含氧官能团对石墨烯纳米条带电子输运性质的调制效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合密度泛函理论与非平衡格林函数方法,系统研究了氧化对一维碳纳米管和石墨烯纳米条带电子输运性质的调制效应,同时研究了在金属电极条件下石墨烯纳米条带的电子输运性质。我们的研究为一维碳纳米材料在纳米器件中的应用提供了理论基础,本论文的主要结论包括:
     (1)研究了(10,0)单壁碳纳米管(SWCNT)的本征缺陷与氧分子(O2)耦合形成的缺陷复合体对纳米管电子结构和电子输运的调制效应。结果表明,缺陷复合体能够部分的修复空位引起的电子态局域,但是增强了Stone-Wales缺陷造成的电子态局域。因此,氧化提高了空位缺陷SWCNT的传输电导,但是压制了Stone-Wales缺陷SWCNT的传输电导。我们的研究还表明缺陷复合体几乎不影响纳米管的传输带隙和开启电压;
     (2)我们研究了边缘氧化对锯齿型石墨烯纳米条带(ZGNRs)电子输运的调制效应。研究中我们考虑了两种含氧官能团C=O(ZGNR-CO)和C-O-C(ZGNR-C2O)。我们发现:在透明电极条件下两种含氧官能团都能提高ZGNRs的传输电导。但是,在金电极的情况下,与Au|ZGNR-H|Au相比Au|ZGNR-CO|Au的电子传输得到增强而Au|ZGNR-C2O|Au的电子传输受到抑制。这是因为在Au|ZGNR-CO|Au系统中,边缘氧化不但保持了原有边缘C原子上的传输通道而且引入了新的有效传输通道,从而带来传输增益。而Au|ZGNR-C2O|Au在费米能级附近的电子态局域在纳米带上,阻断了电子传输通道,压制了器件的电输运;
     (3)研究了氧化对金电极与ZGNRs形成的器件结的电子输运的影响。我们发现因为在结处形成了肖特基势垒,所以Au/ZGNRs表现出典型的二极管整流特征。尽管结氧化对肖特基势垒的影响很小,但是结氧化影响了ZGNRs与Au电极间的耦合所以调控了器件结的I-V特性;
     (4)我们研究了局部应变对边缘ZGNRs电子传输的调制。结果表明:局部应对ZGNR-H的电子传输的影响非常微弱,但对边缘氧修饰的ZGNRs(ZGNR-CO和ZGNR-C2O)的电子输运的影响非常明显。由于局部应变很难扰动ZGNR-CO费米能级附近的电子态,所以相比于ZGNR-H,ZGNR-CO在局部应变条件下增强了电子传输;但是ZGNR-C2O随局部应变的增强电子传输逐渐被抑制,这是由于C-O-C使得费米能级附近的电子态离域在整个纳米带上,而局部应变造成了此电子态的局域从而阻断电子通道;
     (5)我们提出了通过羧基(OH)链表面修饰调制ZGNRs电子输运的方案。OH链修饰于ZGNRs上下表面形成的石墨烯纳米带氧化物(ZGNR-mOH,m表示被OH链修饰的碳链条数)。羧基链修饰能够有效的调制ZGNRs的电子结构及电子输运特性。在特征体系9ZGNRs中,当m≤4时9ZGNR-mOH表现出金属特性,这其中当m=3时,系统在费米能级附近出现6G0的传输平台。但是当m>4时,9ZGNR-mOH转变为半导体特性。特别是9ZGNR-7OH和9ZGNR-8OH表现为n型半导体。ZGNR-mOH的电子输运性质依赖于边缘态及界面态。当未被修饰的碳区域的宽度小于3条碳链时,派尔斯畸变引起了金属-半导体转变。
The effects of oxygen-containing functional groups on the electronic transportproperties in one-dimensional carbon nanotube and graphene nanoribbons areinvestigate by using the density functional theory in combination with thenonequilibrium Green’s function method. Our results indicate that the electronictransport of carbon nanotubes and graphene nanoribbons is significantly affected bythe oxygen-containing functional groups. It is an effective approach to modulate theelectronic properties by oxidization with rational design. Our works offer usefulinformation for designing tunable nanoscale devices on the basis of carbon nanomaterials. The primary coverage of this dissertation is as follows:
     (1) The electronic structures and transport properties of (10,0) single-walled carbonnanotube ((10,0)(SWNT)) with oxygen-containing defect complex are investigated.The complex delocalizes the local states of (10,0) SWNT induced by mono-anddi-vacancy but strengthens the localization of the states induced by the Stone-Walesdefect. As a result, the complex partially restores the transmission of (10,0) SWNTwith vacancies, but reduces the transmission of (10,0) SWNT with Stone-Walesdefects. However, the oxygen-containing defect complex only slightly influences thetransmission gap and threshold voltage of the system.
