12731.
    [8]Qu B, Rosenberg RN, Li L, Boyer PJ, Johnston SA.Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease[J].Arch Neurol. 2004;61(12):1859-1864.
    [9]Kim HD, Jin JJ, Maxwell JA,et al.Enhancing Th2 immune responses against amyloid protein by a DNA prime-adenovirus boost regimen for Alzheimer's disease[J].Immunol Lett. 2007;112(1):30-38.
    [10]Okura Y, Miyakoshi A, Kohyama K, et al.Nonviral Abeta DNA vaccine therapy against Alzheimer's disease: long-term effects and safety[J].Proc Natl Acad SciUSA. 2006; 103(25):9619-9624.
    [11]McNaught KS,Olanow CW.Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease[J].Neurobiol Aging.2006;27(4):530-545
    [12]Jiacai Wang,Yingsong Ouyang,Shaojun Wang,et al.Construction and expression of nucleic acid vaccine pVAX1-hαS1-140 coding humanα-synuclein[J].Neural Regeneration Research,2008;3(12):1372-1375
    [13]Benner EJ, Mosley RL, Destache CJ, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease[J].Proc Natl Acad Sci USA. 2004;101(25):9435-9440.
    [14]Masliah E, Rockenstein E, Adame A, et al. Effects of alpha-synuclein immuniz- ation in a mouse model of Parkinson's disease[J]. Neuron. 2005;46:857–868.
    [15]Qiao L, Hamamichi S, Caldwell KA, et al.Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity[J]. Mol Brain. 2008;1(1):17.
    [16]Boland B, Nixon RA. Neuronal macroautophagy: from development to degeneration[J]. Mol Aspects Med. 2006;27(5-6):503-519.
    [17]González-Polo RA, Niso-Santano M, Ortíz-Ortíz MA,et al. Relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with paraquat: could autophagy be a "brake" in paraquat-induced apoptotic death[J]. Autophagy. 2007; 3(4):366-367
    [18]González-Polo RA, Niso-Santano M, Ortíz-Ortíz MA, et al.Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells [J]. Toxicol Sci. 2007; 97(2):448-458
    [19]Lee DC, Womble TA, Mason CW, et al. 6-Hydroxydopamine induces cystatin C-mediated cysteine protease suppression and cathepsin D activation [J]. Neurochem Int. 2007; 50(4):607-618.
    [20]Pan T, Kondo S, Le W, Jankovic J.The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease[J].Brain.2008;131(Pt 8):1969-1978.
    [21]Cullen V, Lindfors M, Ng J, Cathepsin D expression level affects alpha-synucleinprocessing, aggregation, and toxicity in vivo[J]. Mol Brain. 2009;2(1):5
    [22]Sevlever D, Jiang P, Yen SH. Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species [J].Biochemistry. 2008; 47(36):9678-9687.
    [23]Mogi M, Harada M, Riederer P,et al.Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients[J]. Neurosci Lett. 1994; 165(1-2):208-210.
    [24]Gribova IE, Gnedenko BB, Poleshchuk VV, et al.Level of interferon-gamma, tumor necrosis factor alpha, and antibodies to them in blood serum from Parkinson disease patients[J] .Biomed Khim. 2003; 49(2):208-212.
    [25]Nagatsu T, Sawada M.Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects [J].J Neural Transm Suppl. 2007 ;( 72):113-120.
    [26])Reynolds AD, Glanzer JG, Kadiu I, et al.Nitrated alpha-synuclein-activated microglial profiling for Parkinson's disease [J].J Neurochem. 2008; 104(6):1504-1525.
    [27]Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's disease [J].Br J Pharmacol.2007; 150(8):963-976
    [28] Petroske E, Meredith GE, Callen S,et al. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment [J].Neuroscience. 2001; 106(3):589-601.
    [29]Ogawa N, Hirose Y, Ohara S,et al.A simple quantitative bradykinesia test in MPTP-treated mice[J].Res Commun Chem Pathol Pharmacol.1985;50:435-441.
