聚合物光伏器件形貌特性、性能及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕影响体相异质结聚合物太阳能电池光伏性能的相关因素展开研究,主要内容分为三个部分:首先研究了热处理对聚3-己基噻吩:[6,6]-苯基c61丁酸甲酯(poly(3-hexylthiophene):[6,6]-phenyl C61butyric acid methyl ester, P3HT:PCBM)薄膜的形貌影响;接着对喹喔啉类共聚物材料poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-dyl-alt-thiophene-2,5-diyl](TQ)采用氟原子取替方法得到最高占据分子轨道(HOMO)能级更低的Poly[6-fluoro-2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl](FTQ), FTQ:PCBM作为活性层制备的器件开路电压更高;最后对基于poly[4,8-bis-alkyloxybenzo(1,2-b:4,5-b)dithiophene-2,6-diyl-alt-(alkyl thieno(3,4-b) thiophene-2-carboxylate)-2,6-diyl](PBDTTT-C)的聚合物光伏器件制备工艺和器件参数进行了优化,对器件稳定性进行了初步的探讨。
     1、利用退火处理对P3HT.PCBM共混膜形貌及其器件性能在不同温度下的影响进行研究。
     ◇退火温度对P3HT:PCBM共混膜中PCBM团聚体的影响。实验结果表明,PC61BM和PC71BM团聚体的尺寸随退火温度的升高而逐渐增大,但是两种受体的聚集态明显不同,PC61BM聚集体呈树枝状,而PC71BM聚集体呈星状。
     ◇A1电极对PCBM团聚体形成的影响。研究表明,先蒸镀A1电极再对P3HT:PCBM薄膜退火,A1层可避免微米量级的PCBM团聚体在薄膜表面出现。
     令热处理对P3HT的结晶态和薄膜的吸收强度的影响。退火温度的提高会增强薄膜中P3HT的吸收强度和结晶强度。
     ◇热处理对P3HT:PCBM为功能层的光伏器件的影响。结果表明,当热处理温度接近P3HT玻璃化温度时,器件的性能得到了提高。在170℃下的30分钟热处理时,器件的性能最好。
     2、研究了氟取代的FTQ材料的吸收,薄膜形貌以及在光伏器件中的应用。
     ◇氟取代TQ得到的FTQ材料比原材料TQ的HOMO能级更低,介电常数更高,从而相应器件的Voc有所增加。FTQ材料有1.70eV光学带隙,-5.51eV的HOMO能级和高达5.7×10-3cm2V-1S-1的空穴迁移率,是一种优良的光伏给体材料。
     FTQ:PC71BM共混膜在110℃退火后FTQ的吸收变化情况。退火后吸收峰发生红移,且吸收强度与红移量随时间增加而增加。
     ◇优化了器件性能。以1:1的质量比制备的FTQ:PC71BM器件,在其功能层经历1分钟的短时间退火后,得到5.3%的转换效率。
     3、对于分别以聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸)(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS)和氧化锌(ZnO)为修饰层的PBDTTT-C:PC71BM体系的传统型与倒置型两种器件,研究了影响器件性能的参数,通过优化参数得到高效率的光伏器件。探讨了两种器件在长期存放、光照和加热下性能的稳定性。
     令研究了溶剂与添加剂对以PBDTTT-C:PC71BM功能层的光伏器件性能的影响。比较了几种不同溶剂和添加剂制备的光伏器件的性能,结果显示以邻二氯苯(dichlorobenzene, DCB)为溶剂添加3%的二碘辛烷(1,8-diiodoctane, DIO)对,其器件性能达到最优,光电转换效率达到6.7%。
     ◇探讨了传统结构和倒置结构器件在氮气环境下长期存放、模拟太阳光照和加热条件时性能的变化。发现传统正型器件比倒置型的效率衰减快。这是由于倒置型器件中电极修饰层为ZnO和氧化钼(MoO3)等稳定的无机化合物的保护作用,其器件效率衰减更慢。
     令以ZnO作为阴极修饰层,不仅有良好的电子传输能力,而且能提高器件的寿命与稳定性,倒置型器件是较理想的实用化的太阳能电池候选者。
This work is focused on factors that influence the performance of the bulk-heterojunction polymer solar cells. The main contents of dissertation include three parts. Firstly, temperature-dependent morphology alteration of the P3HT:PCBM blend solar cells during annealing processes were investigated. Secondly, in order to obtain a lower HOMO energy level donor material, the copolymer material FTQ was synthesized by using the fluorine atom to substitute the hydrogen atom in the TQ, which effectively improved the open circuit voltage of the FTQ:PCBM devices. Finally, the optimised PBDTTT-C:PCBM devices with high photovoltaic performance were fabricated. Compared to the conventional stucture devices, the inverted structure devices have better illumination and thermal stability, where the ZnO and MoO3as buffer layers.
     1The effect of thermal treatment on the morphology of P3HT:PCBM blend film and the performance of device based on P3HT:PCBM was studied.
     The influence of the thermal treatment processing on PCBM aggregations in P3HT:PCBM blend film were discussed. The results showed the size of PC61BM and PC71BM aggregations gradually enhance with the increasing temperature of thermal treatment, however the shape of two aggregations are significantly different, where the PC61BM aggregation with dendritic pattern, and the PC71BM aggregation with stellate pattern.
     The impact of Al electrode on the formation of PCBM aggregations was discussed. A1layer can limit the formation of microns PCBM aggregations in the active layer when A1electrode vapor-deposited before thermal annealing, which benefits to the dissociation of excitons and the transport of carriers.