     (2) We have investigated the transport properties of zigzag-edged graphenenanoribbons (ZGNRs) with oxygen edge decoration (passivated by the ketone (C=O)or ether (C-O-C), denoting as ZGNR-CO and ZGNR-C2O, respectively). We find thatboth ZGNR-CO and ZGNR-C2O induce the semiconductor-metal transition andenhance the transmission conductance within ‘transparent’ electrodes. However, whensandwiched by Au (111) electrodes, Au|ZGNR-CO|Au enhances the transport whileAu|ZGNR-C2O|Au depresses the transport in comparison with Au|ZGNR-H|Au. It isfound that the transport properties of the edge oxidized ZGNRs within Au (111)electrodes depend on the electronic states around the Fermi level which determine thenumber of the effective transport channels. The states of Au|ZGNR-CO|Au aredelocalized on the edge oxygen atoms as well as the inner edge carbon atoms,introducing extra transport channels. Moreover, in comparison with Au|ZGNR-H|Au,the effective transport channels of Au|ZGNR-CO|Au increase at given applied bias.However, the states of Au|ZGNR-C2O|Au are localized on the ribbon, blocking theeffective transport channels.
     (3) The transport properties of the junction assembled by zigzag graphenenanoribbons (ZGNRs) and Au electrode (Au/ZGNR) are investigated. It is found thatthe Au/ZGNR junctions behave as a typical diode with Schottky barrier at the contact.Our results indicate that although the oxidization at the contact slightly influences theSchottky barrier, the I-V characteristic is effectively modulated. Such effect derivesfrom the impact of the oxidization on the coupling between the ZGNRs and Auelectrode.
     (4) The effects of edge oxidization on electronic transport properties of zigzag graphene nanoribbons (ZGNRs) with local strain are investigated. We apply localaxial compression and local transverse stretch, related to the deformation of zigzag-and armchair-direction, respectively. The quantum calculation indicates that theelectronic transport of7ZGNR-H is robust but that of both7ZGNR-CO and7ZGNR-C2O are suppressed with the increase of local strain. The edge oxidization ofC=O still enhances electronic transport within the local strain because local strainhardly disturbs the local states around the Fermi level, but the edge oxidization ofC-O-C effectively depresses the electronic transport of ZGNRs since the states aroundthe Fermi level become uniform on the ribbon and are sensitive to the local strain.
     (5) The transport properties of zigzag graphene nanoribbons (ZGNRs) decorated bycarboxyl group (OH) chains are systematically investigated. ZGNRs with nine zigzagcarbon chains (9ZGNR) decorated by mOH(m is the number of oxidized carbonchains) are taken as typical systems. We find that the OH chains can effectivelymodulate the electronic structures and transport properties of the9ZGNR. Thesystems behave as metal when m≤4, and a transmission plateau up to6G0is foundaround the Fermi level when m=3. However, the9ZGNR-mOH systems becomesemiconductors when m>4. Interestingly,9ZGNR-7OH and9ZGNR-8OH behave asn-type semiconductors. It is found that such modulation depends on the edge states aswell as the oxygen atoms at the interface. When the width of undecorated carbonregions is smaller than3, Peierls instability induces the metal-semiconductortransition.
引文
[1] Kroto H.W., Heath J. R., O’Brien S. C., C60: Buckminsterfullerene [J].Nature,1985,318(6042):162-163.
    [2] Iijima Sumio., Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [3] Mermin N. D., Crystalline order in two dimensions [J].Physical Review,1968,176(1):250.
    [4] Grüneis A., Attaccalite C., Wirtz L., Shiozawa H., Saito R., Pichler T., Rubio A., Tight-bindingdescription of the quasiparticle dispersion of graphite and few-layer graphene [J]. PhysicalReview B,2008,78(20):205425.
    [5] Novoselov K., Geim A., Morozov S., Jiang D., Zhang Y., Dubonos S., Grigorieva I., Firsov A.,Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [6] Novoselov K., Geim A. K., Morozov S., Jiang D., Grigorieva M. I. K. I. V., Dubonos S., FirsovA., Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature,2005,438(7065):197-200.
    [7] Li G., Li Y., Liu H., Guo Y., Zhu D., Architecture of graphdiyne nanoscale films [J]. ChemicalCommunications,2010,46(19):3256-3258.
    [8] Baughman R., Eckhardt H., Kertesz M., Structure-property predictions for new planar forms ofcarbon: Layered phases containing sp2and sp atoms [J]. The Journal of Chemical Physics,1987,87(11):6687.
