硬X射线相位衬度成像技术的动物实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的X射线成像技术已经是临床上不可或缺的重要的疾病诊断工具。但是由于其内在成像机制的限制(传统的X线成像技术是基于不同组织之间吸收系数的不同而产生吸收衬度的差别进行成像)导致了这种方式存在着很大的不足,即对弱吸收的软组织分辨率很低,无法显示肌腱、软骨和韧带等软组织结构,而在显示肿瘤组织和血管等弱吸收的软组织时需要使用大量的造影剂,而这些造影剂对人体有着很大的毒副作用。另一方面,随着CT技术近年来的广泛使用,病人接受的辐射剂量也较以往平片检查增加了数十倍到上百倍,从而使病人的辐射防护成为了一个日益严重的问题。因此在90年代中期开始出现了一种相位衬度成像理论和技术,而这种技术非常有希望解决这些困扰传统X线成像技术的难题。
     软组织引起的X射线相位改变的幅度是其对X射线吸收值的一千倍到十万倍,这就意味着对于软组织而言,当使用能量很高而波长很短的X射线作为光源时,即使厚度很小或者密度变化不大的组织也能导致X射线的相位产生相当大的漂移(即发生折射),而这时X射线的吸收几乎没有改变。这种利用相位信号进行成像的技术就是相位衬度成像技术。相位衬度成像技术对于软组织有着非常高的衬度分辨率,对于传统X线无法显示的弱吸收的软组织如,肌腱、软骨、韧带、神经和耳蜗等也具有极高的分辨率,特别是不使用造影剂就可以显示数十微米的血管,区分肿瘤组织和正常组织等,而传统的影像学方法尽管使用了造影剂目前也还无法显示200μm以下的血管。而且相位衬度成像技术主要依赖于X射线的折射作用,与X射线的吸收无关,因此可以利用更高能量的X射线成像,从而可以明显减少人体吸收的辐射剂量,这样就解决了人体的辐射损伤问题。因此,相位衬度成像技术具有巨大的医学应用前景。
     目前相位衬度成像主要包括类同轴相位衬度成像技术、衍射增强成像技术(DEI)和干涉法成像技术三种。其小干涉法成像技术需要复杂的光学系统和完全依赖于同步辐射光源的支持,其应用目前还是受到很大的限制。因此我们本研究的主要目地就是使用类同轴法和衍射增强法进行医学成像研究,评价这两种成像技术的医学应用价值。
     目的:
     应用类同轴相位衬度成像技术进行小鼠肝脏血管的成像研究,评价使用生理盐水作为造影剂对成像效果的影响。
     材料与方法:
     6周龄,雌性,C57BL小鼠(23-25g)6只被随机分为两组(每组3只),第一组小鼠的在麻醉开腹后,直接结扎下腔静脉、上腔静脉和肝蒂(包括肝动、静脉和胆总管),然后切除肝脏进行成像。第二组则使用生理盐水取代肝血管内的血液进行成像。方法是结扎上腔静脉后,从门静脉注射生理盐水,然后从下腔静脉引流出,直到肝脏内的血液被全部置换后结扎门静脉、下腔静脉和肝蒂。然后取出肝脏进行成像。成像方法选择类同轴法。
     结果:
     在不使用造影剂的情况下,类同轴相位衬度成像法获得了清晰的微米量级的树枝状分布的肝血管影像,显示的最细的血管直径约为40μm左右。而使用生理盐水造影剂后,图像质量明显提高,显示的最细血管直径约为30μm左右。物像距为1.43m时图像质量明显优于物像距为5cm组。物像距为1.43m,并同时使用造影剂时可以获得最佳的图像。
     结论:
     1.应用同步辐射光源的类同轴相位衬度成像法不使用造影剂就可以进行微米级的血管进行成像,获得的图像的视野较大,可以完整的显示小鼠一叶肝脏所有的血管结构,具有很高的医学应用价值。
     2.使用生理盐水做造影剂可以明显改善图像的衬度和分辨率,具有很大的临床应用价值。
     目的:
     应用衍射增强成像技术(DEI)进行小鼠肝血管的成像试验研究,评价在摇摆曲线各个位置获得图像和经过计算获得的折射图像的质量。比较使用Si(333)晶面和使用Si(111)晶面获得图像的衬度。
     材料与方法:
     C57BL/6小鼠6只随即分为两组,第一组麻醉后开腹,结扎所有的进出肝脏的血管和胆管,然后取出肝脏,所有制成的肝脏标本均放置在4%的福尔马林溶液里准备成像。第二组则使用泛影葡胺取代肝血管内的血液进行成像,方法是结扎上腔静脉后,从门静脉注射生理盐水。然后从下腔静脉引流出,直到肝内的血液被全部置换后结扎门静脉、下腔静脉和肝蒂。然后取出肝脏进行成像。成像在北京高能物理研究所的同步辐射国家级实验室进行,成像方法主要使用同步辐射X线衍射增强成像技术。分析晶体分别选择Si(333)晶面和Si(111)晶面。单色光能量选择为15KeV。
     结果:
     同步辐射X线衍射增强成像技术在不使用造影剂的情况下就可以显示40μm左右直径的肝脏血管,显示的视野要大于以往的成像,可以显示血管主干及其8级以上的血管分支。Si(333)晶面获得的图像的衬度要明显高于Si(111)晶面获得的图像,经计算获得的折射图像的衬度为最高。
     结论:
     同步辐射X线衍射增强成像技术具有很高的衬度分辨率和空间分辨率,而经过后处理获得的折射图像最为清晰和有最高的图像衬度分辨率,非常适合医学成像的需要。
     目的:
     应用衍射增强成像技术进行小鼠胆管的成像试验研究,区分胆管结构和血管结构,同时进行心脏和肾脏的成像研究。
     材料与方法:
     1、胆管成像:10只六周龄的雌性C57BL小鼠(重约25g),被随机分为两组。第一组(5只),在开腹后进行胆总管结扎(CBDL)。而对照组在开腹后不结扎胆总管,直接关腹。在术后40天左右取出所有的肝脏标本放置在福尔马林溶液里准备成像。
     2、心脏及肾脏成像:5只,雌性,6周龄的C57BL小鼠麻醉后固定,开胸后结扎主动脉,并剪断下腔静脉,然后通过左室尖部向心腔内注射生理盐水,至冠脉和心脏均透明后结扎心脏的大血管,然后取出心脏,并同时取出肾脏,所有样品经福尔马林固定后准备成像。
     3、成像装置:成像在北京高能物理研究所的同步辐射国家级实验室进行,成像方法主要使用同步辐射X线衍射增强成像技术。分析晶体分别选择Si(333)晶面和Si(111)晶面。单色光能量选择为18KEV。
     结果:
     在不使用造影剂的情况下,DEI技术可以清晰的显示病理状态下扩张扭曲的胆管结构,显示最细的胆管结构大约为40μm,血管结构和胆管结构的空间关系也被清晰的显示。而正常组的胆管结构则无法显示。肾脏成像则可以显示从血管主干到肾皮质穿支血管的整个血管分支结构。心脏成像可以显示部分冠脉,但是图像的衬度不如肝血管和肾血管图像的衬度高。
     结论:
     1.DEI技术极高的软组织分辨率和空间分辨率可以显示常规影像方法无法显示的数十微米的胆管结构,因此对于胆管疾病的诊断具有重要的临床意义。
     2.肾血管显像可以显示到40μm的皮质内的穿支动脉,对于肾脏疾病的诊断具有很高的价值。
     3.不使用造影剂的情况下,冠脉成像目前只能显示部分冠脉,而且需要的曝光时间较长,但是我们的试验证实了不使用造影剂进行相位衬度冠脉成像的可行性。
     创新性:
     1,以往的血管成像多是使用干涉法技术,但是这种成像技术需要复杂的干涉仪,对光源的要求非常高,而且所获得的图像视野很小。而目前国内的成像时,都是把样品切成了很小的切片进行成像,这样就破坏了整体解剖结构的完整性。我们此次应用相对简单的类同轴相位衬度成像技术在器官水平上进行了血管成像研究,可以同时显示整个肝血管的8级分支。显示的血管最细达到了30μm。
     2,首次应用类同轴相位衬度成像技术进行了无毒副作用的生理盐水做造影剂的成像试验。获得了满意的结果,应用造影剂后获得的图像的衬度更高。
     3,首次应用相位衬度成像技术进行小鼠胆管的成像试验。不使用造影剂的情况下衍射增强成像技术就可以显示50μm的胆管结构,更为重要的是衍射增强成像技术可以同时显示微米级别的血管结构和胆管结构,因此对于肝脏疾病的诊断具有非常重要的意义。应用衍射增强法进行了冠脉成像,证实了冠脉成像的可行性。
Background