     The influence of the thermal treatment on the P3HT crystalline state and the optical absorption of the film were discussed. With the temperature thermal treatment increased, the absorption and crystallinity of the P3HT blend film are enhance. Meanwhile the absorption peak shifts to long wavelength slightly.
     The impact of the annealing on the performance of P3HT:PCBM devices were studied. When the annealing temperature rised from130to170°C, the device performance has also been improved. The max efficiency of the was achieved, when the devices were annealed at170°C for30minutes.
     2The fluorine-substituted TQ material, FTQ, were characterized, and the photovoltaic performance of the devices based on TQ and FTQ were studied and compared.
     The FTQ with optical band gap of1.70eV, the HOMO level of-5.51eV and the hole mobility up to5.7×10-3cmV-S-1. Compared to TQ, FTQ, fluorine-substituted by TQ, showed lower HOMO level and higher relative dielectric constant, which decides that the devices based on FTQ have higher Voc.
     The changes in the absorption of FTQ:PC71BM blend film during thermal treated at110°C was investigated. After thermal annealing, the obvious redshift of absorption peak of FTQ happens and the absorption increases with the increasing time.
     The device performance was optimized. The efficiency of5.3%was obtained for FTQ:PC71BM device with a mass ratio of1:1in its active layer, processing with a short time of1minute thermal annealing at110°C.
     3To study the key factor to affect the device performance, two kinds of device based on PBDTTT-C:PC71BM were fabricated, where the PEDOT:PSS and the ZnO were used as modified layers in conventional and inverted structure devices, respectively. By optimizing the parameters, the high efficiency device was obtained. The stability of the two kinds of devices in the long-term storage, illumination and thermal conditions were investigated.
     The effect of solvents and additives on the performance of the device were investigated. While DCB as the solvent to add3%DIO, the efficiency up to6.7%was achieved.
     In a nitrogen atmosphere, the aging of the devices with two structures were investigated in different conditions:the long-term storage, the illumination of solar simulator, and high temperature. The results show that conventional-type device decay faster than the inverted-type device. Due to using stable inorganic compound such as the ZnO and the MoO3as modified layer, the efficiency of the inverted-type device decays more slowly.
     ZnO, as a cathode modified layer, not only has good electron transport mobility, but also improves the lifetime and stability of the devices. The inverted-type device is an ideal practical solar cell candidate.
引文
[1]. Becquerel, A.E., Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Compt. Rend. Acad. Sci,1839.9:145-149.
    [2]. Riordan, M. and L. Hoddeson, The origins of the pn junction. Spectrum, IEEE,1997. 34(6):46-51.
    [3], Wohrle, D. and D. Meissner, Organic Solar Cells. Advanced Materials,1991.3(3): 129-138.
    [4]. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics,1961.32(3):510-519.
    [5]. Tang, C., Two-layer organic photovoltaic cell. Applied Physics Letters,1986.48(2): 183-185.
    [6]. Yu, G., J. Gao, J.C. Hummelen, et al., Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science,1995.270(5243):1789-1791.
    [7]. Zhao, J., A. Wang, and M.A. Green,24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Progress in Photovoltaics:Research and Applications,2000.7(6):471-474.
    [8]. Green, M.A., K. Emery, Y. Hishikawa, et al., Solar cell efficiency tables (version 39). Progress in Photovoltaics:Research and Applications,2012.20(1):12-20.
    [9].熊绍珍,朱美芳,太阳能电池基础与应用,北京:科学出版社.2009.p 3-5.
    [10].Thomas, H.-J., Thermal power plants. Berlin, Springer-Verlag,1975.392 p. In German., 1975.1.
    [11].Buresch, M., Photovoltaic energy systems.1983.
    [12].Chapin, D.M., C.S. Fuller, and G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics,1954.25:676-677.
    [13].Jailaubekov, A.E., A.P. Willard, J.R. Tritsch, et al., Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nature Materials,2013.12(1):66-73.
    [14].You, J., L. Dou, K. Yoshimura, et al., A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications,2013.4:1446.
    [15]. Li, G., V. Shrotriya, J. Huang, et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials,2005.4(11):864-868.
    [16]. Ma, W., C. Yang, X. Gong, et al., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials, 2005.15(10):1617-1622.
    [17].Kim, J.Y., K. Lee, N.E. Coates, et al., Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science,2007.317(5835):222-225.
    [18].Chen, H.-Y., J. Hou, S. Zhang, et al., Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics,2009.3(11):649-653.
    [19].He, Z., C. Zhong, S. Su, et al., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics,2012.6(9):591-595.
    [20].Gratzel, M., Photoelectrochemical cells.2001.
    [21].Zhao, J., A. Wang, M.A. Green, et al.,19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters,1998.73(14): 1991-1993.
    [22]. Singh, K.N., Polycrystalline silicon solar cell.1975.
    [23].Carlson, D. and C. Wronski, Amorphous silicon solar cell. Applied Physics Letters,1976. 28(11):671-673.
    [24].徐立珍,李彦,秦锋,薄膜太阳电池的研究进展及应用前景.可再生能源,2006.3(127):9-12.
    [25].Repins, I., M.A. Contreras, B. Egaas, et al.,19-9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81-2% fill factor. Progress in Photovoltaics:Research and Applications,2008.16(3): 235-239.
    [26]. Jackson, P., D. Hariskos, E. Lotter, et al., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics:Research and Applications,2011.19(7): 894-897.