    [30] Matsuura K, Kabuto H,Makino H,Ogawa N.Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion[J].J Neurosci Methods.1997;73:45-48.
    [1]Bonifati V,Oestra BA,Heutink P.Unraveling the pathogenesis of Parkinson's disease the contribution of monogenicforms [J].Cell Mol Life Sci.2004;61:1729-1750.
    [2]Webb JL, Ravikumar B, Atkins J,et al.Alpha-Synuclein is degraded by both autophagy and the proteasome [J]. J Biol Chem. 2003;278(27):25009-25013.
    [3]Franklin KBJ,Paxinos G.The Mouse Brain in Stereotaxic Coordinates [J]. 2rd Ed, Academic Press, San Diego, 1997.
    [4]Sun F, Anantharam V, Zhang D,et al.Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models [J].Neurotoxicology. 2006;27(5):807-815.
    [5]Seglen PO, Gordon PB. Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes [J]. Mol Pharmacol. 1980;18(3):468-475.
    [6]Zaidi AU, McDonough JS, Klocke BJ, et al.Chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent[J].J Neuropathol Exp Neurol. 2001;60(10):937-945.
    [7]Shacka JJ, Klocke BJ, Shibata M, et al.Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons [J].Mol Pharmacol. 2006;69(4):1125-1136.
    [8]Yamamoto A, Tagawa Y, Yoshimori T,et al.Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells [J]. Cell Struct Funct. 1998;23(1):33-42.
    [9] Boya P, González-Polo RA, Casares N, et al.Inhibition of macroautophagy triggers apoptosis [J]. Mol Cell Biol. 2005;25(3):1025-1040.
    [10]Sevlever D, Jiang P, Yen SH.Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species[J]. Biochemistry. 2008;47(36):9678-9687.
    [11]Takahashi M, Ko LW, Kulathingal J,et al.Oxidative stress-induced phosphorylation, degradation and aggregation of alpha-synuclein are linked to upregulated CK2 and cathepsin D [J]. Eur J Neurosci. 2007;26(4):863-874.
    [12]Meredith GE, Totterdell S, Petroske E, et al.Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease [J]. Brain Res.2002;956(1):156–165.
    [13]Tillerson JL, Cohen AD, Philhower J,et al.Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine [J].J Neurosci. 2001;21(12):4427-4435.
    [14]Iancu R, Mohapel P, Brundin P, et al.Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice[J].Behav Brain Res. 2005;162(1):1-10.
    [15]Henderson JM, Watson S, Halliday GM, et al.Relationships between various behavioural abnormalities and nigrostratal dopamine depletion in the unilateal 6-OHDA-lesioned rat [J].Behav Brain Res.2003;139(1-2):105.
    [16]邹志浩,张世忠,姜晓丹等.6-羟基多巴定向注射建立帕金森病大鼠模型的实验研究[J].中华神经医学杂志.2006;5(3):244-247
    [17]何建成,袁灿兴,卫洪昌.羟基多巴胺制备帕金森病大鼠模型的神经行为学特点[J].中国临床康复.2005;9(29):68-69.
    [1]Xilouri M, Vogiatzi T, Vekrellis K, et al.alpha-synuclein degradation by autophagic pathways: a potential key to Parkinson's disease pathogenesis[J].Autophagy. 2008; 4(7):917-919.
    [2]Kornizer D,Ciechanover A .Modes of regulation of ubiquitin-mediated protein degradation [J].J Cell Physio1.2000; 182 (1):1-11
    [3]Kerttelhut IC, Pepalo MT, Migliorini RH, et al. Regulation of different proteolytic pathways in skeletal muscle in fasting and diabetes mellitus [J]. Braz J Med Bio Res.1994; 27(4):981-993.