     Conventional X-ray imaging has been widely used in the field of medicine. However, radiography with a conventional X-ray source has considerable limitations in imaging soft tissues, because conventional X-ray imaging methods generate contrast from differences in X-ray absorption, and the differences in X-ray absorption coefficients of the structures in soft tissues are quite small. Moreover, patient radiation doses delivered by conventional X-ray imaging has become a serious problem and threaten patient's health. Recently, research activity using X-ray phase information has been growing remarkably in the field of medicine. Phase-contrast imaging can offer a number of improvements over conventional radiography in clinical practice. What's more, phase-contrast imaging with synchrotron radiation can reveal the inner soft tissue such as tendons, ligaments, adipose tissue, cartilage, vessel and nerves without contrast agent, due to the sensitivity of this technique is more than 1000-fold higher than the conventional absorption-contrast X-ray method.
     Three techniques can be used for visualizing phase information: interferometric imaging, diffraction enhanced imaging (DEI) and in-line phase contrast imaging. However, the interferometric imaging need sophisticated X-ray optics and is employed almost exclusively at synchrotron light source facilities. Thus are felt to be less likely to be widely available in the near future. Therefore, our aim was to investigate the detailed appearance of images produced by the in-line phase contrast imaging and DEI in the organs of mouse.
     PartⅠ
     It is virtually impossible to observe blood vessels by conventional X-ray imaging techniques without using contrast agents. In addition, such X-ray systems are typically incapable of detecting vessels with diameters less than 200μm. Here we show that vessels as small as 30μm could be detected using in-line phase-contrast X-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30μm diameter blood vessels could only be achieved using X-ray interferometer, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast X-ray imaging using physiological saline as a contrast agent provides an alternative to the interferometric method that can be much more easily implemented and offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.
     PartⅡ
     Neovascularization is correlative with many processes of diseases, especially for tumor growth, invasion and metastasis. What is more, these tumor microvessels are very different from normal vessels in morphology. Therefore, observation of the morphologic distribution of microvessels is one of the key points for many researchers of the field. In this paper, we studied the mouse liver blood vessels under different DEI imaging conditions and assessed the quality of those images obtained at different positions of the monochromator - analyzer crystal rocking curve. Using diffraction enhanced imaging (DEI) method; we detected the microvessles with diameter of about 40μm in mouse liver. Moreover, the refraction image obtained from DEI images shows higher image contrast and exhibits potential use for medical applications.
     PartⅢ
     Phase contrast imaging can easily demonstrate mouse liver microstructures with a diameter down to a few tens micron scale without contrast agent. However, it is still difficult to confirm all these microstructures are blood vessels because we cannot exclude bile ducts from these microstructures. Here we show that normal bile ducts cannot be demonstrated in phase contrast images. Mouse common bile duct was ligated to distend the bile ducts and the liver was then excised 40 days after ligation for imaging. Our results suggest that the pathological distended bile duct with diameter as small as 50μm can be demonstrated