C5a对血管内皮细胞表达血栓调节蛋白的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脓毒症导致多脏器功能障碍综合征(MODS)的发病机理主要与失控的宿主防御反应导致炎症、内皮损伤、凝血亢进、纤溶减弱等有关。血管内皮细胞(VEC)是血管内皮基本的结构和功能单位,恒定地暴露于血流中,其表面受体易受到多种因素的影响,可使VEC合成、表达炎症和凝血相关的因子。
     补体活化产物C5a在脓毒症及其并发的MODS发病过程中,既可通过趋化白细胞和激活炎症效应细胞表达促炎分子参与全身炎症反应;也可直接激活炎症靶细胞VEC、中性粒细胞(PMN),促使其表达多种粘附分子,诱导PMN与VEC黏附和跨膜。同时,C5a也可刺激VEC产生组织因子而参与血管内凝血的启动,在局部C5a还能调节炎症介质的表达、促进趋化PMN聚集、诱导PMN脱颗粒,造成VEC的炎症损伤,这些均成为C5a在脓毒症中引起MODS的病理基础。而C5a参与以上组织炎症反应、损伤及微循环障碍主要通过炎症细胞的C5a受体(C5aR)介导;阻断C5a与C5aR的相互作用有望抑制其产生的炎症反应、损伤及微循环障碍的病理过程。
     血栓调节素(TM,CD141)是血管VEC合成的一种膜表面糖蛋白,是VEC表面的凝血酶受体之一,在抗凝血与抗炎方面都有着重要作用,而凝血、炎症又是脓毒症脏器损伤的病理基础,同时C5a也是诱发脓毒症的原因之一。因此,探讨C5a对TM在VEC上的表达的影响及其机制可以为指导脓毒症的治疗提供一个新的方向。
     目的:探讨补体C5a对人脐静脉VEC(HUVECs)血栓调节蛋白(TM)表达的影响。
     方法:通过建立HUVEC体外培养,观察1、以终浓度200 ug/L重组人C5a(rh-C5a)刺激HUVECs 8、12、16、20 h以及以终浓度100、200、300ug/L的C5a刺激HUVECs 12 h;2、以终浓度为200ug/L的C5a分别刺激HUVECs 4、8、12h时即用自主合成的C5aR反义肽(R4)以终浓度为2mg/L进行干预,以16小时作为刺激终点;3、以终浓度为2ug/ml的BAY 11-7082[核因子-κB(NF-κB)的抑制剂]在37℃孵育1小时后,再以终浓度为200ng/ml的C5a作用于HUVECs 12小时。采用实时荧光定量PCR、蛋白免疫印迹法(Western blot)分别检测TM的mRNA及蛋白表达变化;观察C5a对其表达TM的量-效和时-效关系、R4的拮抗效能及NF-κB信号通路的作用。
     结果:1、C5a抑制了HUVECs在TM的mRNA和细胞膜表面蛋白水平表达。同时,C5a对TM表达的抑制作用存在量-效关系(蛋白比(106):1.1325±0.0397,0.8018±0.0256,0.7322±0.0436;mRNA比(10-4):4.0177±0.2046,0.3611±0.0351,0.1819±0.0146,P均<0.05)和时-效关系(蛋白比:0.9311±0.01567,0.7105±0.03391,0.6548±0.04285,0.6269±0.04031;mRNA(10-4):3.0171±0.8040,0.3829±0.2024,0.0882±0.0027,0.0705±0.0080,P均<0.05);TM的mRNA水平于200 ug/L C5a刺激12 h后降低程度明显减缓,蛋白水平于300 ug/L C5a刺激12 h后降低程度明显减缓。2、在mRNA和细胞膜表面蛋白水平, R4均能减少C5a降低HUVECs表达TM的程度,且越早进行干预其效果越明显。3、NF-κB信号通路被阻断后,减弱了C5a对HUVECs在TM的mRNA和细胞膜表面蛋白水平表达的抑制作用。
     结论:
     1、C5a刺激可抑制HUVECs的TM结构基因表达,进而减弱TM的蛋白翻译,从而参与了脓毒症时凝血亢进、炎症损害的病理生理过程。
     2、应用C5a拮抗多肽能减轻C5a对HUVECs表达TM的抑制程度,提示阻断C5a与C5aR的结合可改善C5a参与了脓毒症时凝血亢进、炎症损害的病理生理过程。
     3、应用NF-κB抑制剂能减少C5a对HUVECs表达TM的抑制程度,提示TM表达受NF-κB信号通路调控。
The mechanism of Multiple organ dysfunction syndrome(MODS) lesded by systemic inflammatory response syndrome(SIRS) is associated with uncontrolled host defense responses that lead to inflammation, endothelial damage, enhanced coagulation and diminished fibrinolysis. Vein endothelial cells (VEC) is the base of blood vessel endothelium, they always exposed in blood, and their various kinds of receptors on the surface were influenced by different factors, and lead VECs to produce and express various kinds of inflammation mediator which are associated with inflammation and coagulation.