    [9] Narita N., Nagai S., Suzuki S., Potassium intercalated graphyne [J]. Physical Review B,2001,64(24):245408.
    [10] Luo G., Qian X., Liu H., Qin R., Zhou J., Li L., Gao Z., Wang E., Mei W. N., Lu J.,Quasiparticle energies and excitonic effects of the two-dimensional carbon allotropegraphdiyne: Theory and experiment [J]. Physical Review B,2011,84(7):075439.
    [11] Long M., Tang L., Wang D., Li Y., Shuai Z., Electronic structure and carrier mobility ingraphdiyne sheet and nanoribbons: theoretical predictions [J]. ACS NANO,2011,5(4):2593-2600.
    [12] Kang J., Li J., Wu, F., Li S. S., Xia J. B., Elastic, Electronic, and Optical Properties ofTwo-Dimensional Graphyne Sheet [J]. The Journal of Physical Chemistry C,2011,115(42):20466-20470.
    [13] Li C., Li J., Wu F., Li S. S., Xia J. B., Wang L. W., High Capacity Hydrogen Storage in CaDecorated Graphyne: A First-Principles Study [J]. The Journal of Physical Chemistry C,2011,115(46):23221-23225.
    [14] Zhang H., Zhao M., He X., Wang Z., Zhang X., Liu X., High Mobility and High StorageCapacity of Lithium in sp–sp2Hybridized Carbon Network: The Case of Graphyne [J]. TheJournal of Physical Chemistry C,2011,115(17):8845-8850.
    [15] Li C., Li J., Wu F., Li S. S., Xia J. B., Wang L. W., High Capacity Hydrogen Storage in CaDecorated Graphyne: A First-Principles Study [J]. The Journal of Physical Chemistry C,2011,115(46):23221-23225.
    [16] Pan L., Zhang L., Song B., Du S., Gao H. J., Graphyne-and graphdiyne-based nanoribbons:Density functional theory calculations of electronic structures [J]. Applied Physics Letters,2011,98(17):173102-173102-3.
    [17] Ebbesen T., Ajayan P., Large-scale synthesis of carbon nanotubes [J]. Nature,1992,358(6383):220-222.
    [18] Guo T., Nikolaev P., Rinzler A. G., Tomanek D., Colbert D. T., Smalley R. E., Self-assemblyof tubular fullerenes [J]. The Journal of Physical Chemistry,1995,99(27):10694-10697.
    [19] Guo T., Nikolaev P., Thess A., Colbert D., Smalley R., Catalytic growth of single-walledmanotubes by laser vaporization [J].Chemical Physics Letters,1995,243(1):49-54.
    [20] Thess A., Lee R., Nikolaev P., Da H., Petit P., Robert J., Xu C., Lee Y. H., Kim S. G., RinzlerA. G., Crystalline ropes of metallic carbon nanotubes [J]. Science-AAAS-Weekly PaperEdition,1996,273(5274):483-487.
    [21] Cheng H., Li F., Su G., Pan H., He L., Sun X., Dresselhaus M., Large-scale and low-costsynthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J].Applied Physics Letters,1998,72(25):3282-3284.
    [22] Hafner J. H., Bronikowski M. J., Azamian B. R., Nikolaev P., Rinzler A. G., Colbert D. T.,Smith K. A., Smalley R. E., Catalytic growth of single-wall carbon nanotubes from metalparticles [J]. Chemical Physics Letters,1998,296(1):195-202.
    [23] Cassell A. M., Raymakers J. A., Kong J., Dai, H., Large scale CVD synthesis of single-walledcarbon nanotubes [J]. The Journal of Physical Chemistry B,1999,103(31):6484-6492.
    [24] Park D., Hoon Kim Y., Kee Lee J., Synthesis of carbon nanotubes on metallic substrates by asequential combination of PECVD and thermal CVD [J]. Carbon,2003,41(5):1025-1029.
    [25] Meyer R., Friedrichs S., Kirkland A., Sloan J., Hutchison J., Green M., A composite methodfor the determination of the chirality of single walled carbon nanotubes [J]. Journal ofmicroscopy,2003,212(2):152-157.
    [26] Zuo J., Vartanyants I., Gao M., Zhang R., Nagahara L., Atomic resolution imaging of acarbon nanotube from diffraction intensities [J]. Science,2003,300(5624):1419-1421.
    [27] Hashimoto A., Suenaga K., Gloter A., Urita K. Iijima S., Direct evidence for atomic defectsin graphene layers [J].Nature,2004,430(7002),870-873.
