氢气抗糖基化终末产物对内皮细胞凋亡的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与研究目的
     糖尿病是一种常见的代谢性疾病,主要表现为机体胰岛素相对或者绝对不足,导致血糖水平持续性增高。目前全球2型糖尿病患者已超过1.5亿人,而且预计在未来20年内病例数还将成倍数增长态势,全球医疗负担也会因为这一数值的显著提高而明显增加[1]。不论是1型还是2型糖尿病,随着长期高血糖水平病程的逐渐进展,均可以造成不同程度的,不同靶器官的并发症,其中以心血管病变最为常见,也最具威胁性。
     血管并发症是导致糖尿病患者死亡的主要原因。其中,高血压,肥胖症,动脉粥样硬化,血脂代谢异常,糖尿病肾病亦是患者预后不良的重要危险因素。在糖尿病的发生发展过程当中,血管内皮的损伤和内皮功能障碍是糖尿病重要的早期病理表现。从细胞层面来讲,内皮细胞代谢异常则是早期内皮功能受损的基本原因,伴随着内皮细胞的不断凋亡和功能受损,随之而来的则是内皮功能障碍[2.3]。
     晚期糖基化终末产物(AGEs)是以体内大分子物质如脂肪,蛋白质,核酸和还原性糖(葡萄糖,果糖,戊糖)为原料,在生理环境中通过发生非酶促反应,生成的稳定共价键产物。这种非酶促反应称之为---Maillard(美拉德)。1953年Hodge等学者提出了美拉德反应,该反应主要包括如下三部分:1.初级反应阶段。还原糖的羰基与氨基之间进行加成,加成物迅速失去分子水转变为希夫碱。2.经环化形成相应的取代醛基胺,经重排后转成有反应活性的产物,其中最熟知的是糖基化血红蛋白和果糖胺。3.果糖胺等又经过一系列复杂的分解和化学重排反应最终形成了AGEs类黑精色素。AGEs一旦形成就是不可逆的,并且其具有较强的交联性和较低的溶解性。此外,AGEs还具有产生和激活ROS的能力[61],这些特点也是其损伤血管的重要理化因素。AGEs的产生和糖尿病患者血糖水平以及高血糖暴露的时间成正相关,患者血糖水平越高,暴露高血糖的时间越久,AGEs的产生和堆积就越多。此外,局部微环境的氧化应激也是加速AGEs形成的重要因素之一[62.63]。在正常机体中,葡萄糖的糖基化反应较低。然而,在糖尿病患者体内,持续性的高血糖和局部微环境的氧化应激加速了AGEs产生和堆积。
     血液循环中堆积的AGEs可进行性损害血管内皮[65]。国外研究者发现,胰岛素可通过清除AGEs来保护内皮细胞功能,胰岛素通过IRS以及PI-3K通路提高机体产生NO的能力,从而提高机体对葡萄糖的转运和利用,减少AGEs的产生和保护内皮功能。此外,胰岛素还可以提高内皮细胞清道夫受体的含量,从而加速AGEs的清除。另外,蓄积在体内的AGEs低密度脂蛋白(LDL)可以形成AGEs-LDL共价化合物,形成AGEs-LDL后,LDL在体内的循环清除受阻,LDL在循环中的比例升高,致体内脂质水平明显增加,加重内皮氧化损伤。此外,血管内皮的基质成分含有胶原蛋白,它们与循环中的还原性糖发生共价结合以后可以使胶原蛋白交联,从而使血管内皮内环境受到破坏。同时,血管内皮的AGEs还能够激活单核巨噬系统,使得它们在对AGEs发生吞噬作用的同时分泌大量的细胞因子,刺激血管内皮发生氧化,应激,变形,增生,增殖,凋亡等一系列病理反应,恶化内皮功能,最终导致动脉粥样硬化,甚至血管完全闭塞。在糖尿病患者当中,持续升高的血糖状态极易导致AGEs的过量产生[4]。我们课题组的前期研究也发现,AGEs可以加快血管内皮细胞的凋亡和内皮功能不全的病理进程;在AGEs诱导的细胞当中,其细胞间活性氧(ROS)水平较对照组是明显升高的,而且同时,这种升高的细胞间ROS水平反过来进一步刺激AGEs的不断生成,形成“氧化应激-AGEs”的恶性循环[6.7]。
     因此,如何清除AGEs或减少这些AGEs的产生似乎可以成为减少糖尿病并发症的治疗策略之一。但是,AGEs一旦在血管内皮生成共价键,其就如一团黏着的基团,很难清除。那么,如果能够拮抗由AGEs介导的血管内皮功能损伤,则理论上也能预防或者延缓血管内皮损伤-动脉粥样硬化的进程[8]。所以,探寻一种拮抗AGEs介导的内皮细胞氧化应激以及凋亡的治疗策略有望成为防治糖尿病并发症的潜在切入点。
     传统的抗氧化应激的制剂包括维生素C,维生素E,β胡萝卜素,超氧化物歧化酶等。由于结构和效价关系的限制,这些天然抗氧化剂的抗氧化作用较弱且作用可逆,组织穿透能力差,而且其循证学研究的结果多为阴性。另外,在已经发生氧化应激反应的细胞当中多半有代谢和功能障碍,其自身合成分泌抗氧剂的能力差。为此,寻求一种新型的,有效的,安全的,穿透力强,靶向性高的抗氧剂是拮抗机体氧化应激反应延缓动脉粥样硬化的潜在突破口之一。
     氢气是一种无色,无味,无臭具有一定还原性的易燃气体。过去许多学者认为氢气是一种生理性惰性气体,不会与机体生命物质发生生理生化反应。但也有极少数的科学家认为氢气是一种具有还原性的气体。发表在1975年《Science》杂志上的一篇文章报道,在皮肤鳞状细胞癌动物模型中,连续呼吸8个大气压97.5%氢气两周,可以有效治疗鳞状细胞癌,并且研究者认为其机制可能与氢气的抗氧化作用有关[9]。之后又有实验研究发现,呼吸高压氢气能够治疗肝脏寄生虫感染引起的肝炎,并提出氢气的抗炎作用机制可能与氢气和羟自由基反应有关[10]。虽然上述研究为引起学者的广泛关注,但Ohsawa等2007年发表在《Nature》上的一篇文章提出,缺血再灌注和炎症所致的急性氧化应激可以导致严重的组织损伤。研究者通过建立大脑缺血再灌注的氧化应激大鼠模型,在非高压的条件下,应用吸入氢气作为治疗干预,结果发现氢气能够通过抗氧化作用减轻大鼠脑缺血再灌注损伤。文中还讨论到,氢气可能具有选择性的抗氧化作用,也即氢气只于与·OH和ONOO-发生反应,而并不与其它具有生理活性作用的活性氧发生生物化学反应,如O2-·、H2O2和NO·等。氢气的这种温和还原性的优点,使得它在抗氧化作用的同时对机体内部必须的生理反应过程影响极小。另外,和生理活性氧O2-·、H2O2和NO·相比,·OH和ONOO-等氧自由基的氧化性明显高于生理活性氧,而这也使得还原性比较温和的氢气只与这些强自由基的发生中和反应。除了这些特点外,氢气的高物理扩散性又是其独特的优势[11]。