     The C5a do its job both at SIRS and MODS,it not only can reglaution polymorphonuclear neutrophil (PMN) motion and activate inflammation cells to express promoptor factors to join systemic inflammatory response, but also can activate target cell, such as VECs and PMN, lead them to express lots of adhesion molecule, and then leads them activate,adhesion,traval to outside of blood vessel. At another side , C5a can activate VECs to express tissues factor and leads to coagulation in vessels. At partly of organ, C5a can regulate the expression of inflammation mediator, promopt PMN motion and assemble and injury VECs. All of this are pathological base of C5a works in MODS. C5a induce all of injury is based on combining with its receptor C5aR, blocking the combining with C5a and C5aR, perhaps, can restrain the pathological process which can be leaded by C5a.
     Thrombomodulin (TM,CD141) is a kind of glycoprotein producted by VECs on its surface, it is one of the receptors of thrombin, too.TM is a important role both at anti-coagulation and at anti- inflammation,and coagulation and inflammation are pathological base of MODS in SIRS. Another side, C5a is one of the reasons inducing SIRS. So by this study, we can know the regulation of VECs express TM by C5a and its mechanism,by this means, we can provide a new method for treat with SIRS.
     Objective:To investigate the effect of C5a on the express of thrombomodulin of Human umbilical vein endothelial cells (HUVECs).
     Methods: 1,HUVECs cultured in vitro were stimulated with C5a in 8,12,16,20 hours by concentration of 200 ng/ml, and by different concentrations of 100、200、300ng/ml in 12 hours respectively. 2,HUVECs cultured in vitro were stimulated by concentration of C5a with 200 ng/ml at 4h,8h,12h, and then interfered by antagonism polypeptide of C5a receptor(R4) with 2mg/L,at the end by 16h. 3,Use inhibitor of NF-κB (BAY 11-7082)by concentration of 2ug/ml culture HUVECs for 1h, and then stimulated by concentration of C5a with 200 ng/ml for 12h.TM expressions at mRNA levels and protein levels was detected by Real-time PCR and Western-blot respectively, and the dose and time depended effect of C5a on the expression of TM is evaluated.
     Results: 1,C5a down-regulates the TM expression at both protein and mRNA level. The down-regulation is time-dependence(1.1325±0.0397,0.8018±0.0256,0.7322±0.0436 at protein level and 4.0177±0.2046,0.3611±0.0351,0.1819±0.0146 (10-4)at mRNA level,both of them p<0.05) and dose-dependence : (0.9311±0.0157,0.7105±0.0339,0.6548±0.0429,0.6269±0.0403 at protein level and 3.0171±0.8040,0.3829±0.2024,0.0882±0.0027,0.0705±0.0080 (10-4) at mRNA level,both of them p<0.05).When concentration of C5a at 200 ng/ml is used to stimulate HUVECs for 12 hours, the underspeed of TM at mRNA level will slow down obviously;concentration of C5a at 300 ng/ml is used to stimulate HUVECs for 12 hours, the underspeed of TM at protein level will slow down obviously. 2,R4 can decrease the level of regulation of HUVEs express TM by C5a at protein and mRNA level, and the earlier interfered by R4 the decreasing of the down-regulation is more obviously. 3, NF-κB pathway is blocked, both at mRNA and protein level, the down-regulation of TM by C5a is decrease.
     Conclusions:
     1,C5a can depress the gene expression of TM, and then effect the protein’s translation. By this means , C5a can lead to coagulation-accentuation and inflammation-injuries in sepsis.
     2, Block the combination between C5a and C5aR, the down-regulation of TM by C5a is decrease. This reveal that blocking the combining of C5a and C5aR can decrease the injury of coagulation-accentuation and inflammation-injuries in sepsis.