    [28] Nordlund K., Keinonen J., Mattila T., Formation of ion irradiation induced small-scaledefects on graphite surfaces [J]. Physical Review Letters,1996,77(4):699-702.
    [29] Ouyang M., Huang J. L., Cheung C. L., Lieber C. M., Atomically resolved single-walledcarbon nanotube intramolecular junctions [J]. Science,2001,291(5501):97-100.
    [30] Hansson A., Paulsson M., Stafstr m S., Effect of bending and vacancies on the conductanceof carbon nanotubes [J]. Physical Review B,2000,62(11):7639.
    [31] Hamada N., Sawada S., and Oshiyama A., New One-Dimensional Conductors: GraphiticMicrotubules [J]. Physical Review Letters,1992,68(10):1579-1581.
    [32] Wildo r J. W. G., Venema L. C., Rinzler A. G., Smalley R. E., and Dekker C., Electronicstructure of atomically resolved carbon nanotubes[J]. Nature,1998,391:59-62.
    [33] Odom T. W., Huang J.-L., Kim P., and Lieber C. M., Atomic structure and electronicproperties of single-walled carbon nanotubes[J]. Nature,1998,391:62-64.
    [34] Berber S., Kwon Y. K., Tománek, D. Microscopic formation mechanism of nanotube peapods[J]. Physical Review Letters,2002,88(18):185502.
    [35] Zhang S., Mielke S. L., Khare R., Troya D., Ruoff R. S., Schatz G. C., Belytschko T.,Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations [J]. PhysicalReview B,2005,71(11):115403.
    [36] Zeng H., Hu H., and Leburton J.-P., Chirality Effects in Atomic Vacancy-Limited Transport inMetallic Carbon Nanotubes [J]. ACSNANO,2009,4:292-296.
    [37] Choi H. J., Ihm J., Louie S. G., Cohen M. L., Defects, quasibound states, and quantumconductance in metallic carbon nanotubes [J]. Physical Review Letters,2000,84(13):2917-2920.
    [38] Hueso, L.E., et al., Transformation of spin information into large electrical signals usingcarbon nanotubes [J]. Nature,2007.445(7126):410-413.
    [39] Minot E. D., Yaish Y., Sazonova V., Park J.-Y., Brink M., and McEuen P. L., Tuning CarbonNanotube Band Gaps with Strain [J]. Physical Review Letters,2003,90(15):156401.
    [40] Tans S. J., Verschueren A. R. M., Dekker C., Room-temperature transistor based on a singlecarbon nanotube [J]. Nature,1998,393(6680):49-52.
    [41] Martel R., Schmidt T., Shea H., Hertel T., Avouris P., Single-and multi-wall carbon nanotubefield-effect transistors [J]. Applied Physics Letters,1998,73(17):2447-2449.
    [42] Sorescu D. C., Jordan K. D., Avouris P., Theoretical study of oxygen adsorption on graphiteand the (8,0) single-walled carbon nanotube [J]. The Journal of Physical Chemistry B,2001,105(45):11227-11232.
    [43] Peng S., Cho K., Chemical control of nanotube electronics [J]. Nanotechnology,2000,11(2):57.
    [44] Jhi S. H., Louie S. G., Cohen M. L., Electronic properties of oxidized carbon nanotubes [J].Physical Review Letters,2000,85(8):1710-1713.
    [45] Ulbricht H., Moos G., Hertel T., Physisorption of molecular oxygen on single-wall carbonnanotube bundles and graphite [J]. Physical Review B,2002,66(7):075404.
    [46] Watts P. C. P., Mureau N., Tang Z., Miyajima Y., Carey J. D., Silva S. R. P., The importanceof oxygen-containing defects on carbon nanotubes for the detection of polar and non-polarvapours through hydrogen bond formation [J]. Nanotechnology,2007,18(17):175701.
    [47] Liang X., Fu Z., Chou S. Y., Graphene transistors fabricated via transfer-printing in deviceactive-areas on large wafer [J]. Nano Letters,2007,7(12):3840-3844.
    [48] Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A.,Piner R. D., Nguyen S. B. T., Ruoff R. S., Graphene-based composite materials [J]. Nature,2006,442(7100):282-286.
    [49] Eda G., Fanchini G., Chhowalla M., Large-area ultrathin films of reduced graphene oxide as atransparent and flexible electronic material [J]. Nature Nanotechnology,2008,3(5):270-274.
    [50] Gómez-Navarro C., Weitz R. T., Bittner A. M., Scolari M., Mews A., Burghard M., Kern K.,Electronic transport properties of individual chemically reduced graphene oxide sheets [J].Nano Letters,2007,7(11):3499-3503.