clearly without contrast agent. These dilated and tortuous bile duct are total different from blood vessels in morphous. What is more, the blood vessels and the bile ducts can be demonstrated at the same time without contrast agent. However, these structures cannot be discerned in control group. We also performed coronary artery imaging with diffraction enhanced imaging, and our results suggest that coronary artery can be demonstrated partially without contrast agent at present. Therefore, phase contrast imaging technique is a very promising tool in diagnostic bile ducts diseases and coronary artery diseases.
引文
[1]陈建文,高鸿奕,李儒新,等.X射线相衬成像.物理学进展[J],2005,25(2):174-194.
    [2]Momose,A,Takeda,T,Itai,Y.Contrast effect of blood on phase-contrast X-ray imaging[J].Academic radiology,1995,2:883-887.
    [3]Suortti,P,Thomlinson,W.Medical applications of synchrotron radiation [J].Physics in medicine and biology,2003,48:R1-R35.
    [4]Momose A,Takeda T,Itai Y,et al.Phase-contrast X-ray computed tomography for observing biological soft tissues[J].Nat Med,1996,2:473-475.
    [5]Wilkins SW,Gureyev TE,Gao D,Pet al.Phase-contrast imaging using polychromatic hard X-rays[J].Nature,1996,384:335-337.
    [6]Davis TJ,Gao D,Gureyev TE:Phase-contrast imaging of weakly absorbing materials using hard X-rays[J].Nature,1995,373:595-598.
    [7]Beckmann F,Heise K,Kolsch B,et al.Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography[J].Biophys J,1999,76:98-102.
    [8]Rau C,Robinson IK,Richter CP.Visualizing soft tissue in the mammalian cochlea with coherent hard X-rays[J].Microsc Res Tech,2006,69:660-665.
    [9]Li J,Zhong Z,Lidtke R,et al.Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging[J].J Anat,2003,202:463-470.
    [10]Momose A,Takeda T,Itai Y.Blood vessels:depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat-feasibility study[J].Radiology,2000,217:593-596.
    [11]Takeda T,Momose A,Itai Y,et al.Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions[J].Acad Radiol,1995,2:799-803.
    [12]Takeda T,Momose A,Hirano K,et al.Human carcinoma:early experience with phase-contrast X-ray CT with synchrotron radiation—comparative specimen study with optical microscopy[J].Radiology,2000,214:298-301.
    [13]Zhou,S.-A.& Brahme,A.Development of phase-contrast X-ray imaging techniques and potential medical applications[J].Physica Medica,2008,24:129-148.
    [14]黄万霞,田玉莲,朱佩平,等.北京同步辐射装置上的位相衬度成像[J].物理学报,2002,51(5):1040-1043
    [15]Chapman,D.et al.Diffraction enhanced x-ray imaging[J].Physics in medicine and biology,1997,42:2015-2025.
    [16]Chapman,D.et al.Medical applications of diffraction enhanced imaging [J].Breast disease,1998,10:197-207.
    [17]Lewis RA,Rogers KD,Hall CJ,et al.Diffraction enhanced imaging:improved contrast,lower dose X-ray imaging[J].Proc SPIE 2002,4682:286-297.
    [18]Takeda T,Momose A,Wu J,et al.Vessel imaging by interferometric phase-contrast X-ray technique[J].Circulation,2002,105:1708-1712
    [19]Dreossi,D.et al.The mammography project at the SYRMEP beamline [J].European journal of radiology In Press,Corrected Proof.
    [20]熊壮,王建华,余永强,等.同步辐射装置X线相位对比成像的初探[J].中华放射医学与防护杂志.2006,26:614-616.
    [21]赵涛,胡春红,李辉,等.基于衍射增强的肝脏图像的信息分离于微细血管重建[J].自然科学进展,2008,18(10):1151-1156.
    [22]李辉,王泰龄,王雪艳,等.同步辐射衍射增强成像的肝纤维化成像研究[J].核技术,2008,31(2):81-86.
    [23]彭屹峰,汤光宇,陈岳声,等.衍射增强技术应用于医学成像的实验研究.中国医学影像技术[J],2007,23(7):1088-1091.
    [24]陈志华,潘琳,黎刚,等.大鼠肾X线衍射增强成像[J].中国医学影像技术,2005,21(9):1345-1348.
    [1] Rau C, Robinson IK, Richter CP. Visualizing soft tissue in the mammalian cochlea with coherent hard X-rays. Microscopy research and technique [J]. 2006, 69(8): 660-665.
    