随后,日本科学家Hayashida等在Ohsawa等研究的基础上,在大鼠心肌梗死缺血再灌注模型中证实吸入氢气能够有助于心梗再灌注后心功能的恢复,减少心肌梗死面积,并预防心室结构重构。实验再次证实了氢气到达治疗靶点的高效性和高通透性[12]。2010年,Chen CH等学者在大鼠局灶脑缺血过程中,吸入氢气2小时能够降低基质金属蛋白-9活性并减小脑缺血面积[13]。2012年,中国学者Ge等在大鼠动物模型中发现吸入氢气可以减轻短暂脑缺血诱导的认知功能障碍,其可能的机制为氢气可以拮抗氧化应激作用从而减少神经细胞的死亡[14]。同年,Zhan Y学者等在Crit Care Med杂志发表关于吸入氢气治疗的实验研究成果。他们在130余只硬膜下出血脑损伤的大鼠模型中发现吸入氢气2小时可以明显减轻脑水肿和血脑屏障损伤[15]。同时在分子研究层面证实,氢气可以减轻大脑脂质,核酸,蛋白质的氧化损伤。正如德国学者Hardeland对该研究的评论,吸入氢气可能是将来医学领域一种颇有前景的治疗策略[16]。
     不仅如此,除了吸入氢气,科学家们还利用氢气扩散特点制备成富含氢的溶液并探究其治疗作用。最开始是由Sun等学者提出假设富含氢的生理盐水是否依然具有抗氧化应激作用。他们在大鼠的心梗模型中通过注射富氢生理盐水的方法对心梗后的大鼠进行干预,结果发现富氢生理盐水仍然具有有效抗氧化应激,减少心肌死亡,改善心功能的治疗作用[17]。同期还有中国学者们发现富氢生理盐水对小肠的缺血再灌注损伤也有保护作用,并同时可以改善小肠的收缩功能[18.20]。另外Chen等在大鼠实验中发现,富氢生理盐水在急性胰腺损伤中能减轻氧化应激,减少胰腺细胞死亡,有意思的是,富氢生理盐水还能促进胰腺腺泡细胞的增生[21]。因为富氢生理盐水的制备过程并不复杂,而且有使用方便,便于运输,实用等特点,一时间将富氢生理盐水作为治疗制剂研究其治疗作用的研究迅速成为热点,相应的研究结果均提示富氢溶液作为医疗制剂的诱人前景[22.30]。
     尽管如此,人们对氢的抗氧化作用的具体分子生物学机制还未能深入研究。前面我们提到,AGEs可以诱导血管内皮的氧化应激反应,从而刺激内皮细胞增生,炎症细胞侵润,凋亡,内皮功能障碍,血管粥样硬化的系列病理改变。氢能否通过抑制AGEs诱导的氧化应激,产生内皮保护作用有待实验进一步证实。基于此,我们课题组设计了“氢气抗AGEs诱导的内皮凋亡及其机制”这课题,对我们的课题假设进行初步证实。
     材料和方法
     SD大鼠购自于第三军医大学动物室,用于主动脉内皮细胞的原代培养。富含氢气的培养基被应用于模拟高氢气的环境。Real-time PCR和分光光度测定KIT用于抗氧化应激酶SOD和GSH-PH基因和蛋白表达量检测, DCF-DA作为荧光探针运用流式细胞仪检测细胞内的活性氧(ROS)水平;Annexin V-APC凋亡检测试剂盒和TUNEL染色法被用于内皮细胞凋亡的检测,蛋白印迹分析(WB)用于检测Bcl-2(凋亡抑制蛋白)和Bax(凋亡促进蛋白)比率分析于说明内皮细胞凋亡水平。
     结果
     1.AGEs可以诱导内皮细胞凋亡并且呈浓度依赖性,HRM组和正常对照组的细胞凋亡水平无显著差异。AGEs组细胞凋亡水平明显高于正常对照组和HRM组,加入HRM能够明显抑制AGEs所诱导的细胞凋亡。
     2.流式细胞仪分析法检测发现,加有AGEs的内皮细胞(AGEs组)其细胞间ROS水平较正常对照组明显升高,且升高的水平成浓度依赖关系。但HRM组细胞ROS水平和正常对照组比较我显著差异。在AGEs+HRM组中发现细胞间ROS水平较AGEs组明显降低,并和正常对照组相似。
     3.抗氧应激检测显示:在mRNA方面,AGEs能显著降低SOD mRNA的表达水平,而且这中降低与AGEs呈浓度相关性。而HRM干预后能够明显改善AGEs对SODmRNA表达的抑制作用。另外,在酶活性比较方面,AGEs对内皮细胞SOD和GSH-PX这两种抗氧化酶的酶活性均成抑制效应,而HRM干预则能改善AGEs的这种不良效应。
     4.凋亡蛋白水平检测发现AGEs组Bcl-2表达量较正常对照组明显下降,而Bax蛋白表达量较对照组明显增加,Bcl/Bax蛋白表达量比例在改组明显下降,提示AGEs明显诱导内皮细胞凋亡。在AGEs+HRM组中,Bcl/Bax蛋白表达量比例较正常对照组无明显下降,提示HRM能够拮抗由AGEs诱导的细胞凋亡。
     结论
     1. AGEs可以诱导内皮细胞凋亡和氧化应激并且呈浓度依赖性.
     2. HRM能够拮抗由AGEs诱导的细胞凋亡和氧化应激,起作用可能通过提高SOD和GSH-PH以及Bcl-2(凋亡抑制蛋白) Bax(凋亡促进蛋白)比率并降低ROS水平发挥抗氧化应激和抗凋亡作用.
Background and Objective
     It is known that, type1and type2diabetes alike, with the gradual progression of thelong-term high blood glucose levels, can cause different degrees of complications invarious target organs, among which the cardiovascular disease is the most common andthreatening[1]. At present, the number of patients with type2diabetes has amounted to morethan150million worldwide, and is expected to grow exponentially in the next20years[2].Patients with diabetes-induced cardiovascular disease will significantly increase in number,leading to a heavier global medical burden. How to control cardiovascular complications isthe focus of current research.