    [27].Noufi, R. and K. Zweibel. High-efficiency CdTe and CIGS thin-film solar cells:highlights and challenges. in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on.2006:IEEE.
    [28].O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991.353(6346):737-740.
    [29].Nazeeruddin, M.K., F. De Angelis, S. Fantacci, et al., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society,2005.127(48):16835-16847.
    [30].Cui, Y., J. Zhang, X. Zhang, et al., High performance quasi-solid-state dye-sensitized solar cells based on acetamide-modified polymer electrolytes. Organic Electronics,2012.13(11): 2561-2567.
    [31].Feng, Q., W. Zhang, G. Zhou, et al., Enhanced Performance of Quasi-Solid-State Dye-Sensitized Solar Cells by Branching the Linear Substituent in Sensitizers Based on Thieno[3,4-c]pyrrole-4,6-dione. Chemistry-An Asian Journal,2013.8(1):168-177.
    [32].Pochettino,A.,Acad. Lincei Rend.1906.15:355.
    [33].Marks, R.N., J.J.M. Halls, D.D.C. Bradley, et al., The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. Journal of Physics:Condensed Matter,1994.6(7): 1379.
    [34].Ma, W., C. Yang, and A.J. Heeger, Spatial Fourier-Transform Analysis of the Morphology of Bulk Heterojunction Materials Used in "Plastic" Solar Cells. Advanced Materials, 2007.19(10):1387-1390.
    [35]. Jo, J., S.-I. Na, S.-S. Kim, et al., Three-Dimensional Bulk Heterojunction Morphology for Achieving High Internal Quantum Efficiency in Polymer Solar Cells. Advanced Functional Materials,2009.19(15):2398-2406.
    [36].Brabec, C., N. Sariciftci, and J. Hummelen, Plastic solar cells. Advanced Functional Materials,2001.11(1):15-26.
    [37].Dennler, G., M.C. Scharber, and C.J. Brabec, Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials,2009.21(13):1323-1338.
    [38].Fan, X., C. Cui, G. Fang, et al., Efficient Polymer Solar Cells Based on Poly(3-hexylthiophene):Indene-C70 Bisadduct with a MoO3 Buffer Layer. Advanced Functional Materials,2012.22(3):585-590.
    [39].Lee, Y.-I., J.-H. Youn, M.-S. Ryu, et al., Highly efficient inverted poly(3-hexylthiophene): Methano-fullerene [6,6]-phenyl C71-butyric acid methyl ester bulk heterojunction solar cell with Cs2CO3 and MoO3. Organic Electronics,2011.12(2):353-357.
    [40].Chang, Y.-M., R. Zhu, E. Richard, et al., Electrostatic Self-assembly Conjugated Polyelectrolyte-Surfactant Complex as an Interlayer for High Performance Polymer Solar Cells. Advanced Functional Materials,2012.22(15):3284-3289.
    [41].Murase, S. and Y. Yang, Solution Processed MoO3 Interfacial Layer for Organic Photovoltaics Prepared by a Facile Synthesis Method. Advanced Materials,2012.24(18): 2459-2462.
    [42].Brabec, C.J., A. Cravino, D. Meissner, et al., Origin of the Open Circuit Voltage of Plastic Solar Cells. Advanced Functional Materials,2001.11(5):374-380.
    [43]. Jo, J., S.-S. Kim, S.-I. Na, et al., Time-Dependent Morphology Evolution by Annealing Processes on Polymer:Fullerene Blend Solar Cells. Advanced Functional Materials,2009.19(6): 866-874.
    [44].Li, G., Y. Yao, H. Yang, et al., "Solvent Annealing" Effect in Polymer Solar Cells Based on Poly (3-hexylthiophene) and Methanofullerenes. Advanced Functional Materials,2007.17(10): 1636-1644.
    [45].Brabec, C., S. Shaheen, C. Winder, et al., Effect of LiF/metal electrodes on the performance of plastic solar cells. Applied Physics Letters,2002.80:1288.
    [46]. Yuan, Y, T.J. Reece, P. Sharma, et al., Efficiency enhancement in organic solar cells with ferroelectric polymers. Nature Materials,2011.10(4):296-302.
    [47].He, Z., C. Zhong, X. Huang, et al., Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells. Advanced Materials,2011. 23(40):4636-4643.
    [48].Kim, J., K. Lee, N. Coates, et al., Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007.317(5835):222-225.
    [49].Peet, J., J. Kim, N. Coates, et al., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials,2007.6(7):497-500.
    [50].Lee, J.K., W.L. Ma, C.J. Brabec, et al., Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. Journal of the American Chemical Society,2008.130(11): 3619-3623.
    [51].Liang, Y., Z. Xu, J. Xia, et al., For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials,2010.22(20):E135-E138.
    [52].Park, S.H., A. Roy, S. Beaupre, et al., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics,2009.3(5):297-302.
    [53].Gupta, D., S. Mukhopadhyay, and K. Narayan, Fill factor in organic solar cells. Solar Energy Materials and Solar Cells,2010.94(8):1309-1313.
    [54].吴世康,汪鹏飞,有机电子学概论,北京:化学工业出版社.2010.p.206-237.
    [55].Heeger, A.J., N.S. Sariciftci, and E.B. Namdas, Semiconducting and metallic polymers. 2010:Oxford University Press.
    [56].Kim, J., S. Kim, H. Lee, et al., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Advanced Materials,2006.18(5): 572-576.