    [4]Aaron Ciechanover.Intracellular Protein Degradation: From a Vague Idea thru the Lysosome and the Ubiquitin-Proteasome System and onto Human Diseases and Drug Targeting [J].American Society of Hematology.2006:1-12
    [5] Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair [J].Autophagy.2005; 1(1):11-22
    [6]Hattori N, Machida Y, Noda K.Pathogenesis of Parkinson's disease: a common pathway between alpha-synuclein and parkin and the mechanism of Lewy bodies formation [J].Rinsho Shinkeigaku. 2005; 45(11):905-907
    [7]Cullen V, Lindfors M, Ng J,et al.Cathepsin D expression level affects alpha-synucleinprocessing, aggregation, and toxicity in vivo[J]. Mol Brain. 2009; 2(1):5
    [8]Qiao L, Hamamichi S, Caldwell KA, et al.Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity [J]. Mol Brain. 2008;1(1):17
    [9]Rockenstein E, Schwach G, Ingolic E,et al. Lysosomal pathology associated with alpha-synuclein accumulation in transgenic models using an eGFP fusion protein [J]. J Neurosci Res. 2005; 80(2):247-259.
    [10]Ostrowska H, Wójcik C, Wilk S,et al. Separation of cathepsin A-like enzyme and the proteasome: evidence that lactacystin/beta-lactone is not a specific inhibitor of the proteasome[J]. Int J Biochem Cell Biol. 2000; 32(7):747-757.
    [11]Kozlowski L, Stoklosa T, Omura S, et al.Lactacystin inhibits cathepsin A activity in melanoma cell lines [J]. Tumour Biol.2001; 22(4):211-215.
    [12]Ravikumar B, Duden R, Rubinsztein DC.Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy[J].Hum Mol Genet.2002;11 (9):1107-1117
    [13] Fornai F, Schlüter OM, Lenzi P,et al.Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein[J]. Proc Natl Acad Sci U S A.2005;102(9):3413-3418.
    [14]Vila M, Vukosavic S, Jackson-Lewis V, et al. Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP[J].J Neurochem.2000;74(2):721-729.
    [15]Meredith GE, Sonsalla PK, Chesselet MF.Animal models of Parkinson's disease progression[J]. Acta Neuropathol. 2008;115(4):385-398.
    [16]Tatton NA, Kish SJ. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining[J].Neuroscience.1997;77(4):1037-1048.
    [17]Novikova L,Garris BL,Garris DR,et al.Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease[J].Neuroscience.2006;140(1):67-76.
    [1]Kazantsev AG, Kolchinsky AM.Central role of alpha-synuclein oligomers in neurodegeneration in Parkinson disease [J]. Arch Neurol. 2008; 65(12):1577-1581
    [2]汪锡,陈生弟.帕金森病与免疫[J].中国神经免疫学和神经病学杂志.2005; 12(1):34-36
    [3]McGeer PL, McGeer EG.Glial reactions in Parkinson's disease [J].Mov Disord. 2008; 23(4):474-483
    [4]Roodveldt C,Christodoulou J,Dobson CM.Immunological features of alpha-synuclein in Parkinson's disease[J].J Cell Mol Med. 2008;12(5B):1820-1829
    [5]Arai H, Furuya T, Mizuno Y, Mochizuki H. Inflammation and infection in Parkinson's disease[J]. Histol Histopathol. 2006; 21(6):673-678
    [6]张瑞萍,陈彪.神经炎症、小胶质细胞与帕金森病.神经损伤与功能重建[J].2007;2(6):321-325
    [7]Jin J, Shie FS, Liu J, et al. Staglandin E2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated alpha-synuclein [J].J Neuroinflammation. 2007; 4:2
    [8]Sriram K, O'Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain [J].J Neuroimmune Pharmacol. 2007; 2(2):140-153