     In fact,cardiovascular complications in diabetes mellitus are one of the leading causesof mortality. Vascular endothelial injury and dysfunction are the important earlypathological manifestations of these complications.[31]Increasing apoptosis is an earlymanifestation of endothelial injury, which will lead to endothelial dysfunction[32].Advancedglycation end products (AGEs) are the products of non-enzymatic glycosylation of theamino groups of macromolecules, such as proteins and nucleic acids[33]. In diabetic patients,sustained high blood glucose level significantly increases the production of AGEs[33].Epidemiological studies show that the presence of AGEs is highly correlated with diabeticcardiovascular complications. Previous studies have found that AGEs increase endothelialcell apoptosis and dysfunction[34]. In addition, according to our previous study, AGEsincrease apoptosis and dysfunction of endothelial precursor cells[35].The generation ofintracellular reactive oxygen species (ROS) increases in AGEs-induced cells, and oxidativestress and ROS production, in turn, contribute to AGEs-induced apoptosis of endothelialcells and endothelial precursor cells[36].
     As we know,removal of AGEs from the body is difficult. One strategy to reduce AGEs-induced endothelial injury is to antagonize AGEs-activated oxidative stress[32].Hydrogen (H2) is the smallest naturally occurring gas molecule. Studies have shown thatH2has antioxidant activities in living organisms. It can specifically neutralize the mostpotent oxidative free radicals (OH and ONOO-) and attenuate the superoxidant anion levelunder certain pathophysiological conditions[37]. Moreover, it is easy for H2to pass throughmembrane structures such as cell membranes and the mitochondrial membranes, where itcan neutralize intracellular ROS, thereby maintaining normal mitochondrial function andpreventing apoptosis[38]. Many studies have shown that H2or hydrogen-containing solutioncan alleviate ischemia-reperfusion injury[34.36.39]of the heart[40],brain[41.42], kidney, smallintestine, and liver[41]; and it can antagonize irradiation-induced cell injury[43]. Inhalation ofH2also slows down the growth of atherosclerotic plaque in apoE-/-mice[44]. Our previousstudies also found that hydrogen-rich saline prevented neointima formation after carotidballoon injury[45]. Oxidative stress plays an important role in ischemia-reperfusion injury,irradiation-induced injury, atherosclerosis and neointima formation[46]. The ability of H2toantagonize these pathological reactions is closely related to its anti-ROS effects. However,it has yet to be elucidated whether H2can ameliorate AGEs-induced ROS generation andapoptosis of endothelial cells.
     The objective of the present study was to determine whether the use of hydrogen-richmedium (HRM) can protect the endothelial cells from AGEs-induced apoptosis by detectingROS production and antioxidant-related gene expression.
     Materials and Methods
     Two to three year old Sprague-Dawley rats purchased from the Experimental AnimalCenter of the Third Military Medical University were used in this study. The thoracic aortawas removed from these rats, and endothelial cells (ECs) were isolated and cultured. Afterculturing ECs in the presence of AGEs and/or with HRM for24h, Annexin V/7-AAD andTUNEL staining were carried out to detect apoptosis. Intracellular ROS was detected withfluorescent probes and quantified with flow cytometry. Anti-oxidative enzyme (SOD andGSH-PH) expression was determined by real-time PCR analysis and enzymatic assay. Therelative expression levels of Bcl-2and Bax were analyzed by western blotting.
     Results and Discussion
     1. AGEs induced ECs apoptosis in a concentration-dependent manner. After24h,evaluation of the4EC groups, including AGEs (400μg/ml) group, HRM group, HRM+AGEs group, and normal control group, revealed that the cell apoptosis rates were notsignificantly different between the HRM group and the control group when AGEs wereabsent. However, the presence of AGEs increased the rate of ECs apoptosis, and theaddition of HRM reduced the apoptosis rate of AGEs-treated ECs.
     2. Treatment of ECs with AGEs significantly increased the generation of intracellularROS in a dose-dependent manner. However, HRM decreased significantly.
     3. AGEs significantly reduced the level of SOD mRNA. However, after HRMintervention, the SOD expression reduction caused by AGEs was significantly attenuated.AGEs treatment significantly increased the optical density of anti-oxidative enzymes. HRMtreatment was also able to partly reduce this effect.
     4. ECs co-cultured with AGEs showed a decrease in the Bcl-2/Bax ratio. ECsco-cultured with AGEs+HRM were shown to attenuate the AGEs-induced decrease in theBcl-2/Bax ratio.This indicate that endothelial cell apoptosis induced by AGEs occurs partlythrough the mitochondrial apoptotic pathway.
     Conclusion
     AGEs induce ECs apoptosis and oxidative stress in a concentration-dependent manner.
     HRM can antagonize the apoptosis and oxidative stress induced by AGEs. It plays arole in anti-oxidative stress and apoptosis by increasing SOD, GSH-PH and Bcl-2(inhibitorof apoptosis protein)/Bax (apoptosis-promoting protein) ratio and reducing ROS levels.
引文
[1] Molitch ME, Fujimoto W, Hamman RF, et al. The Diabetes Prevent ion Programand It s Global Implicat ions[J]. J Am Soc Nephrol,2003,14(90002):S103-S107.
    [2] Cai J, Kang Z, Liu K, et al. Neuroprotective effects of hydrogen saline in neonatalhypoxia-ischemia rat model[J]. Brain Res,2009,1256(2):129-133.
    [3] Caporali A, Pani E, Horrevoets AJ, et al. Neurotrophin p75receptor (p75NTR)promotes endothelial cell apoptosis and inhibits angiogenesis: implications fordiabetes-induced impaired neovascularization in ischemic limb muscles[J]. CircRes,2008,103(1): e15-26.
    [4] Csiszar A, Ungvari Z. Endothelial dysfunction and vascular inflammation in type2diabetes: interaction of AGE/RAGE and TNF-alpha signaling[J]. Am J Physiol:Heart Circ Physiol,2008,295(4): H475-476.
    [5] Faria AM, Papadimitriou A, Silva KC, et al. Uncoupling endothelial nitric oxidesynthase is ameliorated by green tea in experimental diabetes mellitus byre-establishing tetrahydrobiopterin levels[J]. Diabetes,2012,61(12):1838-1847.
    [6] Chen J, Song M, Yu S, et al.Advanced glycation end products alter functions andpromote apoptosis in endothelial progenitor cells through receptor for advancedglycation endproducts mediate overpression of cell oxidant stress[J]. J Mol CellBiochem,2010,335(1):137-146.
    [7] Chen J, Huang L, Song M, et al. C-reactive protein upregulates receptor foradvanced glycation end products expression and alters antioxidant defenses in ratendothelial progenitor cells[J]. J Cardiovasc Pharmacol,2009,53(2):359-367.
    [8] Caporali A, Pani E, Horrevoets AJ, et al. Neurotrophin p75receptor (p75NTR)promotes endothelial cell apoptosis and inhibits angiogenesis: implications fordiabetes-induced impaired neovascularization in ischemic limb muscles[J]. CircRes,2008,103(1): e15-26.