    [57].Gtines, S., H. Neugebauer, and N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews,2007.107(4):1324-1338.
    [58].Blouin, N., A. Michaud, and M. Leclerc, A low-bandgap poly (2,7-carbazole) derivative for use in high-performance solar cells. Advanced Materials,2007.19(17):2295-2300.
    [59].Seo, J.H., A. Gutacker, Y. Sun, et al., Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer. Journal of the American Chemical Society, 2011.133(22):8416-8419.
    [60].Liang, Y. and L. Yu, A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance. Accounts of Chemical Research,2010.43(9): 1227-1236.
    [61].Hou, J., H.Y. Chen, S. Zhang, et al., Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. Journal of the American Chemical Society,2009. 131(43):15586-15587.
    [62]. Liang, Y., Y. Wu, D. Feng, et al., Development of New Semiconducting Polymers for High Performance Solar Cells. Journal of the American Chemical Society,2008.131(1):56-57.
    [63]. Price, S.C., A.C. Stuart, L. Yang, et al., Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells. Journal of the American Chemical Society,2011.133(12):4625-4631.
    [64].Yuan, M.-C., M.-Y. Chiu, S.-P. Liu, et al., A Thieno[3,4-c]pyrrole-4,6-dione-Based Donor-Acceptor Polymer Exhibiting High Crystallinity for Photovoltaic Applications. Macromolecules,2010.43(17):6936-6938.
    [65].Su, M.-S., C.-Y. Kuo, M.-C. Yuan, et al., Improving Device Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives. Advanced Materials,2011.23(29):3315-3319.
    [66].Ong, K.-H., S.-L. Lim, H.-S. Tan, et al., A Versatile Low Bandgap Polymer for Air-Stable, High-Mobility Field-Effect Transistors and Efficient Polymer Solar Cells. Advanced Materials,2011. 23(11):1409-1413.
    [67].Muhlbacher, D., M. Scharber, M. Morana, et al., High photovoltaic performance of a low-bandgap polymer. Advanced Materials,2006.18(21):2884-2889.
    [68].J(?)rgensen, M., K. Norrman, S.A. Gevorgyan, et al., Stability of Polymer Solar Cells. Advanced Materials,2012.24(5):580-612.
    [69]. Williams, G., Q. Wang, and H. Aziz, The Photo-Stability of Polymer Solar Cells:Contact Photo-Degradation and the Benefits of Interfacial Layers. Advanced Functional Materials,2012: 23(18):2239-2247.
    [70].Vemulamada, P., G. Hao, T. Kietzke, et al., Efficient bulk heterojunction solar cells from regio-regular-poly(3,3"'-didodecyl quaterthiophene)/PC70BM blends. Organic Electronics,2008. 9(5):661-666.
    [71].Chen, M., J. Hou, Z. Hong, et al., Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Advanced Materials, 2009.21(42):4238-4242.
    [72].Lenes, M., G.-J.A.H. Wetzelaer, F.B. Kooistra, et al., Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells. Advanced Materials,2008.20(11): 2116-2119.
    [73].He, Y, H.-Y. Chen, J. Hou, et al., Indene-C60 Bisadduct:A New Acceptor for High-Performance Polymer Solar Cells. Journal of the American Chemical Society,2010.132(4): 1377-1382.
    [74].Zhao, G., Y. He, and Y. Li,6.5% Efficiency of Polymer Solar Cells Based on poly (3-hexylthiophene) and Indene-C60 Bisadduct by Device Optimization. Advanced Materials,2010. 22(39):4355-4358.
    [75].Guo, X., C. Cui, M. Zhang, et al., High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy & Environmental Science,2012.5(7):7943-7949.
    [76].Meng, X., W. Zhang, Z.a. Tan, et al., Highly Efficient and Thermally Stable Polymer Solar Cells with Dihydronaphthyl-Based [70]Fullerene Bisadduct Derivative as the Acceptor. Advanced Functional Materials,2012.22(10):2187-2193.
    [77]. Yip, H.-L. and A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy & Environmental Science,2012.5(3):5994-6011.
    [78]. Yin, W. and M. Dadmun, A New Model for the Morphology of P3HT/PCBM Organic Photovoltaics from Small-Angle Neutron Scattering:Rivers and Streams. ACS Nano,2011.5(6): 4756-4768.
    [79]. Yuan, Y, Y. Bi, and J. Huang, Achieving high efficiency laminated polymer solar cell with interfacial modified metallic electrode and pressure induced crystallization. Applied Physics Letters, 2011.98(6):063306.
    [80].Beal, R.M., A. Stavrinadis, J.H. Warner, et al., The Molecular Structure of Polymer-Fullerene Composite Solar Cells and Its Influence on Device Performance. Macromolecules,2010.43(5):2343-2348.
    [81].Xue, B., B. Vaughan, C. Poh, et al., Vertical Stratification and Interfacial Structure in P3HT:PCBM Organic Solar Cells. The Journal of Physical Chemistry C,2010:1324.
    [82].Mayukh, M., I.H. Jung, F. He, et al., Incremental optimization in donor polymers for bulk heteroj unction organic solar cells exhibiting high performance. Journal of Polymer Science Part B: Polymer Physics,2012.50(15):1057-1070.
    [83].Zhi-Hui, F., H. Yan-Bing, S. Quan-Min, et al., Polymer solar cells based on a PEDOT:PSS layer spin-coated under the action of an electric field. Chinese Physics B,2010.19(3):038601.