    [51] Dreyer D. R., Murali S., Zhu Y., Ruoff R. S., Bielawski C. W., Reduction of graphite oxideusing alcohols [J]. Journal of Materials Chemistry,2011,21(10):3443-3447.
    [52] Park S., Hu Y., Hwang J. O., Lee E. S., Casabianca L. B., Cai W., Potts J. R., Ha H. W., ChenS., Oh J., Chemical structures of hydrazine-treated graphene oxide and generation ofaromatic nitrogen doping [J]. Nature Communications,2012,3:638.
    [53] Gao W., Alemany L. B., Ci L., Ajayan P. M., New insights into the structure and reduction ofgraphite oxide [J]. Nature chemistry,2009,1(5):403-408.
    [54] Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y.,Nguyen S. B. T., Ruoff R. S., Synthesis of graphene-based nanosheets via chemical reductionof exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-1565.
    [55] Berger C., Song Z., Li T., Li X., Ogbazghi A. Y., Feng R., Dai Z., Marchenkov A. N., ConradE. H., Phillip N., Ultrathin epitaxial graphite:2D electron gas properties and a route towardgraphene-based nanoelectronics [J]. The Journal of Physical Chemistry B,2004,108(52):19912-19916.
    [56] Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., MarchenkovA. N., Electronic confinement and coherence in patterned epitaxial grapheme [J]. Science,2006,312(5777):1191-1196.
    [57] Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Ahn J. H., Kim P., Choi J. Y., Hong B. H.,Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].Nature,2009,457(7230):706-710.
    [58] Wallace, P., The band theory of graphite [J]. Physical Review,1947,71(9):622.
    [59] Hu L., Hecht D. S., Gruner G., Infrared transparent carbon nanotube thin films [J]. AppliedPhysics Letters,2009,94(8):081103.
    [60] Jee H., Han J. H., Hwang H. N., Kim B., Kim H., Kim Y. D., Hwang C. C., Pentacene asprotection layers of graphene on SiC surfaces [J]. Applied Physics Letters,2009,95(9):093107.
    [61] Novoselov K., Geim A. K., Morozov S., Jiang D., Grigorieva M. I. K. I. V., Dubonos S.,Firsov A., Two-dimensional gas of massless Dirac fermions in grapheme [J]. Nature2005,438(7065):197-200.
    [62] Wu M., Liu E. Z., Ge M., Jiang J., Stability, electronic, and magnetic behaviors of Cuadsorbed graphene: A first-principles study [J]. Applied Physics Letters,2009,94(10):102505-102505-3.
    [63] Tombros N., Jozsa C., Popinciuc M., Jonkman H. T., Van Wees B. J., Electronic spin transportand spin precession in single graphene layers at room temperature [J]. Nature2007,448(7153):571-574.
    [64] Zhang Y., Tan Y. W., Stormer H. L., Kim P., Experimental observation of the quantum Halleffect and Berry's phase in grapheme [J]. Nature,2005,438(7065):201-204.
    [65] Liu G., Stillman W., Rumyantsev S., Shao Q., Shur M., Balandin A., Low-frequencyelectronic noise in the double-gate single-layer graphene transistors [J]. Applied PhysicsLetters,2009,95(3):033103-033103-3.
    [66] Lu G., Ocola L. E., Chen J., Gas detection using low-temperature reduced graphene oxidesheets [J]. Applied Physics Letters,2009,94(8):083111-083111-3.
    [67] Zhang Y., Tan Y. W., Stormer H. L., Kim P., Experimental observation of the quantum Halleffect and Berry's phase in grapheme [J]. Nature,2005,438(7065):201-204.
    [68] Gusynin V., Sharapov S., Unconventional integer quantum Hall effect in grapheme [J].Physical Review Letters,2005,95(14):146801.
    [69] Katsnelson M., Novoselov K., Geim A., Chiral tunnelling and the Klein paradox in grapheme[J]. Nature Physics,2006,2(9):620-625.
    [70] Morozov S., Novoselov K., Katsnelson M., Schedin F., Ponomarenko L., Jiang D., Geim A.,Strong suppression of weak localization in grapheme [J]. Physical Review Letters,2006,97(1):16801.
    [71]Morozov S., Novoselov K., Katsnelson M., Schedin F., Ponomarenko L., Jiang D., Geim A.,Strong suppression of weak localization in grapheme [J]. Physical Review Letters,2006,97(1):16801.
    [72] Neek-Amal M., Covaci L., Peeters F., Nanoengineered nonuniform strain in graphene usingnanopillars [J]. Physical Review B,2012,86(4):041405.
    [73] Neek-Amal M., Peeters F., Strain-engineered graphene through a nanostructured substrate. I.Deformations [J]. Physical Review B,2012,85(19):195445.