    [9] Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment forcancer[J]. Science,1975,190(4210):152-154.
    [10]Gharib B, Hanna S, Abdallahi OM, et al. Anti-inflammatory properties of molecularhydrogen: investigation on parasite-induced liver inflammation[J]. C R Acad Sci,2001,324(8):719-724.
    [11]Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeuticantioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med,2007,13(5):688-694.
    [12]Hayashida K, Sano M, Ohsawa I, et al. Inhalation of hydrogen gas reduces infarctsize in the rat model of myocardial ischemia-reperfusion injury[J]. Biochem BiophysRes Commun,2008,373(1):30-35.
    [13]Chen CH, Manaenko A, Zhan Y, et al. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model[J]. Neuros-cience,2010,169(4):402-414.
    [14]Ge P, Zhao J, Li S, et al. Inhalation of hydrogen gas attenuates cognitive impairmentin transient cerebral ischemia via inhibition of oxidative stress[J]. Neurol Res,2012,34(2):187-94.
    [15]Zhan Y, Chen C, Suzuki H, et al. Hydrogen gas ameliorates oxidative stress in earlybrain injury after subarachnoid hemorrhage in rats[J]. Crit Care Med,2012,40(4):1291-1296.
    [16]Hardeland R. Hydrogen therapy: a future option in critical care?[J]. Crit Care Med,2012,40(4):1382-1383.
    [17]Sun Q, Kang Z, Cai J, et al. Hydrogen-rich saline protects myocardium againstischemia/reperfusion injury in rats[J]. Exp Biol Med (Maywood),2009,234(11):1212-1219.
    [18]Mao YF, Zheng XF, Cai JM, You XM, et al.Hydrogen-rich saline reduces lunginjury induced by intestinal ischemia/reperfusion in rats[J]. Biochem Biophys ResCommun,2009,381(4):602-625.
    [19]Zheng X, Mao Y, Cai J, et al. Hydrogen-rich saline protects against intestinalischemia/reperfusion injury in rats[J]. Free Radic Res,2009,43(5):478-484.
    [20]20Chen H, Sun YP, Hu PF, et al. The effects of hydrogen-rich saline on thecontractile and structural changes of intestine induced by ischemia-reperfusion inrats[J]. J Surg Res,2011,167(2):316-322.
    [21]Chen H, Sun YP, Li Y, et al. Hydrogen-rich saline ameliorates the severity ofl-arginine-induced acute pancreatitis in rats[J]. Biochem Biophys Res Commun,2010,393(2):308-313.
    [22]Liu Q, Shen WF, Sun HY, et al. Hydrogen-rich saline protects against liver injury inrats with obstructive jaundice[J]. Liver Int,2010,30(7):958-968.
    [23]Sun Q, Cai J, Liu S, et al. Hydrogen-rich saline provides protection againsthyperoxic lung injury[J]. J Surg Res,2011,65(1):e43-49.
    [24]Wang F, Yu G, Liu SY, et al.Hydrogen-rich saline protects against renalischemia/reperfusion injury in rats[J]. J Surg Res,2011,167(2):e339-344.
    [25]Yang X, Guo L, Sun X, et al. Protective effects of hydrogen-rich saline inpreeclampsia rat model[J]. Placenta,2011,32(9):681-686.
    [26]Ji X, Tian Y, Xie K, et al. Protective effects of hydrogen-rich saline in a rat model oftraumatic brain injury via reducing oxidative stress[J]. J Surg Res,2012178(1):e9-16.
    [27]Jiang D, Wu D, Zhang Y, et al.Protective effects of hydrogen rich saline solution onexperimental testicular ischemia-reperfusion injury in rats[J]. J Urol,2012,187(6):2249-2253.
    [28]Shi J, Yao F, Zhong C, et al. Hydrogen saline is protective for acute lungischaemia/reperfusion injuries in rats[J]. Heart Lung Circ,2012,21(9):556-563.
    [29]Ohsawa I, Nishimaki K, Yamagata K, et al. Consumption of hydrogen waterprevents atherosclerosis in apolipoprotein E knockout mice[J]. Biochem BiophysRes Commun,377(10):1195-1198.
    [30]Wu X, Zhou Q, Huang L,et al. Ageing-exaggerated proliferation of vascular smoothmuscle cells is related to attenuation of vascular smooth muscle cells is related toattenuation of Jagged1expression in endothelial cells[J]. J Cardiovasc Res,2008,77(5):800-808.
    [31]Faria AM, Papadimitriou A, et al. Uncoupling endothelial nitric oxide synthase isameliorated by green tea in experimental diabetes mellitus by re-establishingtetrahydrobiopterin levels[J]. Diabetes,2012,61(11):1838-1847.
    [32]Caporali A, Pani E, Horrevoets AJ, et al. Neurotrophin p75receptor (p75NTR)promotes endothelial cell apoptosis and inhibits angiogenesis: implications fordiabetes-induced impaired neovascularization in ischemic limb muscles[J]. CircRes,2008,103(1): e15-26.
    [33]Csiszar A, Ungvari Z. Endothelial dysfunction and vascular inflammation in type2diabetes: interaction of AGE/RAGE and TNF-alpha signaling[J]. Am J Physiol:Heart Circ Physiol,2008,295(3): H475-476.
    [34]Chen J, Song M, Yu S, et al.Advanced glycation end products alter functions andpromote apoptosis in endothelial progenitor cells through receptor for advancedglycation endproducts mediate overpression of cell oxidant stress[J]. J Mol CellBiochem,2010,335(1):137-146.
    [35]Chen J, Huang L, Song M, et al. C-reactive protein upregulates receptor foradvanced glycation end products expression and alters antioxidant defenses in ratendothelial progenitor cells[J]. J Cardiovasc Pharmacol,2009,53:359-367.
    [36]Chen H, Sun YP, Li Y, et al. Hydrogen-rich saline ameliorates the severity ofl-arginine-induced acute pancreatitis in rats[J]. Biochem Biophys Res Commun,2010,393:308-313.
    [37]Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeuticantioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nature Med,2007,13:688-694.
    [38]Xie K, Yu Y, Pei Y, et al. Molecular hydrogen ameliorates lipopolysaccharide-induced acute lung injury in mice through reducing inflammation and apoptosis[J].Shock,2012,37:548-555.
    [39]Cai J, Kang Z, Liu K, et al. Neuroprotective effects of hydrogen saline in neonatalhypoxia-ischemia rat model[J]. Brain Res,2009,1256(1):129-133.
    [40]Sun Q, Kang Z, Cai J, et al.Hydrogen-rich saline protects myocardium againstischemia/reperfusion injury in rats[J]. Exp Biol Med (Maywood),2009,234(10):1212-1219.