    [84].Yang, B., Z. Xiao, Y. Yuan, et al., Room-temperature organic ferromagnetism in the crystalline poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester blend film Polymer,2013. 54(2):490-494.
    [85].Shrotriya, V, Y. Yao, G. Li, et al., Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Applied Physics Letters,2006.89:063505.
    [86].Li, G., V. Shrotriya, Y. Yao, et al., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene). Journal of Applied Physics, 2005.98:043704.
    [87]. Reyes-Reyes, M., K. Kim, and D. Carroll, High-efficiency photovoltaic devices based on annealed poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-l-phenyl-(6,6) C blends. Applied Physics Letters,2005.87:083506.
    [88].Reyes-Reyes, M., K. Kim, J. Dewald, et al., Meso-structure formation for enhanced organic photovoltaic cells. Organic Letters,2005.7(26):5749-5752.
    [89].Zhokhavets, U., T. Erb, H. Hoppe, et al., Effect of annealing of poly (3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films,2006.496(2):679-682.
    [90].Zhi-Hui, F., H. Yan-Bing, S. Quan-Min, et al., Effect of slow-solvent-vapour treatment on performance of polymer photovoltaic devices. Chinese Physics B,2010.19(9):098601.
    [91].Eom, S., H. Park, S. Mujawar, et al., High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Organic Electronics,2010. 11(9):1516-1522.
    [92].Chang, L., H.W.A. Lademann, J.-B. Bonekamp, et al., Effect of Trace Solvent on the Morphology of P3HT:PCBM Bulk Heterojunction Solar Cells. Advanced Functional Materials,2011. 21(10):1779-1787.
    [93].Liu, J., T. Tanaka, K. Sivula, et al., Employing End-Functional Polythiophene To Control the Morphology of Nanocrystal-Polymer Composites in Hybrid Solar Cells. J. Am. Chem. Soc, 2004.126(21):6550-6551.
    [94].Berson, S., R. De Bettignies, S. Bailly, et al., Poly (3-hexylthiophene) fibers for photovoltaic applications. Advanced Functional Materials,2007.17(8):1377-1384.
    [95].Campoy-Quiles, M., T. Ferenczi, T. Agostinelli, et al., Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Materials,2008.7(2):158-164.
    [96].Waldauf, C., M. Morana, P. Denk, et al., Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact Applied Physics Letters,2006. 89(23):233517-233517-3.
    [97].Cai, W., X. Gong, and Y. Cao, Polymer solar cells:Recent development and possible routes for improvement in the performance. Solar Energy Materials and Solar Cells,2010.94(2): 114-127.
    [98].Cugola, R., U. Giovanella, P. Di Gianvincenzo, et al., Thermal characterization and annealing effects of polythiophene/fullerene photoactive layers for solar cells. Thin Solid Films, 2006.511:489-493.
    [99].Sivula, K., C.K. Luscombe, B.C. Thompson, et al., Enhancing the Thermal Stability of Polythiophene:Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity. Journal of the American Chemical Society,2006.128(43):13988-13989.
    [100]. Swinnen, A., I. Haeldermans, M. vandeVen, et al., Tuning the Dimensions of C60-Based Needlelike Crystals in Blended Thin Films. Advanced Functional Materials,2006.16(6): 760-765.
    [101]. Li, Y., Y. Hou, Y. Wang, et al., Thermal treatment under reverse bias:Effective tool for polymer/fullerene bulk heterojunction solar cells. Synthetic Metals,2008.158(5):190-193.
    [102]. Keller, A., The spherulitic structure of crystalline polymers. Part Ⅰ. Investigations with the polarizing microscope. Journal of Polymer Science,2003.17(84):291-308.
    [103]. Yang, X., J.K. van Duren, M.T. Rispens, et al., Crystalline Organization of a Methanofullerene as Used for Plastic Solar-Cell Applications. Advanced Materials,2004.16(9-10):802-806.
    [104]. Zhao, J., A. Swinnen, G. Van Assche, et al., Phase diagram of P3HT/PCBM blends and its implication for the stability of morphology. The Journal of Physical Chemistry B,2009. 113(6):1587-1591.
    [105]. Huang, Y, S. Chuang, M. Wu, et al., Quantitative nanoscale monitoring the effect of annealing process on the morphology and optical properties of poly (3-hexylthiophene)/[6,6]-phenyl C 61-butyric acid methyl ester thin film used in photovoltaic devices. Journal of Applied Physics, 2009.106(3):034506-034506.
    [106]. Watts, B., W.J. Belcher, L. Thomsen, et al., A Quantitative Study of PCBM Diffusion during Annealing of P3HT:PCBM Blend Films. Macromolecules,2009.42(21):8392-8397.
    [107]. Hoppe, H., M. Niggemann, C. Winder, et al., Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Advanced Functional Materials,2004. 14(10):1005-1011.
    [108]. Vanlaeke, P., A. Swinnen, I. Haeldermans, et al., P3HT/PCBM bulk heterojunction solar cells:Relation between morphology and electro-optical characteristics. Solar Energy Materials and Solar Cells,2006.90(14):2150-2158.
    [109]. Baek, W.-H., T.-S. Yoon, H.H. Lee, et al., Composition-dependent phase separation of P3HT:PCBM composites for high performance organic solar cells. Organic Electronics,2010.11(5): 933-937.
    [110]. Miller, N.C., R. Gysel, C.E. Miller, et al., The phase behavior of a polymer-fullerene bulk heterojunction system that contains bimolecular crystals. Journal of Polymer Science Part B: Polymer Physics,2011.49(7):499-503.