    [74] Ci L., Xu Z., Wang L., Gao W., Ding F., Kelly K. F., Yakobson B. I., Ajayan P. M., Controllednanocutting of grapheme [J]. Nano Research,2008,1(2):116-122.
    [75] Yang X., Dou X., Rouhanipour A., Zhi L., R der H. J., Müllen K., Two-dimensional graphenenanoribbons [J]. Journal of the American Chemical Society,2008,130(13):4216-4217.
    [76] Campos-Delgado J., Romo-Herrera J. M., Jia X., Cullen D. A., Muramatsu H., Kim Y. A.,Hayashi T., Ren Z., Smith D. J., Okuno Y., Bulk production of a new form of sp2carbon:Crystalline graphene nanoribbons [J]. Nano Letters,2008,8(9):2773-2778.
    [77] Jiao L.,Wang X., Diankov G., Wang H., Dai H., Facile synthesis of high-quality graphenenanoribbons [J]. Nature Nanotechnology,2010,5(5):321-325.
    [78] Kosynkin D. V., Higginbotham A. L., Sinitskii A., Lomeda J. R., Dimiev A., Price B. K., TourJ. M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458(7240):872-876.
    [79] Tao C., Jiao L., Yazyev O. V., Chen Y. C., Feng J., Zhang X., Capaz R. B., Tour J. M., Zettl A.,Louie S. G., Spatially resolving edge states of chiral graphene nanoribbons [J]. NaturePhysics,2011,7(8),616-620.
    [80] Shi Z., Yang R., Zhang L., Wang Y., Liu D., Shi D., Wang E., Zhang G., Patterning Graphenewith Zigzag Edges by Self‐Aligned Anisotropic Etching [J]. Advanced Materials,2011,23(27):3061-3065.
    [81] Son Y. W., Cohen M. L., Louie S. G., Energy gaps in graphene nanoribbons [J]. PhysicalReview Letters,2006,97(21):216803.
    [82] Barone V., Hod O., Scuseria G. E., Electronic structure and stability of semiconductinggraphene nanoribbons [J]. Nano Letters,2006,6(12):2748-2754.
    [83] Nakada K., Fujita M., Dresselhaus G., Dresselhaus, M. S., Edge state in graphene ribbons:Nanometer size effect and edge shape dependence[J]. Physical Review B,1996,54(24):17954.
    [84] Li Y., Jiang X., Liu Z., Strain effects in graphene and graphene nanoribbons: The underlyingmechanism [J]. Nano Research,2010,3(8):545-556.
    [85] Lu Y., Guo J., Band gap of strained graphene nanoribbons [J]. Nano Research,2010,3(3):189-199.
    [86] Pereira V. M., Castro Neto A., Strain engineering of graphene’s electronic structure [J].Physical Review Letters,2009,103(4):46801.
    [87] Son Y. W., Cohen M. L., Louie S. G., Half-metallic graphene nanoribbons [J]. Nature,2006,444(7117):347-349.
    [88] Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Ahn J. H., Kim P., Choi J. Y., Hong B. H.,Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].Nature,2009,457(7230):706-710.
    [89] Lee E. J. H., Balasubramanian K., Weitz R. T., Burghard M., Kern K., Contact and edgeeffects in graphene devices [J]. Nature, Nanotechnology2008,3(8):486-490.
    [90] Leenaerts O., Partoens B., Peeters F., Adsorption of H2O, NH3, CO, NO2, and NO ongraphene: A first-principles study [J]. Physical Review B,2008,77(12):125416.
    [91] Henwood D., Carey J. D., Ab initio investigation of molecular hydrogen physisorption ongraphene and carbon nanotubes [J]. Physical Review B,2007,75(24):245413.
    [92] Chan S. P., Chen G., Gong X., Liu Z. F., Oxidation of Carbon Nanotubes by Singlet O_{2}[J]. Physical Review Letters,2003,90(8):86403.
    [93] Jesse Maassen, Wei Ji, Hong Guo, Graphene Spintronics: The Role of FerromagneticElectrodes [J]. Nano Lett.,2011,11:151–155.
    [94] Kim W. Y., Kim K. S., Prediction of very large values of magnetoresistance in a graphenenanoribbon device [J]. Nature Nanotechnology,2008,3(7):408-412..
    [95] Sofo J. O., Chaudhari A. S., Barber G. D., Graphane: A two-dimensional hydrocarbon [J].Physical Review B,2007,75(15):153401.
    [96] Elias D., Nair R., Mohiuddin T., Morozov S., Blake P., Halsall M., Ferrari A., Boukhvalov D.,Katsnelson M., Geim A., Control of graphene's properties by reversible hydrogenation:evidence for graphane [J]. Science,2009,323(5914):610-613.