    [2] Takeda T, Momose A, Itai Y, et al. Hirano K. Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions [J]. Academic radiology. 1995, 2(9): 799-803.
    
    [3] Takeda T, Momose A, Hirano K, et al. Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation-comparative specimen study with optical microscopy [J]. Radiology. 2000, 214(1): 298-301.
    
    [4] Hwu Y, Tsai WL, Chang HM, et al. Imaging cells and tissues with refractive index radiology [J]. Biophysical journal. 2004, 87(6): 4180-4187.
    
    [5] Yoon CY, Sung DJ, Lee JH, et al. Imaging of renal and prostate carcinoma with refractive index radiology [J]. Int J Urol. 2007,14(2): 96-103.
    
    [6] Arfelli F, Assante M, Bonvicini V, et al. Low-dose phase contrast x-ray medical imaging [J]. Physics in medicine and biology. 1998, 43(10): 2845-2852.
    
    [7] Arfelli F, Bonvicini V, Bravin A, et al. Mammography with synchrotron radiation: phase-detection techniques [J]. Radiology. 2000, 215(1): 286-293.
    
    [8] Lewis RA. Medical phase contrast x-ray imaging: current status and future prospects [J]. Physics in medicine and biology. 2004, 49(16): 3573-3583.
    
    [9] Pisano ED, Johnston RE, Chapman D, et al. Human breast cancer specimens: diffraction-enhanced imaging with histologic correlation-improved conspicuity of lesion detail compared with digital radiography [J]. Radiology. 2000, 214(3): 895-901.
    
    [10] Gao D, Pogany A, Stevenson AW, et al. Phase-contrast radiography. Radiographics [J]. 1998,18(5): 1257-1267.
    
    [11] Momose A, Takeda T, Itai Y, et al. Phase-contrast X-ray computed tomography for observing biological soft tissues [J]. Nature medicine. 1996, 2(4): 473-475.
    
    [12] Li J, Zhong Z, Lidtke R, et al. Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging [J]. Journal of Anatomy. 2003, 202(5): 463-470.
    
    [13] Beckmann F, Heise K, Kolsch B, et al. Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography [J]. Biophysical Journal. 1999,76(1 Pt 1): 98-102.
    
    [14] Lewis RA, Yagi N, Kitchen MJ, et al. Dynamic imaging of the lungs using x-ray phase contrast [J]. Physics in medicine and biology. 2005, 50(21): 5031-5040.
    
    [15] Takeda T, Momose A, Wu J, et al. Vessel imaging by interferometric phase-contrast X-ray technique [J]. Circulation. 2002, 105(14): 1708-1712.
    
    [16] Momose A. Phase-contrast X-ray imaging based on interferometry [J]. Journal of synchrotron radiation. 2002, 9(3): 136-142.
    
    [17] Donnelly EF, Price RR, Pickens DR. Dual focal-spot imaging for phase extraction in phase-contrast radiography [J]. Medical physics. 2003, 30(9): 2292-2296.
    
    [18] Donnelly EF, Lewis KG, Wolske KM, et al. Characterization of the phase-contrast radiography edge-enhancement effect in a cabinet x-ray system [J]. Physics in medicine and biology. 2006, 51(1): 21-30.
    
    [19] Wilkins SW, Gureyev TE, Gao D, et al. Phase-contrast imaging using polychromatic hard X-rays [J]. Nature. 1996, 384: 335-337.
    
    [20] Pagot E, Fiedler S, Cloetens P, et al. Quantitative comparison between two phase contrast techniques: diffraction enhanced imaging and phase propagation imaging [J]. Physics in medicine and biology. 2005, 50(4): 709-724.
    