    [111]. Kim, H.J., H.H. Lee, and J.-J. Kim, Real Time Investigation of the Interface between a P3HT:PCBM Layer and an Al Electrode during Thermal Annealing. Macromolecular Rapid Communications,2009.30(14):1269-1273.
    [112]. Padinger, F., R.S. Rittberger, and N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials,2003.13(1):85-88.
    [113]. Yao, Y., J. Hou, Z. Xu, et al., Effects of solvent mixtures on the nanoscale phase separation in polymer solar cells. Advanced Functional Materials,2008.18(12):1783-1789.
    [114]. Sirringhaus, H., P. Brown, R. Friend, et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature,1999.401(6754):685-688.
    [115]. Brown, P.J., D.S. Thomas, A. Kohler, et al., Effect of interchain interactions on the absorption and emission of poly (3-hexylthiophene). Physical Review B,2003.67(6):064203.
    [116]. Drolet, N., J.F. Morin, N. Leclerc, et al.,2,7-Carbazolenevinylene-Based Oligomer Thin-Film Transistors:High Mobility Through Structural Ordering. Advanced Functional Materials, 2005.15(10):1671-1682.
    [117]. Kim, Y., S. Cook, S. Tuladhar, et al., A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials, 2006.5(3):197-203.
    [118]. Ajayaghosh, A., Donor-acceptor type low band gap polymers:polysquaraines and related systems. Chemical Society Reviews,2003.32(4):181-191.
    [119]. Liu, J., H. Choi, J.Y. Kim, et al., Highly Crystalline and Low Bandgap Donor Polymers for Efficient Polymer Solar Cells. Advanced Materials,2012.24(4):538-542.
    [120]. Zhou, Q., Q. Hou, L. Zheng, et al., Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Applied Physics Letters,2004.84(10):1653-1655.
    [121]. van Bavel, S.S., M. Barenklau, G. de With, et al., P3HT/PCBM Bulk Heterojunction Solar Cells:Impact of Blend Composition and 3D Morphology on Device Performance. Advanced Functional Materials,2010.20(9):1458-1463.
    [122]. Vandewal, K., A. Gadisa, W. Oosterbaan, et al., The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer:Fullerene bulk heterojunction solar cells. Advanced Functional Materials,2008.18(14):2064-2070.
    [123]. Chu, C.-W., H. Yang, W.-J. Hou, et al., Control of the nanoscale crystallinity and phase separation in polymer solar cells. Applied Physics Letters,2008.92(10):103306-3.
    [124]. Steirer, K.X., P.F. Ndione, N.E. Widjonarko, et al., Enhanced Efficiency in Plastic Solar Cells via Energy Matched Solution Processed NiOx Interlayers. Advanced Energy Materials, 2011.1(5):813-820.
    [125]. Ouyang, J., Q. Xu, C.-W. Chu, et al., On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment Polymer, 2004.45(25):8443-8450.
    [126]. Zuo, L., X. Jiang, M. Xu, et al., Enhancement of short current density in polymer solar cells with phthalocyanine tin (IV) dichloride as interfacial layer. Solar Energy Materials and Solar Cells,2011.95(9):2664-2669.
    [127]. Xia, R., D.-S. Leem, T. Kirchartz, et al., Investigation of a Conjugated Polyelectrolyte Interlayer for Inverted Polymer:Fullerene Solar Cells. Advanced Energy Materials,2013.3(6): 718-723.
    [128]. Yang, T., M. Wang, C. Duan, et al., Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy & Environmental Science,2012.5(8):8208-8214.
    [129]. Gadisa, A., M. Svensson, M.R. Andersson, et al., Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative. Applied Physics Letters,2004.84(9):1609-1611.
    [130]. van□Duren, J.K.J., X. Yang, J. Loos, et al., Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance. Advanced Functional Materials,2004.14(5):425-434.
    [131]. Kim, Y., S. Choulis, J. Nelson, et al., Composition and annealing effects in polythiophene/fullerene solar cells. Journal of Materials Science,2005.40(6):1371-1376.
    [132]. Tuladhar, S.M., D. Poplavskyy, S.A. Choulis, et al., Ambipolar Charge Transport in Films of Methanofullerene and Poly(phenylenevinylene)/Methanofullerene Blends. Advanced Functional Materials,2005.15(7):1171-1182.
    [133]. Scharber, M., D. Muhlbacher, M. Koppe, et al., Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Advanced Materials, 2006.18(6):789-794.
    [134]. Loi, M.A., S. Toffanin, M. Muccini, et al., Charge Transfer Excitons in Bulk Heterojunctions of a Polyfluorene Copolymer and a Fullerene Derivative. Advanced Functional Materials,2007.17(13):2111-2116.
    [135]. Clarke, T.M. and J.R. Durrant, Charge Photogeneration in Organic Solar Cells. Chemical Reviews,2010.110(11):6736-6767.
    [136]. Vandewal, K., K. Tvingstedt, A. Gadisa, et al., On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nature Materials,2009.8(11):904-909.
    [137]. Zhang, M., X. Guo, and Y. Li, Synthesis and Characterization of a Copolymer Based on Thiazolothiazole and Dithienosilole for Polymer Solar Cells. Advanced Energy Materials,2011. 1(4):557-560.