    [41]Sun Q, Cai J, Zhou J, et al.Hydrogen-rich saline reduces delayed neurologicsequelae in experimental carbon monoxide toxicity[J]. Crit Care Med,2011,39:765-769.
    [42]Li J, Wang C, Zhang JH, et al. Hydrogen-rich saline improves memory function in arat model of amyloid-beta-induced Alzheimer's disease by reduction of oxidativestress[J]. Brain Res,2010,1328(2):152-161.
    [43]Terasaki Y, Ohsawa I, Terasaki M, et al. Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress[J]. Am J Physiol: Lung Cell MolPhysiol,2011,301(4):415-426.
    [44]Ohsawa I, Nishimaki K, Yamagata K, et al. Consumption of hydrogen waterprevents atherosclerosis in apolipoprotein E knockout mice[J]. Biochem BiophysRes Commun,2008,377(10):1195-1198.
    [45]Qin ZX, Yu P, Qian DH, et al.Hydrogen-rich saline prevents neointima formationafter carotid balloon injury by suppressing ROS and the TNF-alpha/NF-kappaBpathway[J]. Atherosclerosis,2012,220(3):343-350.
    [46]Nishimaki N, Tsukimoto M, Kitami A, et al. Autocrine regulation ofγ-irradiation-induced DNA damage response via extracellular nucleotides-mediatedactivation of P2Y6and P2Y12receptors[J]. DNA Repair (Amst),2012,11(8):657-665.
    [47]耿晓仲.糖尿病肾病患者血清VEGF和TNF-2水平表达的临床意义[J].重庆医学,2010,39(21):2942-2945.
    [48]Fadok V A, Voelker D R,Campbell P A, et al. Exposure of phosphatidylserine on thesurface of apoptotic lymphocytes triggers specific recognition and removal bymacrophage[J]. J Immuol,1992,148(10):2207.
    [49]Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis.Flowcytometric detection of phosphatidylserine expression on early apoptosis cells usingfluorescein labeled Annexin V[J]. J Immunol Methods,1995,184(1):39.
    [50]HayJW, Sterling KL. Cost effectiveness of treating low HDL-cholesterol in theprimary preventionof coronary heart disease[J]. Pharmacoeconomics,2005,23(2):133-141.
    [51]RossigL, Dimmeler S, Zeiher AM. Apoptosisinthevascular wall and atheroscl-erosis[J]. Basic Res Cardiol,2001,96(1):11-22.
    [52]Kockx M, Knaapen MW. The roleof apoptosis in vascular disease[J]. J Pathol,2000,190(3):267-280.
    [53]Werner N, NickenigG. Influenceof cardiovascular riskfactorson endothelialprogenitor cells: limitations for therapy[J]. Arterioscler Thromb VascBiol,2006,26(2):257-266.
    [54]彭黎明,王增孔.细胞凋亡的基础与临床[M].北京:人民卫生出版社,2000:1-3.
    [55]Jacobson MD, Raff MC. Programmedcell deathand bcl-2protection in very lowoxygen[J]. Nature,1995,374(7):814-816.
    [56]Green DR., ReedJC. Mitochondria and apoptosis[J]. Science,1998,281(6):13092-13123.
    [57] Dimmeler S, Breitschopf K, Haendeler J, et al. Dephosphory lationtargets Bcl-2forubiquitin dependent degradation:a link betweentheapoptosomeandtheproteasomepathway[J]. J ExpMed,1999,189(11):1815-1822.
    [58]Li BY, Li XL, Cai Q, et al. Induction of lactadherin mediates the apoptosis ofendothelial cells in response to advanced glycation end products and protectiveeffects of grape seed procyanidin B2and resveratrol[J]. Apoptosis,2011,16(7):732-745.
    [59]Deng X, Gao F, May WS Jr. Bcl2retards G1/S cell cycle transition by regulatingintracellular ROS[J]. Blood2003,102(9):3179-3185.
    [60]Marsh SA, Laursen PB, Pat BK, et al. Bcl-2in endothelial cells is increased byvitamin E and alpha-lipoic acid supplementation but not exercise training[J]. J MolCell Cardiol,2005,38(4):445-451.
    [61]60.Lyons TJ,Jenkins AJ,Glycation,et al. oxidation and lipoxidation in thedevelopment of the complications of diabetes:A carbonyl stress hypothesis[J].Diabetes Rev,1997,5:365-391.
    [62].Chappey O,Dosquet C,Wautier MP. Advanced glycation end products,oxidantstress and vascular lesions[J].Eur J Clin Invest,1997,27:97-108.
    [63].Bierhaus A,Hofmann MA,Ziegler R,et al. AGEs and their interaction withAGEs-recepters in vascular disease and diabetes mellitus I,the AGE concept[J].Cadiovasc Res,1998,37:586-600.
    [64].R singh, A Barden, T Mori, et al. Advanced glycation end products:A review[J].Diabetolo gia,2001,12:129-146.
    [65].Bierhaus A, Hofmann MA, Ziegler R, et al. AGE and their interaction withAGE-receptors in vascular disease and diabettes[J]. Cardiovasc Res,1998,37:386-600.
    [66].Sanoh, HigashiT, Matsumoto K, et al. Insulin enhances macrophage scavengerreceptormediated endocytic uptake of advanced glycated end products[J]. BiolChem,1998,273:8630-8637.
    [67].Furukawa S,Fujita T,Shimabukuro M, Iwaki M,Yamada Y,Nakajima Y,etal.Increased oxidative stress in obestiy and its impact on metabolic syndrome. J ClinInvest,2004,,114(12):1752-1761.
    [68]. Kamimura N,Nishimaki K,Ohsawa I, Ohta S.Molecular hydrogen improve obestiyand diabetic by inducting hepatic FGF21and stimlating energy metabolism in db dbmice. Obesity,2011,19(7):1396-1403.
    [69]. Kajiyama S,Hasegawa G,Asano M,Hosoda H,et al. Supplementation ofhydrogen-rich and glucose metabolism in patients with type2diabetics or impairedglucose tolerance.Nutr Res,2008,28(3):137-143.
    [70].Nakao A,Toyoda Y,Sharma P,Evans M,Guthrie N. Efffectiveness of hydrogenrich water water on antioxidant status of subjects with potential metabolism synd-anopen label pilot study. J Clin Biochem Nutr.2010,46(2):140-149.
    [71].Ohsawa I,Nishimaki K,Yamagata K,Ishikawa M,Ohta S. Consumprion ofhydrogen water prevent atherosclerosis in apolipopretein E knock mice. BiochemBiophys Commun,2008,377(4):1195-1198.