    [97] Samarakoon D. K., Wang X. Q., Chair and twist-boat membranes in hydrogenated grapheme[J]. ACS NANO,2009,3(12):4017-4022.
    [98] Bhattacharya A., Bhattacharya S., Majumder C., Das G., Third conformer of graphane: Afirst-principles density functional theory study [J]. Physical Review B,2011,83(3):033404.
    [99] Leenaerts O., Peelaers H., Hernandez-Nieves A., Partoens B., Peeters F., First-principlesinvestigation of graphene fluoride and graphane [J]. Physical Review B,2010,82(19):195436.
    [100] Hongjun Xiang, Erjun Kan, Su-Huai Wei, Myung-Hwan Whangbo, Jinlong Yang,“Narrow”Graphene Nanoribbons Made Easier by Partial Hydrogenation [J]. Nano Lett.,2009,9:4025-4030.
    [101] Singh A. K., Yakobson B. I., Electronics and magnetism of patterned graphene nanoroads [J].Nano Lett,2009,9(4):1540-1543.
    [102] Lee J. H., Grossman J. C., Magnetic properties in graphene-graphane superlattices [J].Applied Physics Letters,2010,97(13):133102-133102-3.
    [103] Lu Y., Feng Y., Band-Gap Engineering with Hybrid Graphane Graphene Nanoribbons [J].The Journal of Physical Chemistry C,2009,113(49):20841-20844.
    [104] Hernández-Nieves A., Partoens B., Peeters F., Electronic and magnetic properties ofsuperlattices of graphene/graphane nanoribbons with different edge hydrogenation [J].Physical Review B,2010,82(16):165412.
    [105] Gilje S., Han S., Wang M., Wang K. L., Kaner R. B., A chemical route to graphene fordevice applications [J]. Nano Letters,2007,7(11):3394-3398.
    [106] Lahaye R., Jeong H., Park C., Lee Y., Density functional theory study of graphite oxide fordifferent oxidation levels [J]. Physical Review B,2009,79(12):125435.
    [107] Luo Z., Vora P. M., Mele E. J., Johnson A., Kikkawa J. M., Photoluminescence and bandgap modulation in graphene oxide [J]. Applied Physics Letters,2009,94(11):111909-111909-3.
    [108] Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S., The chemistry of graphene oxide [J].Chemical Society Reviews,2010,39(1):228-240.
    [109] Yan J. A., Chou M., Oxidation functional groups on graphene: Structural and electronicproperties [J]. Physical Review B,2010,82(12):125403.
    [110] Chen Z., Zhao J., Zhang S., Stability of graphene oxide phases from first-principlescalculations [J]. Physical Review B,2010,82(16):161406.
    [111] Xiang H., Wei S. H., Gong X., Structural motifs in oxidized graphene: A genetic algorithmstudy based on density functional theory [J]. Physical Review B,2010,82(3):035416.
    [112] Cervantes-Sodi F., Csanyi G., Piscanec S., Ferrari A., Edge-functionalized andsubstitutionally doped graphene nanoribbons: Electronic and spin properties [J]. PhysicalReview B,2008,77(16):165427.
    [113] Xu Z., Xue K., Engineering graphene by oxidation: a first-principles study [J].Nanotechnology,2009,21(4):045704.
    [114] Berashevich J., Chakraborty T., Doping graphene by adsorption of polar molecules at theoxidized zigzag edges [J]. Physical Review B,2010,81(20):205431.
    [115] Ramasubramaniam A., Electronic structure of oxygen-terminated zigzag graphenenanoribbons: A hybrid density functional theory study [J]. Physical Review B,2010,81(24):245413.
    [116] Wang X., Li X., Zhang L., Yoon Y., Weber P. K., Wang H., Guo J., Dai H., N-doping ofgraphene through electrothermal reactions with ammonia [J]. Science,2009,324(5928):768-771.
    [117] Cruz-Silva E., López-Urías F., Mu oz-Sandoval E., Sumpter B. G., Terrones H., Charlier J.C., Meunier V., Terrones M., Electronic Transport and Mechanical Properties ofPhosphorus-and Phosphorus Nitrogen-Doped Carbon Nanotubes [J]. ACS NANO,2009,3(7):1913-1921.
    [118] Li X., Wang H., Robinson J. T., Sanchez H., Diankov G., Dai H., Simultaneous nitrogendoping and reduction of graphene oxide [J]. Journal of the American Chemical Society,2009:131(43),15939-15944.