    [138]. Huang, Y., X. Guo, F. Liu, et al., Improving the Ordering and Photovoltaic Properties by Extending π-Conjugated Area of Electron-Donating Units in Polymers with D-A Structure. Advanced Materials,2012.24(25):3383-3389.
    [139]. Chang, C.-Y, Y.-J. Cheng, S.-H. Hung, et al., Combination of Molecular, Morphological, and Interfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells. Advanced Materials,2012.24(4):549-553.
    [140]. Yamamoto, T., B.-L. Lee, H. Kokubo, et al., Synthesis of a New Thiophene/Quinoxaline CT-Type Copolymer with High Solubility and Its Basic Optical Properties. Macromolecular Rapid Communications,2003.24(7):440-443.
    [141]. Wang, E., L. Hou, Z. Wang, et al., An Easily Synthesized Blue Polymer for High-Performance Polymer Solar Cells. Advanced Materials,2010.22(46):5240-5244.
    [142]. Milstein, D. and J.K. Stille, A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. Journal of the American Chemical Society,1978.100(11):3636-3638.
    [143]. Gadisa, A., W. Mammo, L.M. Andersson, et al., A new donor-acceptor-donor polyfluorene copolymer with balanced electron and hole mobility. Advanced Functional Materials, 2007.17(18):3836-3842.
    [144]. Savenije, T.J., J.E. Kroeze, X. Yang, et al., The Effect of Thermal Treatment on the Morphology and Charge Carrier Dynamics in a Polythiophene-Fullerene Bulk Heterojunction. Advanced Functional Materials,2005.15(8):1260-1266.
    [145]. Moon, J.S., C.J. Takacs, Y. Sun, et al., Spontaneous Formation of Bulk Heterojunction Nanostructures:Multiple Routes to Equivalent Morphologies. Nano Letters,2011.11(3):1036-1039.
    [146]. Choulis, S.A., Y. Kim, J. Nelson, et al., High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene). Applied Physics Letters,2004.85(17):3890-3892.
    [147]. Wienk, M.M., J.M. Kroon, W.J.H. Verhees, et al., Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angewandte Chemie, 2003.115(29):3493-3497.
    [148]. Huynh, W., J. Dittmer, W. Libby, et al., Controlling the morphology of nanocrystal-polymer composites for solar cells. Advanced Functional Materials,2003.13(1):73-79.
    [149]. Yang, B., J. Cox, Y. Yuan, et al., Increased efficiency of low band gap polymer solar cells at elevated temperature and its origins. Applied Physics Letters,2011.99(13):133302-3.
    [150]. Green, M.A., K. Emery, Y. Hishikawa, et al., Solar cell efficiency tables (version 37). Progress in Photovoltaics:Research and Applications,2011.19(1):84-92.
    [151]. Krebs, F.C., Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Solar Energy Materials and Solar Cells, 2009.93(4):465-475.
    [152]. Krebs, F.C., R. Sondergaard, and M. Jorgensen, Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique. Solar Energy Materials and Solar Cells,2011.95(5):1348-1353.
    [153]. Dupont, S.R., M. Oliver, F.C. Krebs, et al., Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells. Solar Energy Materials and Solar Cells,2012.97(0): 171-175.
    [154]. S(?)ndergaard, R., M. Hosel, D. Angmo, et al., Roll-to-roll fabrication of polymer solar cells. Materials Today,2012.15(1-2):36-49.
    [155]. Thrane, L., T.M. J(?)rgensen, M. J(?)rgensen, et al., Application of optical coherence tomography (OCT) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells. Solar Energy Materials and Solar Cells,2012.97(0):181-185.
    [156]. Krebs, F.C, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Solar Energy Materials and Solar Cells,2008.92(7):715-726.
    [157]. J(?)rgensen, M., K. Norrman, and F.C. Krebs, Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells,2008.92(7):686-714.
    [158]. Hau, S., H. Yip, N. Baek, et al., Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Applied Physics Letters,2008.92:253301.
    [159]. Kyaw, A.K.K., Y. Wang, D.W. Zhao, et al., The properties of sol-gel processed indium-doped zinc oxide semiconductor film and its application in organic solar cells, physica status solidi (a),2011.208(11):2635-2642.
    [160]. Chen, S., J. Manders, S.W. Tsang, et al., Metal Oxides for Interface Engineering in Polymer Solar Cells. Journal of Materials Chemistry,2012.22(46):24202-24212.
    [161]. Chen, S., C.E. Small, C.M. Amb, et al., Inverted Polymer Solar Cells with Reduced Interface Recombination. Advanced Energy Materials,2012.2(11):1333-1337.
    [162]. Chu, T.-Y., S.-W. Tsang, J. Zhou, et al., High-efficiency inverted solar cells based on a low bandgap polymer with excellent air stability. Solar Energy Materials and Solar Cells,2012. 96(1):155-159.
    [163]. Liu, J., S. Shao, B. Meng, et al., Enhancement of inverted polymer solar cells with solution-processed ZnO-TiO[sub X] composite as cathode buffer layer. Applied Physics Letters, 2012.100(21):213906-3.
    [164]. Ma, Z., Z. Tang, E. Wang, et al., Influences of Surface Roughness of ZnO Electron Transport Layer on the Photovoltaic Performance of Organic Inverted Solar Cells. The Journal of Physical Chemistry C,2012.116(46):24462-24468.
    [165]. Sanchez, S., S. Berson, S. Guillerez, et al., Toward High-Stability Inverted Polymer Solar Cells with an Electrodeposited ZnO Electron Transporting Layer. Advanced Energy Materials, 2012.2(5):541-545.