    [9]Sriram K, Matheson JM, Benkovic SA,et al.Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha[J]. FASEB J. 2006; 20(6):670-682
    [10]Sriram K, Miller DB, O'Callaghan JP.Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha[J]. J Neurochem. 2006; 96(3):706-718
    [11]黄娟,戴冀斌,陆蔚天等.GDNF与IL-1β体外诱导小鼠中脑神经干细胞分化作用的实验研究[J].中国组织化学与细胞化学杂志.2006; 15(2):119-123
    [12]杨海华,徐评议,刘悴霖.小胶质细胞与中枢神经系统变性疾病[J].国外医学内科学分册.2006;33(1):36-39
    [13]Koprich JB, Reske-Nielsen C, et al.Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease[J]. J Neuroinflammation. 2008;5:8
    [14]Vilhardt F.Microglia: phagocyte and glia cel [J].Int J Biochem Cell Biol. 2005; 37(1):17-21
    [15]陈艳,光楠英.小胶质细胞及其炎性细胞因子参与阿尔茨海默病因果关系的研究[J].中国医药导报.2008; 5(27):16-18
    [16]张琳,段德义,徐群渊.神经元和胶质细胞的相互作用与帕金森病[J].解剖学进展.2006;12(2):182-186
    [17]Teismann P, Tieu K, Cohen O,et al. Pathogenic role of glial cells in Parkinson's disease[J]. Mov Disord. 2003;18(2):121-129
    [18]Reynolds AD, Stone DK, Mosley RL, et al. Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets [J]. J Immunol. 2009;182(7):4137-4149
    [19]Austin SA, Floden AM, Murphy EJ, et al. Alpha-synuclein expression modulates microglial activation phenotype [J]. J Neurosci. 2006;26(41):10558-10563
    [20]Zhang W, Wang T, Pei Z,et al. Aggregated alpha-synuclein activates microglia: aprocess leading to disease progression in Parkinson's disease [J].FASEB J. 2005; 19(6):533-542
    [21]Klegeris A, Pelech S, Giasson BI, et al.Alpha-synuclein activates stress signaling protein kinases in THP-1 cells and microglia.Neurobiol Aging [J].2008; 29(5):739-752
    [22]Thomas MP, Chartrand K, Reynolds A, et al. Ion channel blockade attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: relevance for the pathogenesis of Parkinson's disease [J].J Neurochem. 2007;100(2):503-519
    [23]Croisier E, Moran LB, Dexter DT, et al. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition [J]. J Neuroinflammation. 2005;2:14
    [24]Zhang W, Dallas S, Zhang D, et al.Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia [J]. 2007; 55(11):1178-1188
    [25]Frank C. Barone, Kenneth S.et al.Role of inflammation and cellular stress in brain injury and central nervous system diseases [J].Clin Neurosci Res.2006;6(5): 329-356
    [26]Tansey MG, McCoy MK, Frank-Cannon TC.Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention [J]. Exp Neurol. 2007; 208(1):1-25
    [27]Miklossy J, Doudet DD, Schwab C,et al. Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys[J]. Exp Neurol. 2006;197(2):275-283
    [28]Jakel RJ, Townsend JA, Kraft AD,et al. Nrf2-mediated protection against 6-hydroxydopamine [J].Brain Res. 2007; 1144:192-201
    [29]Yamada T, McGeer PL, McGeer EG. Relationship of complementactivated oligodendrocytes to reactive microglia and neuronal pathology in neurodegenerative disease [J]. Dementia.1991; 2:71–77
    [30]Yamada T,McGeer PL,McGeer EG.Lewy bodies in Parkinson’s disease are recognized by antibodies to complement proteins[J].Acta Neuropath .1992;84:100–104
    [31]Romagnani S.T-cell subsets (Th1 versus Th2).Ann Allergy Asthma Immunol [J]. 2000; 85(1):9-18
    [32]Streit WJ, Walter SA, Pennell NA.Reactive microgliosis [J].Prog Neurobiol. 1999; 57(6):563-581.