    [21] Momose A, Takeda T, Itai Y. Contrast effect of blood on phase-contrast X-ray imaging [J]. Academic radiology. 1995, 2(10): 883-887.
    [1]Furuya M,Nishiyama M,Kasuya Y,et al.Pathophysiology of tumor neovascularization[J].Vascular Health & Risk Management,2005,1(4):277-290.
    [2]Plead JM,Parkinson DR.Clinical implications of tumor-associated neovascularization and currentantiangiogenic strategies for the treatment of malignancies of pancreas[J].Cancer,1996,78(3 suppl):680-687.
    [3]Momose A,Takeda T,Itai Y.Blood vessels:depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat-feasibility study[J].Radiology,2000,217:593-596.
    [4]Takeda T,Momose A,Wu J,et al.Vessel imaging by interferometric phase-contrast X-ray technique[J].Circulation,2002,105:1708-1712
    [5]Momose A,Takeda T,Itai Y.Contrast effect of blood on phase-contrast X-ray imaging[J].Acad.Radiol.1995,2:883-887.
    [6]Hwu Y,Tsai WL,Je JH,et al.Synchrotron microangiography with no contrast agent[J].Phys.Med.Biol.2004,49:501-508.
    [7]Kiss MZ,Sayers DE,Zhong Z,et al.Improved image contrast of calcifications in breast tissue specimens using diffraction enhanced imaging[J].Phys.Med.Biol.2004,49:3427-3439.
    [8]Rau C,Robinson IK,Richter CP.Visualizing soft tissue in the mammalian cochlea with coherent hard X-rays[J].Microsc.Res.Tech.2006,69:660-665.
    [9]Takeda T,Momose A,Itai Y,et al.Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions[J].Acad.Radiol.1995,2:799-803
    [10]Takeda T,Momose A,Yu Q,et al.Phase-contrast X-ray imaging with a large monolithic X-ray interferometer[J].J.Synchrotron.Radiat,2000,7:280-282
    [11]Hwu Y,Tsai WL,Chang HM,et al.Imaging cells and tissues with refractive index radiology[J].Biophys.J.2004,87:4180-4187
    [12]Lewis RA,Hall CJ,Hufton AP,et al.X-ray refraction effects:application to the imaging of biological tissues[J].Br.J.Radiol,2003,76:301-308
    [13]LIU Chen-Lin,YAN Xiao-Hui,ZHANG Xin-Yi,et al.Evaluation of x-ray diffraction enhanced imaging in the diagnosis of breast cancer[J].Phys.Med.Bio1.2007,52:419-427.
    [14]Gao D,Pogany A,Stevenson AW,et al.Phase-contrast radiography[J].Radiographics,1998,18:1257-1267.
    [15]Momose A,Takeda T,Itai Y,et al.Phase-contrast X-ray computed tomography for observing biological soft tissues[J].Nat.Med.1996,2:473-475.
    [16]Mollenhauer J,Aurich ME,Zhong Z,et al.Diffraction-enhanced X-ray imaging of articular cartilage[J].Osteoarthritis Cartilage,2002,10:163-171.
    [17]Davis TJ,Gao D,Gureyev TE:Phase-contrast imaging of weakly absorbing materials using hard X-rays[J].Nature,1995,373:595-598.
    [18]Li J,Zhong Z,Lidtke R,et al.Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging[J].J.Anat.2003,202:463-470.
    [19]Beckmann F,Heise K,Kolsch B,et al.Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography[J].Biophys.J.1999,76:98-102.
    [20]JIANG Xiao-Ming,LI Gang,CHEN Zhi-Hua,et al.Refractive Contrast in X-Ray Diffraction Enhanced Imaging[J].HEP&NP,2004,28:1282(in Chinese).
    [21]Chapman D,Thomlinson W,Johnston RE,et al.Diffraction enhanced x-ray imaging[J].Phys.Med.Biol.1997,42:2015-2025.
    [22]Pagot E,Fiedler S,Cloetens P,et al.Quantitative comparison between two phase contrast techniques:diffraction enhanced imaging and phase propagation imaging[J].Phys.Med.Biol.2005,50:709-724.
    [1]Momose A,Takeda T,Itai Y,Hirano K.Phase-contrast X-ray computed tomography for observing biological soft tissues[J].Nature medicine.1996,2(4):473-475.
    [2]Gao D,Pogany A,Stevenson AW,Wilkins SW.Phase-contrast radiography[J].Radiographics.1998,18(5):1257-1267.
    [3]Rau C,Robinson IK,Richter CP.Visualizing soft tissue in the mammalian cochlea with coherent hard X-rays[J].Microscopy research and technique.2006,69(8):660-665.
    [4]Hwu Y,Tsai WL,Chang HM,et al.Imaging cells and tissues with refractive index radiology[J].Biophysical journal.2004,87(6):4180-4187.
    [5]Yoon CY,Sung DJ,Lee JH,et al.Imaging of renal and prostate carcinoma with refractive index radiology[J].Int J Urol.2007,14(2):96-103.
    [6]Li J,Williams JM,Zhong Z,et al.Reliability of diffraction enhanced imaging for assessment of cartilage lesions,ex vivo[J].Osteoarthritis and cartilage/OARS,Osteoarthritis Research Society.2005,13(3):187-197.
    [7]Takeda T,Momose A,Wu J,et al.Vessel imaging by interferometric phase-contrast X-ray technique[J].Circulation.2002,105(14):1708-1712.
    [8]Momose A,Takeda T,Itai Y.Contrast effect of blood on phase-contrast X-ray imaging[J].Academic radiology.1995,2(10):883-887.
    [9]Li J,Zhong Z,Lidtke R,et al.Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging.Journal of anatomy[J].2003,202(5):463-470.
    [10]Lewis RA,Hall CJ,Hufton AP,et al.X-ray refraction effects:application to the imaging of biological tissues[J].The British journal of radiology.2003,76(905):301-308.
    [1]Gao D,Pogany A,Stevenson AW,et al.Phase-contrast radiography.Radiographics[J].1998,18(5):1257-67.
    [2]Li J,Zhong Z,Lidtke R,et al.Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging[J].Journal of Anatomy.2003,202(5):463-70.
    [3]Beckmann F,Heise K,Kolsch B,et al.Three-dimensional imaging of nerve tissue by x-ray phase-contrast microtomography[J].Biophysical journal.1999,76(1):98-102.
    [4]Rau C,Robinson IK,Richter CP.Visualizing soft tissue in the mammalian cochlea with coherent hard X-rays[J].Microscopy research and technique.2006,69(8):660-5.
    [5]陈建文,高鸿奕,李儒新,等.X射线相衬成像.物理学进展[J],2005,25(2):174-194.
    [6]Momose A,Takeda T,Itai Y.Contrast effect of blood on phase-contrast X-ray imaging.Academic radiology[J].1995,2(10):883-7.
    [7]Momose A,Takeda T,Itai Y,Hirano K.Phase-contrast X-ray computed tomography for observing biological soft tissues[J].Nature medicine.1996,2(4):473-5.
    [8]Chapman D,Thomlinson W,Johnston RE,et al.Diffraction enhanced x-ray imaging[J].Physics in medicine and biology.1997,42(11):2015-25.
    [9]Chapman D,Pisano E,Thomlinson W,et al.Medical applications of diffraction enhanced imaging[J].Breast disease.1998,10(3-4):197-207.
    [10]朱配平,袁清习,黄万霞,等.衍射增强成像原理[J].物理学报,2006,55(03):1089-10.
    [11]Castelli E,Arfelli F,Dreossi D,et al.Clinical mammography at the SYRMEP beam line[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment.2007,572(1):237-40.
    [12]Dreossi D,Bergamaschi A,Schmitt B,,et al.Clinical mammography at the SYRMEP beam line: Toward the digital detection system [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007, 576(1):160-3.
    