     3, Inhibit the of NF-κB can decrease the down-regulation of TM by C5a, This reveal that NF-κB pathway can regulate the express of TM.
引文
1、Bernard GR, Artigas A, Brigham KL, et al. Report of the American-European consensus conference on ARDS: definitions, mechanisms,relevant outcomes, and clinical trial coordination. Intensive Care Med,1994;20:225-236.
    2、MacLaren R, Stringer KA Emerging role of anticoagulants and fibrinolytics in the treatment of acute respiratory distress syndrome. Pharmacotherapy. 2007 Jun;27(6):860-73.
    3、Shahzad G. Raja. The‘dark side’of cardiopulmonary bypass. European Journal of Cardio-thoracic Surgery 906 25 2004 905–907.
    4、Wehlin L, Vedin J, Vaage J, Lundahl J. Activation of complement and leukocyte receptors during on and off pump coronary artery bypass surgery. Eur J Cardiothorac Surg 2004;25:35–42.
    5、Karen. Welty-wolf et al. Antibody to Intercellular Adhesion Molecule 1 (CD54) Decreases Survival and Not Lung Injury in Baboons with Sepsis. Am. J. Respir. Crit. Care Med., Volume 163, Number 3, March 2001, 665-673.
    6、Guo RF, Niels CR, and Peter AW. Role of C5a-C5aR Interaction in Sepsis. SHOCK, 2004;21(1):1-7.
    7、Niederbichler AD, Hoesel LM, Westfall MV, et al. An essential role for complement C5a in tne pathogenesis of septic cardiac dysfuntion. The Journal of Experimental Medicine 2006; 203(1):53-61.
    8、Gerard C. Complement C5a in the sepsis syndrome--too much of a good thing? N Engl J Med. 2003;348(2):167-169.
    9、Huber-Lang MS, Younkin EM, Sarma JV. et al. Complement-induced impairment of innate immunity during sepsis. J Immunol 2002;169(6):3223-31.
    10、Ward PA. The dark side of C5a in sepsis. Nat Rev mmunol, 2004, 4;133-142.
    11、陈月,李保胜,李元朝等.CSa反义肤对脓毒症小鼠的保护作用及其机制.中华实验外科杂志,2005,12(22)-1:1433-1435
    12、Niederbichler AD, Hoesel LM, Westfall MV, et al. An essential role for complement C5a in tne pathogenesis of septic cardiac dysfuntion. The Journal ofExperimental Medicine 2006; 203(1):53-61
    13、Richard H. Sohn, Clayton B. Deming et al. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood, 15 May 2005, Vol. 105, No. 10,3910-3917.
    14、Esmon CT,Owen WG.The discovery of thrombomodulin. J Thromb Haemost 2004,2( 2):209-213.
    15、Koyama T, Parkinson JF, SiéP, Bang NU, Müller BG, Preissner KT. Different glycoforms of human thrombomodulin–Their glycosaminoglycan - dependent modulatory effects on thrombin inactivation by heparin cofactor II and antithrombin III. Eur J Biochem. 1991; 198: 563–570.
    16、Hamada H, Ishii H, Sakyo K, Horie S, Nishiki K, Kazama M. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood. 1995; 86: 225–233.
    17、Ikeguchi H, Maruyama S, Morita Y, Fujita Y, Kato T, Natori Y, Akatsu H, Campbell W, Okada N, Okada H, Yuzawa Y, Matsuo S. Effects of human soluble thrombomodulin on experimental glomerulonephritis. Kidney Int. 2002; 61: 490–501.
    18、Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: Involvement of its lectin-like domain. J Biol Chem. 2003.
    19、Kazuhiro Abeyama, David M. Stern, Yuji Ito,et al.The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest. 2005 May 2; 115(5): 1267–1274
    20、Kenneth Segers, Bj?rn Dahlb?ck, Paul E. Bock, et al.The Role of Thrombin Exosites I and II in the Activation of Human Coagulation Factor V. J. Biol. Chem., Vol. 282, Issue 47, 33915-33924, November 23, 2007
    21、Shaun R. Coughlin. Thrombin signalling and protease-activated receptors Nature 407(2000), 258-264
    22、Campbell, W. D, Lazoura, E., Okada, N. Inactivation of C3a and C5a Octapeptides by Carboxvpeptidase R and Carboxvpeptidase N Microbiol.Immunol(2002). 46, 131-134
    23、Willemse JL, Hendriks DF. A rapid and sensitive assay for the quantitation of carboxypeptidase N, an important regulator of inflammation. Clin Chim Acta. 2006 Sep;371(1-2):124-9. Epub 2006 Apr 17
    24、Steven M. Dudek , Joe G. N. Garcia. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91: 1487-1500, 2001
    25、Charles T. Esmon. The Protein C Pathway. Chest. 2003;124:26S-32S.