    [72]. Song G,Tian H,Liu J,Zhang H,Sun X,Qin S.H2inhibits TNF-α induced
    [73].Letin-like oxidized LDL receptor-1expression by inhibiting nucler factor κBactivation in endothelial cells.Biotechnol lett,2011,,3(9):1715-1722.
    [74]Riccardo Candidio,Michela Zanetti.Currrent perspective.Diabetic Vascular disease:form endotjelial dysfunction to atherosclerosis.Ital Heart J,2005,6(9):703-720.
    [75]26.Nishikawa T,EdelsteinD,DuXL,et al. Normalizingmitochondrial superoxideproduction blocks three pathways of hyperglycaemic damage[J]. Nature,2000,404:787-790.
    [76]Kunisaki M,FumioU,Nawata H,et al. VitaminEnormalizes diacylglycerol Proteinkinase Cactivation induced by hyperglycemia in rat vascular tissues [J]. Diabetes,1996,45:S1172119.
    [77]YanSD,ChenX,Schmidt AM,et al. GlycatedtauproteininAlzheimer disease:a me-chani-smfor inductionof oxidant stress[J]. Proc Natl AcadSci USA,1994,91:7787-7791.
    [78].Cai J,Kang Z,Liu WW,et al. Hydrogen therapy reduces apoptosis in neonatalhypoxia ischemia rat model [J]. Neurosci Lett,2008,441(2):167-172.
    [79]Chen C,Chen Q,Mao Y,et al. Hdrogen-Rich Saline Protects Against Spinal CordInjury in Rats [J]. Neurochem Res,2010,35(7):1111-1118.
    [80]Shen L,Wang L,Liu K,et al. Hydrogen-Rich Saline is Cerebropro tective in a RatModel of Deep Hypothermic Circulatory Arrest [J].Neurochem Res,2011,36(8):1501-1511
    [81]Hayashida K,Sano M,Ohsawa I,et al.Inhalation of hydrogen gas reduces infarctsize in the rat model of myocardial ischemia-reperfusion injury[J].Biochen BiophysRes commun,2008,373(1):30-35.
    [82]Zhang YF,Sun Q,He B,et al.Anti-inflammatory effect of hydrogen-rich saline in arat model of regional myocardial ischemia-reperfusion injury[J].Int J Cardiol,2011,148(1):91-95.
    [83]Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation endproducts: Sparking the development of diabetic vascular injury. Circulation2006;114:597-605
    [84]Nakao A, Kaczorowski DJ, Wang Y,et al.Amelioration of rat cardiac coldischemia reperfusion injury with inland with inhaled hydrogen or carbon monoxide,or both[J].J Heart lung Transplant,2010,29(5):544-553.
    [1] Palmer, D. Hydrogen in the Universe. NASA,13September1997.
    [2] Presenter: Professor Jim Al-Khalili. Discovering the Elements. Chemistry: A VolatileHistory.2010-01-21:25:40minutes in. BBC. BBC Four.
    [3] Strocchi A, Levitt MD. Maintaining intestinal H2balance: credit the colonicbacteria[J].Gastroenterology,1992,102:1424-2426.
    [4] Levitt MD, Bond JH, Jr. Volume, composition, and source of intestinalgas.Gastroenterology[J].1970,59:921-929.
    [5] Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract[J]. Dig DisSci,2010,55:2135-2143.
    [6] Baumgart K, Radermacher P, Wagner F. Applying gases for microcirculatory andcellular oxygenation in sepsis: effects of nitric oxide, carbon monoxide, and hydrogensulfide[J]. Curr Opin Anaesthesiol,2009,22:168-176.
    [7] Li L, Hsu A, Moore PK. Actions and interactions of nitric oxide, carbon monoxide andhydrogen sulphide in the cardiovascular system and in inflammation-a tale of threegases![J]. Pharmacol Ther,2009,123:386-400.
    [8] Li L, Moore PK. An overview of the biological significance of endogenous gases: newroles for old molecules[J]. Biochem Soc Trans.2007,35:1138-1141.
    [9] George JF, Agarwal A. Hydrogen: another gas with therapeutic potential[J]. Kidney Int,2010,77:85-87.
    [10]HongSK, Bennett PB, Shiraki K, Lin YC, Claybaugh JR. Mixed-gas saturationdiving[J]. Comprehensive Physiology,2011,11:1023-1045.
    [11]Fontanari P, Badier M, Guillot C, Tomei C, Burnet H, Gardette B, Jammes Y. Changesin maximal performance of inspiratory and skeletal muscles during and after the7.1-MPa Hydra10record human dive[J]. Eur J Appl Physiol,2000,81:325-328.
    [12]Kayar SR, Axley MJ, Homer LD, Harabin AL. Hydrogen gas is not oxidized bymammalian tissues under hyperbaric conditions[J]. Undersea Hyperb Med,1994,21:265-275.
    [13]Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, KatsuraK, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant byselectively reducing cytotoxic oxygen radicals[J]. Nat Med,2007,13:688-694.
    [14]Wood KC, Gladwin MT. The hydrogen highway to reperfusion therapy[J]. Nat Med,2007,13:673-674.
    [15]Clark, Wayne M.(January5,2005)."Reperfusion Injury in Stroke". eMedicine.WebMD. http://www. emedicine.com/neuro/topic602.htm.
    [16]Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J,Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K.Inhalation of hydrogen gas reduces infarct size in the rat model of myocardialischemia-reperfusion injury[J]. Biochem Biophys Res Commun,2008,373:30-35.
    [17]Chen CH, Manaenko A, Zhan Y, Liu WW, Ostrowki RP, Tang J, Zhang JH. Hydrogengas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focalischemia rat model[J]. Neuroscience,2010,169:402-414.
    [18]Zhan Y, Chen C, Suzuki H, Hu Q, Zhi X, Zhang JH. Hydrogen gas amelioratesoxidative stress in early brain injury after subarachnoid hemorrhage in rats[J]. Crit CareMed,2012,40:1291-1296.
    [19]Hardeland R. Hydrogen therapy: a future option in critical care?[J]. Crit Care Med.2012,40:1382-1383.
    [20]Ge P, Zhao J, Li S, Ding Y, Yang F, Luo Y. Inhalation of hydrogen gas attenuatescognitive impairment in transient cerebral ischemia via inhibition of oxidative stress[J].Neurol Res,2012,34:187-194.
    [21]Sun Q, Kang Z, Cai J, Liu W, Liu Y, Zhang JH, Denoble PJ, Tao H, Sun X.Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury inrats[J]. Exp Biol Med (Maywood),2009,234:1212-1219.
    [22]Mao YF, Zheng XF, Cai JM, You XM, Deng XM, Zhang JH, Jiang L, SunXJ.Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusionin rats[J].Biochem Biophys Res Commun.2009,381:602-605.