    [166], Bernede, J.C., L. Cattin, S.O. Djobo, et al., Influence of the highest occupied molecular orbital energy level of the donor material on the effectiveness of the anode buffer layer in organic solar cells, physica status solidi (a),2011.208(8):1989-1994.
    [167]. Girotto, C., E. Voroshazi, D. Cheyns, et al., Solution-Processed MoO3 Thin Films As a Hole-Injection Layer for Organic Solar Cells. ACS Applied Materials & Interfaces,2011.3(9): 3244-3247.
    [168]. Zhao, D.W., L. Ke, Y. Li, et al., Optimization of inverted tandem organic solar cells. Solar Energy Materials and Solar Cells,2011.95(3):921-926.
    [169]. Liu, J., S. Shao, G. Fang, et al., High-Efficiency Inverted Polymer Solar Cells with Transparent and Work-Function Tunable MoO3-Al Composite Film as Cathode Buffer Layer. Advanced Materials,2012.24(20):2774-2779.
    [170]. Sun, Y, J.H. Seo, C.J. Takacs, et al., Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer. Advanced Materials,2011.23(14):1679-1683.
    [171]. Tan, Z.a., W. Zhang, Z. Zhang, et al., High-Performance Inverted Polymer Solar Cells with Solution-Processed Titanium Chelate as Electron-Collecting Layer on ITO Electrode. Advanced Materials,2012.24(11):1476-1481.
    [172]. Li, X., W.C.H. Choy, L. Huo, et al., Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells. Advanced Materials,2012.24(22):3046-3052.
    [173]. Szarko, J.M., J. Guo, Y. Liang, et al., When function follows form:Effects of donor copolymer side chains on film morphology and BHJ solar cell performance. Advanced Materials, 2010.22(48):5468-5472.
    [174]. Son, H.J., B. Carsten, I.H. Jung, et al., Overcoming Efficiency Challenges in Organic Solar Cells:Rational Development of Conjugated Polymers. Energy & Environmental Science,2012. 5(8):8158-8170.
    [175]. Woo, C.H., P.M. Beaujuge, T.W. Holcombe, et al., Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells. Journal of the American Chemical Society,2010. 132(44):15547-15549.
    [176]. Aich, B.R., J. Lu, S. Beaupr6, et al., Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells. Organic Electronics, 2012.13(9):1736-1741.
    [177]. Qian, D., L. Ye, M. Zhang, et al., Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules,2012. 45(24):9611-9617.
    [178]. Koppe, M., C.J. Brabec, S. Heiml, et al., Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance. Macromolecules,2009. 42(13):4661-4666.
    [179]. Zhang, Q., J. Ge, T. Pham, et al., Reconstruction of Silver Nanoplates by LTV Irradiation:Tailored Optical Properties and Enhanced Stability. Angewandte Chemie International Edition,2009.48(19):3516-3519.
    [180]. Abad, J., N. Espinosa, R. Garcia-Valverde, et al., The influence of UV radiation and ozone exposure on the electronic properties of poly-3-octyl-thiophene thin films. Solar Energy Materials and Solar Cells,2011.95(5):1326-1332.
    [181]. Zhou, R., Y. Zheng, L. Qian, et al., Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability. Nanoscale,2012.4(11):3507-3514.
    [182]. Aykut, Y., G.N. Parsons, B. Pourdeyhimi, et al., Synthesis of mixed ceramic MgxZnl-xO nanofibers via Mg2+ doping using sol-gel electrospinning. Langmuir,2013.29(12): 4159-4166.
    [183]. Kim, T.-M., J.W. Kim, H.-S. Shim, et al., High efficiency and high photo-stability zinc-phthalocyanine based planar heterojunction solar cells with a double interfacial layer. Applied Physics Letters,2012.101(11):113301-5.
    [184]. Hermenau, M., M. Riede, K. Leo, et al., Water and oxygen induced degradation of small molecule organic solar cells. Solar Energy Materials and Solar Cells,2011.95(5):1268-1277.
    [185]. Grossiord, N., J.M. Kroon, R. Andriessen, et al., Degradation mechanisms in organic photovoltaic devices. Organic Electronics,2012.13(3):432-456.
    [186]. Bertho, S., G. Janssen, T.J. Cleij, et al., Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Solar Energy Materials and Solar Cells,2008.92(7):753-760.
    [187]. Tromholt, T., A. Manor, E.A. Katz, et al., Reversible degradation of inverted organic solar cells by concentrated sunlight. Nanotechnology,2011.22:225401.
    [188]. Gevorgyan, S.A., M. J(?)rgensen, F.C Krebs, et al., A compact multi-chamber setup for degradation and lifetime studies of organic solar cells. Solar Energy Materials and Solar Cells,2011. 95(5):1389-1397.
    [189]. Du, X., D. He, Z. Xiao, et al., The double-edged function of UV light in polymer solar cells with an inverted structure. Synthetic Metals,2012.162(24):2302-2306.
    [190]. Franke, R., B. Maennig, A. Petrich, et al., Long-term stability of tandem solar cells containing small organic molecules. Solar Energy Materials and Solar Cells,2008.92(7):732-735.
    [191]. Reese, M.O., A.J. Morfa, M.S. White, et al., Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Solar Energy Materials and Solar Cells,2008.92(7): 746-752.
    [192]. Yang, X., J.K.J. van Duren, R.A.J. Janssen, et al., Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices. Macromolecules,2004.37(6):2151-2158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700