    26、Marlies Van de Wouwer et al. Thrombomodulin-Protein C-EPCR System Integrated to Regulate Coagulation and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24:1374.
    27、Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-kB activity. Annu Rev Immunol 2000;18:621–63.
    28、Shu Fang Liu and Asrar B. Malik. NF-kB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290: L622-L645, 2006
    29、Sohn RH, Deming CB, Johns DC. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood. 2005 May 15;105(10):3910-7.
    30、Koyama T, Parkinson JF, SiéP, et al. Different glycoforms of human thrombomodulin–Their glycosaminoglycan-dependent modulatory effects on thrombin inactivation by heparin cofactor II and antithrombin III. Eur J Biochem. 1991; 198: 563–570.
    31、Gerard C. Complement C5a in the sepsis syndrome--too much of a good thing? N Engl J Med. 2003;348(2):167-169.
    1. Bernard GR, Artigas A, Brigham KL, et al. Report of the American-European consensus conference on ARDS: definitions, mechanisms,relevant outcomes, and clinical trial coordination. Intensive Care Med,1994;20:225-236
    2. MacLaren R, Stringer K. A Emerging role of anticoagulants and fibrinolytics in the treatment of acute respiratory distress syndrome. Pharmacotherapy. 2007 Jun;27(6):860-73.
    3. Shahzad G. Raja. The‘dark side’of cardiopulmonary bypass. European Journal of Cardio-thoracic Surgery 906 25 2004 905–907.
    4. Wehlin L, Vedin J, Vaage J, et al. Activation of complement and leukocyte receptors during on and off pump coronary artery bypass surgery. Eur J Cardiothorac Surg 2004;25:35–42.
    5. Karen. Welty-wolf Antibody to Intercellular Adhesion Molecule 1 (CD54) Decreases Survival and Not Lung Injury in Baboons with Sepsis. Am. J. Respir. Crit. Care Med., Volume 163, Number 3, March 2001, 665-673.
    6. D'Angelo A, Della Valle P, Giudici D, et al. Protein C and coagulation in sepsis.Minerva Anestesiol 2004 70(5):339-350
    7. Suzuki K, Kusumoto S, Deyashiki Y, et al. Structure and expression of human TM, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 1987; 6: 1891–1897
    8. Tsiang M, Lentz SR, Sadler JE. Functional domains of membrane-bound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J Biol Chem. 1992; 267: 6164–6170.
    9. Kokame K, Zheng X, Sadler J. Activation of thrombin-activatable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J Biol Chem. 1998; 273: 12135–12139.
    10. Koyama T, Parkinson JF, SiéP, et al. Different glycoforms of human thrombomodulin–Their glycosaminoglycan-dependent modulatory effects on thrombin inactivation by heparin cofactor II and antithrombin III. Eur J Biochem. 1991; 198: 563–570.
    11. Edward M. Conway, Marlies Van de Wouwer The Lectin-like Domain of Thrombomodulin Confers Protection from Neutrophil-mediated Tissue Damage by Suppressing Adhesion Molecule Expression via Nuclear FactorκB and Mitogen-activated Protein Kinase Pathways. The Journal of Experimental Medicine, Volume 196, Number 5, September 2, 2002 565-577
    12. Van de Wouwer M, Plaisance S, De Vriese A, et al. The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost. 2006 Aug;4(8):1813-24
    13. Kazuhiro Abeyama, David M. Stern, Yuji Ito, et al.The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest. 2005 May 2; 115(5): 1267–1274
    14. Yang H, Wang H,Tracey K J.HMG1 rediscovered as a cytokine.Shock,2001,15(4):247-257
    15. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–195
    16. Taguchi A, Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405:354–360
    17. Andersson U, High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 2000;192:565–570
    18. Schmidt AM, Yan SD, Yan SF, et al. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 2001;108:949–955
    19. Fiuza C. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–2660
    20. Kenneth Segers, Bj?rn Dahlb?ck, Paul E. Bock, et al.The Role of Thrombin Exosites I and II in the Activation of Human Coagulation Factor V. J. Biol. Chem., Vol. 282, Issue 47, 33915-33924, November 23, 2007
    21. Timothy Myles, Toshihiko Nishimura, Thomas H. Yun, et al. Thrombin Activatable Fibrinolysis Inhibitor, a Potential Regulator of Vascular Inflammation. J. Biol. Chem., Vol. 278, Issue 51, 51059-51067, December 19, 2003