    [23]Zheng X, Mao Y, Cai J, Li Y, Liu W, Sun P, Zhang JH, Sun X, Yuan H. Hydrogen-richsaline protects against intestinal ischemia/reperfusion injury in rats[J].Free RadicRes.2009,43:478-484.
    [24]Chen H, Sun YP, Hu PF, Liu WW, Xiang HG, Li Y, Yan RL, Su N, Ruan CP, Sun XJ,Wang Q. The effects of hydrogen-rich saline on the contractile and structural changesof intestine induced by ischemia-reperfusion in rats[J]. J Surg Res,2011,167:316-322.
    [25]Chen H, Sun YP, Li Y, Liu WW, Xiang HG, Fan LY, Sun Q, Xu XY, Cai JM, Ruan CP,Su N, Yan RL, Sun XJ, Wang Q. Hydrogen-rich saline ameliorates the severity ofl-arginine-induced acute pancreatitis in rats[J]. Biochem Biophys Res Commun,2010,393:308-313.
    [26]Liu Q, Shen WF, Sun HY, Fan DF, Nakao A, Cai JM, Yan G, Zhou WP, Shen RX,Yang JM, Sun XJ. Hydrogen-rich saline protects against liver injury in rats withobstructive jaundice[J]. Liver Int,2010,30:958-968.
    [27]Sun Q, Cai J, Liu S, Liu Y, Xu W, Tao H, Sun X.Hydrogen-rich saline providesprotection against hyperoxic lung injury[J]. J Surg Res,2011,165:e43-49.
    [28]Wang F, Yu G, Liu SY, Li JB, Wang JF, Bo LL, Qian LR, Sun XJ, Deng XM.Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats[J]. JSurg Res,2011,167:e339-344.
    [29]Yang X, Guo L, Sun X, Chen X, Tong X. Protective effects of hydrogen-rich saline inpreeclampsia rat model[J]. Placenta,2011,32(9):681-686.
    [30]Ji X, Tian Y, Xie K, Liu W, Qu Y, Fei Z. Protective effects of hydrogen-rich saline in arat model of traumatic brain injury via reducing oxidative stress[J]. J Surg Res,2012,178:e9-16.
    [31]Jiang D, Wu D, Zhang Y, Xu B, Sun X, Li Z. Protective effects of hydrogen rich salinesolution on experimental testicular ischemia-reperfusion injury in rats[J]. J Urol,2012,187:2249-2253.
    [32]Shi J, Yao F, Zhong C, Pan X, Yang Y, Lin Q. Hydrogen saline is protective for acutelung ischaemia/reperfusion injuries in rats[J]. Heart Lung Circ,2012,21:556-563.
    [33]Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, McCurryKR, Bauer AJ, Nakao A. Hydrogen inhalation ameliorates oxidative stress intransplantation induced intestinal graft injury[J]. Am J Transplant,2008,8:2015-2024.
    [34]Cardinal JS, Zhan J, Wang Y, Sugimoto R, Tsung A, McCurry KR, Billiar TR, NakaoA. Oral hydrogen water prevents chronic allograft nephropathy in rats[J]. Kidney Int,2010,77:101-109.
    [35]Kawamura T, Huang CS, Peng X, Masutani K, Shigemura N, Billiar TR, Okumura M,Toyoda Y, Nakao A. The effect of donor treatment with hydrogen on lung allograftfunction in rats[J]. Surgery,2011,150:240-249.
    [36]George JF, Agarwal A.Hydrogen: another gas with therapeutic potential[J]. Kidney Int,2010,77:85-87.
    [37]Hayashida K,Sano M,Ohsawa I,et al.Inhalation of hydrogen gas reduces infarct sizein the rat model of myocardial ischemia-reperfusion injury[J].Biochen Biophys Rescommun,2008,373(1):30-35.
    [38]Zhang YF,Sun Q,He B,et al.Anti-inflammatory effect of hydrogen-rich saline in a ratmodel of regional myocardial ischemia-reperfusion injury[J].Int J Cardiol,2011,148(1):91-95.
    [39]Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products:Sparking the development of diabetic vascular injury. Circulation2006;114:597-605
    [40]Nakao A,Kaczorowski DJ,Wang Y,et al.Amelioration of rat cardiac coldischemia reperfusion injury with inland with inhaled hydrogen or carbon monoxide,orboth[J].J Heart lung Transplant,2010,29(5):544-553.
    [41]Faria AM, Papadimitriou A, Silva KC, Lopes de Faria JM, Lopes de Faria JB.Uncoupling endothelial nitric oxide synthase is ameliorated by green tea inexperimental diabetes mellitus by re-establishing tetrahydrobiopterin levels. Diabetes2012;61:1838-47.
    [42]Hess DA, Hegele RA. Linking diabetes with oxidative stress, adipokines, and impairedendothelial precursor cell dunction. Canadian J Cardiol2012[Epub ahead of print].
    [43]Liu C,Cui J,Sun Q,et al.Hydrogen therapy may be an effective and specific noveltreatment for actue radiation syndrome[J].Med Hypotheses,2010,74(1):145-146.
    [44]Qian L,Cao F,Cui J,et al.The potential cardioprotective effects of hydrogen inirradiated mice [J].J Radiat Res(Tokyo),2010,51(6):741-747.
    [1] Schernthaner G. Cardiovascular mortality and morbidity in type-2diabetes mellitus[J].Diabetes Research and Clinical Practice,1996,31:S3-S13.
    [2]张东慧,唐志柳,顾丽娜,等.我国21世纪初糖尿病患病率系统综述[J].慢性病防治,2012,24:492-495.
    [3]窦毓,刘乃丰.糖基化终产物对糖尿病微血管病变的作用[J].中国微循环,2004,21:195-197.
    [4] Fagot-Campagna A, Bourdel-Marchasson I, Simon D. Burden of diabetes in an agingpopulation: prevalence, incidence, mortality, characteristics and quality of care[J].Diabetes&Metabolism,2005,31:35-52.
    [5]孙纪新,翟新灵.糖尿病心血管病并发症现状[J].心血管病学进展,2004,4:299-302.
    [6] Lyons TJ,Jenkins AJ,Glycation,et al. oxidation and lipoxidation in the developmentof the complications of diabetes:A carbonyl stress hypothesis[J]. DiabetesRev,1997,5:365-391.
    [7] Chappey O,Dosquet C,Wautier MP. Advanced glycation end products,oxidant stressand vascular lesions[J].Eur J Clin Invest,1997,27:97-108.
    [8] Bierhaus A,Hofmann MA,Ziegler R,et al. AGEs and their interaction withAGEs-recepters in vascular disease and diabetes mellitus I,the AGE concept[J].Cadiovasc Res,1998,37:586-600.
    [9] R singh, A Barden, T Mori, et al. Advanced glycation end products:A review[J].Diabetolo gia,2001,12:129-146.