    [33]周慧芳,薛冰,王晓民.免疫应答异常与中枢神经系统退变性疾病[J].基础医学与临床.2002;22:200-205
    [34]McRae Degueurce A, Gottfries CG, Karlsson I,et al. Antibodies in the CSF of a Parkinson patient recognizes neurons in rat mesencephalic regions[J]. Acta Physiol Scand. 1986;126(2):313-315
    [35]Orr CF, Rowe DB, Mizuno Y, et al.A possible role for humoral immunity in the pathogenesis of Parkinson's disease[J]. Brain. 2005;128(Pt 11):2665-2674
    [36]Chen S, Le WD, Xie WJ,et al. Experimental destruction of substantia nigra initiated by Parkinson disease immunoglobulins[J]. Arch Neurol.1998;55(8):1075-1080
    [37]Theodore S, Cao S, McLean PJ, et al.Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease[J]. J Neuropathol Exp Neurol. 2008; 67(12):1149-1158
    [38]Reale M, Iarlori C, Thomas A, et al. Peripheral cytokines profile in Parkinson's disease[J]. Brain Behav Immun. 2009; 23(1):55-63
    [38]Rentzos M, Nikolaou C, Andreadou E,et al. Circulating interleukin-10 and interleukin-12 in Parkinson's disease[J]. Acta Neurol Scand. 2009; 119(5):332-337
    [39]许继平,李大年.帕金森氏病的免疫学研究进展[J].国外医学神经病学神经外科学分册.1994;21(5):245-248
    [40]McLaughlin P, Zhou Y, Ma T, et al. Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity[J]. Glia. 2006; 53(6):567-582
    [41]McGeer PL, Yasojima K, McGeer EG.Inflammation in Parkinson's disease [J]. Adv Neurol. 2001; 86:83-89
    [42]Mogi M, Harada M, Kondo T, et al. bcl-2 protein is increased in the brain from parkinsonian patients [J]. Neurosci Lett. 1996;215(2):137-139
    [43]Mogi M, Harada M, Kondo T, et al. The soluble form of Fas molecule is elevated in parkinsonian brain tissues [J]. Neurosci Lett. 1996;220(3):195-198
    [44]Ferrer I, Blanco R, Cutillas B, et al. Fas and Fas-L expression in Huntington's disease and Parkinson's disease[J]. Neuropathol Appl Neurobiol. 2000; 26(5):424-433
    [45]陈嬿,蒋雨平.帕金森病中的免疫调节作用[J].中国临床神经科学.2006; 14(5):553-556
    [46] Yasojima K, Schwab C, McGeer EG,et al.Up-regulated production and activation of the complement system in Alzheimer's disease brain[J].Am J Pathol. 1999;154(3):927-936
    [47]Klegeris A, McGeer PL.Complement activation by islet amyloid polypeptide (IAPP) and alpha-synuclein 112[J]. Biochem Biophys Res Commun. 2007;357(4):1096-1099
    [48]Hunter RL, Dragicevic N, Seifert K, et al. Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system[J]. J Neurochem. 2007;100(5):1375-1386
    [49]Hirsch EC, Breidert T, Rousselet E, et al. The role of glial reaction and inflammation in Parkinson's disease [J]. Ann N Y Acad Sci. 2003;991:214-228
    [50]Benner EJ, Mosley RL, Destache CJ, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease [J].Proc Natl Acad Sci USA. 2004; 101(25):9435-9440
    [51]Kurkowska-Jastrzebska I,Balkowiec-Iskra E,Joniec I,et al.Immunization with myelin oligodendrocyte glycoprotein and complete Freund adjuvant partially protects dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced damage in mouse model of Parkinson's disease[J].Neuroscience,2005;131:247-254
    [52]Masliah E, Rockenstein E, Adame A, et al.Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease[J].Neuron.2005;46(6):857-868
    [53]王加才,王少君,彭国光等.hα-syn蛋白核酸疫苗pVAX1-hαS1-140的构建及其表达[J].重庆医学.2008;37(17):1953-1955
    [54]王少君,王加才,彭国光等.含CpG基元核酸疫苗免疫慢性MPTP帕金森病小鼠的治疗作用[J].2008; 16(3):179-182
    [55]Miller TW, Messer A..Intrabody applications in neurological disorders: progress and future prospects[J]. Mol Ther. 2005;12(3):394-401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700