    [13] Longo R, Pani S, Arfelli F, et al. Morphological breast imaging: tomography and digital mammography with synchrotron radiation [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003, 497(1):9-13.
    
    [14] Pisano ED, Johnston RE, Chapman D, et al. Human breast cancer specimens: diffraction-enhanced imaging with histologic correlation-improved conspicuity of lesion detail compared with digital radiography [J] . Radiology. 2000,214(3):895-901.
    
    [15] Burattini E, Cossu E, Di Maggio C, et al. Mammography with synchrotron radiation [J]. Radiology. 1995 , 195(1):239-44.
    
    [16] Baruchel J, Cloetens P, Hartwig J, et al. Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography [J]. Journal of synchrotron radiation. 2000, 1;7(Pt 3): 196-201.
    
    [17] Arfelli F, Bonvicini V, Bravin A, et al. Mammography of a phantom and breast tissue with synchrotron radiation and a linear-array silicon detector [J]. Radiology. 1998, 208(3):709-15.
    
    [18] Keyrilainen J, Fernandez M, Fiedler S, et al. Visualisation of calcifications and thin collagen strands in human breast tumour specimens by the diffraction-enhanced imaging technique: a comparison with conventional mammography and histology. European journal of radiology [J]. 2005, 53(2):226-37.
    
    [19] Dreossi D, Abrami A, Arfelli F, et al. The mammography project at the SYRMEP beamline [J]. European journal of radiology.In Press, Corrected Proof.
    
    [20] Jung H, Kim HJ, Kim EK, et al. Comparison of unmonochromatized synchrotron radiation and conventional X-rays in the imaging of mammographic phantom and human breast specimens: a preliminary result [J]. Yonsei medical journal. 2005 , 46(1):95-103.
    [21] Tanaka T, Honda C, Matsuo S, et al. The first trial of phase contrast imaging for digital full-field mammography using a practical molybdenum x-ray tube [J]. Investigative radiology. 2005 ,40(7):385-96.
    
    [22] Bravin A, Keyrilainen J, Fernandez M, et al. High-resolution CT by diffraction-enhanced x-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology [J]. Physics in medicine and biology. 2007, 52(8):2197-211.
    
    [23] Yuasa T, Hashimoto E, Maksimenko A, et al. Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2008, 591(3):546-57.
    
    [24] Mollenhauer J, Aurich ME, Zhong Z, et al. Diffraction-enhanced X-ray imaging of articular cartilage [J]. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2002 ,10(3):163-71.
    
    [25] Li J, Zhong Z, Lidtke R, et al. Radiography of soft tissue of the foot and ankle with diffraction enhanced imaging [J]. Journal of anatomy. 2003 , 202(5):463-70.
    
    [26] Wagner A, Aurich M, Sieber N, et al. Options and limitations of joint cartilage imaging: DEI in comparison to MRI and sonography [J] . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2005, 548(1-2):47-53.
    
    [27] Muehleman C, Majumdar S, Sema Issever A, et al. X-ray detection of structural orientation in human articular cartilage [J]. Osteoarthritis and Cartilage. 2004,12(2):97-105.
    
    [28] Muehleman C, Li J, Zhong Z. Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage [J]. Osteoarthritis and Cartilage. 2006,14(9):882-8.
    
    [29] Li J, Williams JM, Zhong Z, et al. Reliability of diffraction enhanced imaging for assessment of cartilage lesions, ex vivo [J]. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. 2005, 13(3):187-97.
    [30] Wagner A, Sachse A, Keller M, et al. Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging [J]. Physics in medicine and biology. 2006, 51(5):1313-24.
    
    [31] Takeda T, Momose A, Itai Y, et al. Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions [J]. Academic radiology. 1995, 2(9)799-803.
    
    [32] Takeda T, Momose A, Hirano K, et al. Human carcinoma: early experience with phase-contrast X-ray CT with synchrotron radiation-comparative specimen study with optical microscopy [J]. Radiology. 2000, 214(1 ):298-301.
    