    [10]Bierhaus A, Hofmann MA, Ziegler R, et al. AGE and their interaction withAGE-receptors in vascular disease and diabettes[J]. Cardiovasc Res,1998,37:386-600.
    [11]Sanoh, HigashiT, Matsumoto K, et al. Insulin enhances macrophage scavengerreceptormediated endocytic uptake of advanced glycated end products[J]. Biol Chem,1998,273:8630-8637.
    [12]Thoralley PJ. Cellactivationbyglycatedproteins, AGEre-ceptors,receptorrecognitionfactorsandfunctional classification of AGE[J]. Cell Mol Biol,1998,44:1013-1023.
    [13]Schmidt AM, Hori O, ChenJX, et al. RAGEa novel receptor for AGEs[J]. Diabetes,1996,45:S77-S80.
    [14]Bierhaus A, HofmannMA, Ziegler R, et al. AGEandtheir nteraction with AGE-receptorsinvascular disease anddiabetes[J].Cardiovasc Res,1998,37:586-600.
    [15]Michael Brownlee. Biochemistryandmolecular cell biologyof diabetic complications[J].Nature,2001,44:813-823。
    [16]Jakus V, Rietbrock N. Advanced glycation end-products and the progress of diabeticvascular complications[J]. Physiol Res,2004,5:131-142.
    [17]R Bucala, Z Makita, G Vega, et al. Modification of low density liporrotein by advancedglycation end products contributes to the dyslioidemia of the diabetes and renalinsufficiency[J]. Proc Natl Acsd Sci,1994,91:9441-9445.
    [18]Csiszar A, Ungvari Z. Endothelial dysfunction and vascular inflammation in type2diabetes: interaction of AGE/RAGE and TNF-alpha signaling[J]. Am J Physiol: HeartCirc Physiol,2008,295: H475-476.
    [19]Wautier JL,Guillausseau PJ. Advanced glucation end products,their receptors anddiabetic angiopathy[J]. Diabetes Metabolism,2001,27:535-542.
    [20]R Singh, A Barden, T mori, et al.Advanced glycation end-products:A review[J].Diabetologia,2001,44:129-146.
    [21]Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxideand mediate defective endothelium-dependent vasodilatation in experiment diabetes[J].J Clin Invest,1992,87:432-438.
    [22]Giuseppina Basta,Ann Marie Schmidt,Raffaele De Caterina. Advanced glycation endprosucts and vascular inflammation:implication foraccelerated atherosclerosis indiabetes[J].Cardiovascular Research,2004,63:582-592.
    [23]Acosta J, HettingaJ, Fluckiger R, et al. Molecular basisfora link between complementand the vascular complications of diabetes[J]. Proc Natl Acad Sci USA,2000,97:5450-5455.
    [24]Riccardo Candidio,Michela Zanetti. Currrent perspective.Diabetic Vascular disease:form endotjelial dysfunction to atherosclerosis[J]. Ital Heart J,2005,6:703-720.
    [25]Giuseppina Basta, Ann Marie Schmidt, Raffaele De Caterina. Advanced Glaycation endproducts and vascular inflammation:implations for atherosclerosisi in diabetes[J].Cardiovascular Reearch,2004,63:582-592.
    [26]Nishikawa T, EdelsteinD, DuXL, et al. Normalizing mitochondrial superoxideproduction blocks three pathways of hyperglycaemic damage[J]. Nature,2000,404:787-790.
    [27]Kunisaki M, FumioU, Nawata H, et al. Vitamin E normalizes diacylglycerolproteinkinase C activation induced by hyperglycemia in rat vascular tissues[J].Diabetes,1996,45:S117-119.
    [28]YanSD, ChenX, Schmidt AM, et al. Glycatedtau protein in Alzheimer disease:amechanism for induction of oxidant stress[J]. Proc Natl AcadSci USA,1994,91:7787-7791.
    [29]29.Ulrich P,Cerami A. Protein glycation,diabetes,and aging[J]. Recent prog HormRes,2001,56:1-21.
    [30]Su J, Lucchesi PA, Gonzalea-Villalobos R A, et al. Role of advanced glycation endproducts with oxidative stress in resistance artery dysfunction in type2diabeticmice[J].Arterioscler Thromb Vasc Biol,2008,28:1432-1438.
    [31]Curtis TM, Hamilton R, Yong PH, et al. Muller glial dysfunction during diabeticretinopathy in rats is linked to accumulation of advanced glaycation end-products andadvanced lipoxidation end-products[J]. Diabetologia,2011,54:690-698.
    [32]Izuhara Y, Nangaku M, Takiaawa S, et al. A novel class of advanced glycationinhibitors ameliorates renal and cardiovascular damage in experimental rat models.Nephrol dial transplant.2008,23:497-509.
    [33]Guo Q, Mori T, Jiang Y, et al. Methyflyoxal contributes to the development of insulinresisitance and salt sensitivity in sprague-Dawley rat[J]. J Hypertens,2009,27:1664-1671.
    [34]Kalousova M, Zima T, Tesar V, et al. Advanced glycation end products in clinicalnephrology[J]. Kideny Blood Press Res,2004,27:18-28.
    [35]Wolffenbuttel BH, Boulanger C M, Crijns FR, et al. Breakers of advanced glycationend products restore large artery properties in experimental diabetic[J]. Proc Natl Acadsci USA,1998,95:4630-4634.
    [36]Oldfield M D, Bach LA, Forbes J M, et al.Advanced glycation end Prodcts causeepithelial-myofibroblast transdifferetiation via the receptor for advanced glycation endproducts(RAGE)[J]. J clin Invest,2001,108:1853-1863.
    [37]Chandra K P, ShiwakarA, Kotecha J, et al. Phase I clinical studies of the advancedglycation end-product(AGE)-break Trc4186:safety,tolerbility and pharmacokinetics inhealthy subject[J]. Clin Drug Investing,2009,29:559-575.
    [38]Josh D, Gupta R, Dubey A, et al. Trc4186,A novel(AGE)-break,improves diabeticcardiovascular and nephrology in ob-Zsfi model of type2diabetic[J] J cardiovascularPharmacol,2009,54:71-81.
    [39]Forber JM, Thorpe SR,Thallas-Bonke V, et al. Modulation of soluble receptor foradvanced glycation end products by angiotensin-converting enzyme-I inhibition indiabetic nephrology[J]. J Am Soc Nephrol,2005,16:2363-2372.
    [40]王真,李电东.晚期AGEs的临床病理机制及抑制剂的研究进展[J].中国新药杂志,2002,11:113-116.
    [41]Ohsawa I, Nishimaki K, Yamagata K, et al. Consumption of hydrogen water preventsatherosclerosis in apolipoprotein E knockout mice[J]. Biochem Biophys Res Commun,2008,377:1195-1198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700