    22. Esmon, C. T. Inflammation, sepsis, and coagulation. Haematologica 84, 254–259 ( 1999).
    23. Shaun R. Coughlin. Thrombin signalling and protease-activated receptors Nature 407(2000), 258-264
    24. John H. Cleator, Wen Qin Zhu, Douglas E. Vaughan, et al .Differential regulation of endothelial exocytosis of P-selectin and von Willebrand factor by protease-activated receptors and cAMP,Blood. 2006 April 1; 107(7): 2736–2744
    25. Steven M. Dudek , Joe G. N. Garcia. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91: 1487-1500, 2001
    26. James H. Finigan, Steven M. Dudek, Patrick A. Singleton. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J. Biol. Chem., Vol. 280, Issue 17, 17286-17293, April 29, 2005
    27. Charles T. Esmon. The Protein C Pathway. Chest. 2003;124:26S-32S.
    28. Timothy Myles Toshihiko Nishimura, Thomas H. Yun, Mariko Nagashima, et al.Thrombin Activatable Fibrinolysis Inhibitor, a Potential Regulator of Vascular Inflammation. J. Biol. Chem., Vol. 278, Issue 51, 51059-51067, December 19, 2003。
    29. Czermak BJ, Sarma V, Pierson CL, et al Protective effects of C5a blockade in sepsis. Nat Med. 1999 Jul;5(7):788-92
    30. Markus S. Huber-Lang, J. Vidya Sarma, Stephanie R. et al Protective effects of anti-C5a peptide antibodies in experimental sepsis. FASEB J. 2001 Mar;15(3):568-70
    31. Campbell, W. D, Lazoura, E., Okada, N. Inactivation of C3a and C5a Octapeptides byCarboxvpeptidase R and Carboxvpeptidase N Microbiol. Immunol(2002). 46, 131-134
    32. Laurent O. Mosnier, Xia V. Yang. Activated Protein C Mutant with Minimal Anticoagulant Activity, Normal Cytoprotective Activity, and Preservation of Thrombin Activable Fibrinolysis Inhibitor-dependent Cytoprotective Functions. J. Biol. Chem., Vol. 282, Issue 45, 33022-33033, November 9, 2007
    33. Willemse JL, Hendriks DF. A rapid and sensitive assay for the quantitation of carboxypeptidase N, an important regulator of inflammation. Clin Chim Acta. 2006 Sep;371(1-2):124-9. Epub 2006 Apr 17
    34. Fletcher B. Taylor, Jr, Glenn T. et al. Endothelial cell protein C receptor plays an important role in protein C activation in vivo. Blood, Mar 2001; 97: 1685– 1688
    35. Dahlb?ck, B., and Villoutreix, B. O. Regulation of Blood Coagulation by the Protein C Anticoagulant Pathway. Arterioscler. Thromb. Vasc. Biol. (2005)25, 1311-1320
    36. Mosnier, L. O., and Griffin, J. H. Protein C anticoagulant activity in relation to anti-inflammatory and anti-apoptotic activities Front. Biosci. (2006)11, 2381-2399
    37. Gupta A, Berg DT, Gerlitz B, et al. Role of protein C in renal dysfunction after polymicrobial sepsis. J Am Soc Nephrol. 2007 Mar;18(3):860-7.
    38. Brueckmann M, Hoffmann U, De Rossi L, et al. Activated protein C inhibits the release of macrophage inflammatory protein-1-alpha from THP-1 cells and from human monocytes. Cytokine. 2004 May 7;26(3): 106-13.
    39. Riewald M, Petrovan RJ, Donner A, et al. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science. 2002;296:1880–1882
    40. Riewald M, Petrovan RJ, Donner A, et al Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 2002;296,1880-1882
    41. Cheng T, Liu D, Griffin JH, et al Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 2003;9,338-342
    42. Yuksel M., Okajima K., Uchiba M., et al. Activated protein C inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappa B and activator protein-1 in human monocytes. (2002) Thromb. Haemost. 88, 267–273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700