    [33] Takeda T, Wu J, Lwin TT, et al. Interferometer-based phase-contrast X-ray computed tomography of colon cancer specimens: comparative study with 4.74-T magnetic resonance imaging and optical microscopy [J]. Journal of computer assisted tomography. 2007, 31(2):214-7.
    
    [34] Sera T, Uesugi K, Yagi N, et al. High-resolution visualization of tumours in rabbit lung using refraction contrast X-ray imaging [J]. European journal of radiology.ln Press, Corrected Proof.
    
    [35] Pfeiffer F, Bunk O, David C, et al. High-resolution brain tumor visualization using three-dimensional x-ray phase contrast tomography [J]. Physics in medicine and biology. 2007, 52(23):6923-30.
    
    [36] Kitchen MJ, Paganin D, Lewis RA, et al. On the origin of speckle in x-ray phase contrast images of lung tissue [J]. Physics in medicine and biology. 2004, 49(18):4335-48.
    
    [37] Lewis RA, Yagi N, Kitchen MJ, et al. Dynamic imaging of the lungs using x-ray phase contrast. Physics in medicine and biology [J]. 2005, 50(21):5031-40.
    
    [38] Siu KKW, Morgan KS, Paganin DM, et al. Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease. European journal of radiology [J].In Press, Corrected Proof.
    
    [39] Sera T, Yokota H, Fujisaki K, et al. Development of high-resolution 4D in vivo-CT for visualization of cardiac and respiratory deformations of small animals[J].Physics in medicine and biology.2008,53(16):4285-301.
    [40]Momose A,Takeda T,Itai Y.Blood vessels:depiction at phase-contrast X-ray imaging without contrast agents in the mouse and rat-feasibility study[J].Radiology.2000,217(2):593-6.
    [41]Takeda T,Momose A,Wu J,et al.Vessel imaging by interferometric phase-contrast X-ray technique.Circulation[J].2002,105(14):1708-12.
    [42]Kim JW,Seo HS,Hwu Y,et al.In vivo real-time vessel imaging and ex vivo 3D reconstruction of atherosclerotic plaque in apolipoprotein E-knockout mice using synchrotron radiation microscopy[J].International journal of cardiology.2007,114(2):166-71.
    [43]Hwu Y,Tsai WL,Je JH,et al.Synchrotron microangiography with no contrast agent[J].Physics in medicine and biology.2004,49(4):501-8.
    [44]Kohmura Y,Okada K,Takeuchi A,et al.High spatial resolution hard X-ray microscope using X-ray refractive lens and phase contrast imaging experiments[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment.2001,467-468(Part 2):881-3.
    [45]Kagoshima Y,Yokoyama Y,Ibuki T,et al.High-resolution hard X-ray phase-contrast microscopy with a large-diameter and high-numerical-aperture zone plate[J].Journal of synchrotron radiation.2002,9(Pt 3):132-5.
    [46]Kim GB,Yoon YJ,Shin TJ,et al.X-ray imaging of various biological samples using a phase-contrast hard X-ray microscope[J].Microscopy research and technique.2008,71(9):639-43.
    [47]Yoon CY,Sung DJ,Lee JH,et al.Imaging of renal and prostate carcinoma with refractive index radiology[J].Int J Urol.2007,14(2):96-103.
    [1]Dix WR.Intravenous coronary angiography with synchrotron radiation[J].Prog Biophys Mol Biol,1995,63:159-191.
    [2]姜小明,盛伟繁,徐君全,等.上海同步辐射装置医学应用光束线和实验站物理设计[J].全国第二届同步辐射专业委员会会员代表大会暨学术年会会议论文.2000,433-442.
    [3]Jacobson B.Dichromatic absorption radiography;dichromography[J].Acta radiol.1953,39:437-452.
    [4]Thompson AC,Zeman HD,Otis JN,et al.Transvenous coronary angiography in dogs using synchrotron radiation[J].Int J Card Imaging,1986,2:53-58.
    [5]Rubenstein E,Hofstadter R,Zeman HD,et al.Transvenous coronary angiography in humans using synchrotron radiation[J].Proc Natl Acad Sci U S A,1986,83:9724-9728.
    [6]Dix WR,Kupper W,Dill T,et al.Comparison of intravenous coronary angiography using synchrotron radiation with selective coronary angiography[J].J Synchrotron Radiat,2003,10:219-227.
    [7]Lohmann M,Besch HJ,Dix WR,et al.A high sensitive two-line detector with large dynamic range for intravenous coronary angiography[J].Nuclear Instruments and Methods in Physics Research Section A,1998,419:276-283.
    [8]Lohmann M,Besch HJ,Dix WR,et al.Demands on a detector for intravenous coronary angiography—experience after 379 patients[J].Nuclear Instruments and Methods in Physics Research Section A,2003,510:126-137.
    [9]Dill T,Dix W-R,Hamm CW.Intravenous coronary angiography with synchrotron radiation[J].EUR J PHYS,1998,19:499-511.
    [10]Hyodo K,Ando M,Oku Y,et al:Development of a two-dimensional imaging system for clinical applications of intravenous coronary angiography using intense synchrotron radiation produced by a multipole wiggler[J].J Synchrotron Radiat,1998,5:1123-1126.
    [11]Takeda T,Itai Y,Jin W,et al:Two-dimensional intravenous coronary arteriography using above-K-edge monochromatic synchrotron x-ray [J]. Academic Radiology, 1995, 2: 602-608.
    
    [12] Umetani K, Ueda K, Takeda T, et al. Two-dimensional real-time imaging system for subtraction angiography using an iodine filter [J]. Proceedings of the 4th international conference on synchrotron radiation instrumentation, 1992,629-631.
    
    [13] Takeda T, Itai Y, Yoshioka H, et al. Synchrotron radiation cine K-edge energy subtraction coronary arteriography using an iodine filter method [J]. Med Biol Eng Comput, 1994, 32: 462-468.
    
    [14] Thompson AC, Zeman HD, Otis JN, et al. Transvenous coronary angiography in dogs using synchrotron radiation [J]. Int J Card Imaging, 1986, 2: 53-58.
    
    [15] Ueda K, Umetani K, Takeda T, et al. A cine K-edge subtraction angiographic system for animal studies [J]. International conference on synchrotron radiation instrumentation, 1989, 2272-2275.
    
    [16] Thomlinson W, Gmur N, Chapman D, et al. 1ST operation of the medical research facility at the NSLS for coronary angiography[J]. Review of Scientific Instruments, 1992, 63: 625-628.
    
    [17] Besch HJ. Gaseous detectors for synchrotron radiation applications in medical radiology [J]. Nuclear Instruments and Methods in Physics Research Section A, 1995, 360: 277-282, 1995.
    
    [18] Suortti P, Thomlinson W: A bent laue crystal monochromator for angiography at the NSLS [J]. Nuclear Instruments and Methods in Physics Research Section A, 1988, 269: 639-648.
    
    [19] Suortti P, Thomlinson W, Chapman D, et al. A single crystal bent Laue monochromator for coronary angiography [J]. Nuclear Instruments and Methods in Physics Research Section A, 1993, 336: 304-309.
    
    [20] Elleaume H, Fiedler S, Esteve F, et al. First human transvenous coronary angiography at the European Synchrotron Radiation Facility [J]. Phys Med Biol, 2000, 45: L39-43.
    [21] Thompson AC, Rubenstein E, Zeman HD, et al. coronary angiography using synchrotron radiation[J]. Review of Scientific Instruments, 1989, 60: 1674-1679.
    
    [22] Hamm CW, Dix W-R, Rust C, et al. Intravenous coronary angiography by use of dichromography with synchrotron radiation[J]. Journal of the American College of Cardiology, 1996, 27: 315-315.
    
    [23] Dix WR, Dill T, Kupper W, et al. Intravenous coronary angiography with synchrotron radiation[J]. International Congress Series, 2001,1230: 930-935.
    
    [24] Dix WR, Dill T, Hamm CW, et al. Intravenous coronary angiography with synchrotron radiation at HASYLAB[J]. Nuclear Physics A, 1999, 654: 1043-1046.
    
    [25] Bertrand B, Esteve F, Elleaume H, et al. comparison of synchrotron radiation angiography with conventional angiography for the diagnosis of in-stent restenosis after percutaneous transluminal coronary angioplasty[J]. Eur Heart J, 2005, 26: 1284-1291.
    
    [26] Ohtsuka S, Sugishita Y, Takeda T, et al. Dynamic intravenous coronary angiography using 2D monochromatic synchrotron radiation[J]. Br J Radiol, 1999, 72: 24-28.
    
    [27] Ohtsuka S, Hyodo K, Jin W, et al. Overview of clinical intravenous coronary angiography both in Japan and at ESRF[J]. Nuclear Instruments and Methods in Physics Research Section A, 2005, 548: 78-83.
    
    [28] Takeda T, Umetani K, Doi T, et al. Two-dimensional aortographic coronary arteriography with above-K-edge monochromatic synchrotron radiation [J]. Acad Radiol, 1997, 4: 438-445.
    
    [29] Mori H, Tanaka E, Hyodo K, et al. Synchrotron microangiography reveals configurational changes and to-and-fro flow in intramyocardial vessels[J]. Am J Physiol, 1999,276:429-437.
    
    [30] Tanaka A, Mori H, Tanaka E, et al. Branching patterns of intramural coronary vessels determined by microangiography using synchrotron radiation[J]. Am J Physiol, 1999, 276: 2262-2267.
    [31] Zhong Z, Chapman D, Menk R, et al. Monochromatic energy-subtraction radiography using a rotating anode source and a bent Laue monochromator[J]. Phys Med Biol, 1997, 42: 1751-1762.
    
    [32] Samelli A, Taibi A, Tuffanelli A, et al: K-edge digital subtraction imaging based on a dichromatic and compact x-ray source [J]. Physics in Medicine and Biology, 2004, 49: 3291-3305.
    
    [33] Esteve F, Elleaume H, Bertrand B, et al. Coronary angiography with synchrotron X-ray source on pigs after iodine or gadolinium intravenous injection[J]. Acad Radiol, 2002, 9 (Suppl 1): 92-97.
    
    [34] Samelli A, Nemoz C, Elleaume H, et al. Quantitative analysis of synchrotron radiation intravenous angiographic images [J]. Phys Med Biol, 2005, 50: 725-740.
    
    [35] Jung M, Dill T, Dix WR, et al. Rapid computer-assisted diagnostics in intravenous coronary angiography [J]. Computers in Cardiology, 1999, 26: 359-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700