    [119] Panchakarla L., Subrahmanyam K., Saha S., Govindaraj A., Krishnamurthy H., WaghmareU., Rao, C., Synthesis, structure, and properties of boron-and nitrogen-doped grapheme [J].Advanced Materials,2009,21(46):4726-4730.
    [120]谢希德,陆栋,固体能带理论[M].上海:复旦大学出版社,2007.
    [121] Born M., Huang K., Dynamical theory of crystal lattices [M]. Oxford: Oxford UniversityPress,1954.
    [122] Hohenberg P., Kohn W., Inhomogeneous electron gas [J]. Phys. Rev.,1964,136: B864.
    [123] Kohn W., Sham L., Self-consistent equations including exchange and correlation effects [J].Phys. Rev,1965,140: A1133-A1138.
    [124] Slater J. C., A simplification of the hartree-fock method [J]. Phys. Rev.,1951,81:385.
    [125] Wigner E., On the interaction of electrons in metals [J]. Phys. Rev.,1934,46:1002.
    [126] Ceperley D. M., Alder B., Ground state of the electron gas by a stochastic method [J]. Phys.Rev. Lett.,1980,45:566-569.
    [127] Perdew J. P., Zunger A., Self-interaction correction to density-functional approximations formany-electron systems [J]. Phys. Rev. B,1981,23:5048.
    [128] Perdew J. P., Chevary J., Vosko S., Jackson K. A., Pederson M. R., Singh D., Fiolhais C.,Atoms, molecules, solids, and surfaces: Applications of the generalized gradientapproximation for exchange and correlation [J]. Phys. Rev. B,1992,46:6671.
    [129] Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple [J].Phys. Rev. Lett.,1996,77:3865.
    [130] Brandbyge M., Mozos J.L., Ordejón P, Taylor J, Stokbro K, Density-functional method fornonequilibrium electron transport [J]. Phys. Rev. B,2002,65:165401.
    [131] Datta A., Electronic transport in mesoscopic systems [M]. Cambridge: CambridgeUniversity Press,1995.
    [132] Martel R., Schmidt T., Shea H.R., Hertel T., Avouris P., Single-and multi-wall carbonnanotube field-effect transistors [J], Appl. Phys. Lett.1998,73:2447.
    [133] Son Y.-W., Cohe M. L., Louie S. G., Electric field effects on spin transport in defectivemetallic carbon nanotubes [J], Nano Lett.2007,7:3518.
    [134] Liu C., Fan Y.Y., Liu M., Cong H.T., Cheng H.M., Dresselhaus M.S., Hydrogen storage insingle-walled carbon nanotubes at room temperature [J], Science1999,286:1127.
    [135] Yao Z., Postma H.W.C., Balents L., Dekker C., Carbon nanotube intramolecular junctions[J], Nature (London)1999,402:273.
    [136] Bockrath M., Cobden D.H., McEuen P.L., Chopra N.G., Zettl A., Thess A., Smalley R.E.,Single-electron transport in ropes of carbon nanotubes [J], Science1997,275:1922.
    [137] Tans S.J., Devoret M.H., Dai H., Thess A., Smalley R.E., Geerligs L.J., Dekker C.,Individual single-wall carbon nanotubes as quantum wires [J], Nature (London)1997,386:474..
    [138] Dumitrica T., Belytschko T., Yakobson B.I., Bond-breaking bifurcation states in carbonnanotube fracture [J], J. Chem. Phys.2003,118:9485.
    [139] De Heer W.A., Chatelain A., Ugarte D., A carbon nanotube field-emission electron source[J], Science1995,270:1179.
    [140] Zhou T., Wu J., Duan W., Gu B.-L., Physical mechanism of transport blocking in metalliczigzag carbon nanotubes [J], Phys. Rev. B2007,75:205410.
    [141] He Y., Zhang C., Cao C., Cheng H.-P., Effects of strain and defects on the electronconductance of metallic carbon nanotubes [J], Phys. Rev. B2007,75:235429.
    [142] Amorim R.G., Fazzio A., Antonelli A., Novaes F.D., Silva A.J.R.da, Divacancies in grapheneand carbon nanotube [J], Nano Lett.2007,7:2459.
    [143] Latil S., Roche S., Mayou D., Charlier J.-C., Mesoscopic transport in chemically dopedcarbon nanotubes [J], Phys. Rev.Lett.2004,92:256805.
    [144] Choi H.J., Ihm J., Louie S.G., Cohen M.L., Defect, quasibound states, and quantumconductance in metallic carbon nanotubes [J], Phys. Rev. Lett.2000,84:2917.
    [145] Li Z., Wang C.Y., Ke S.H., Yang W., First-principles study for transport properties ofdefective carbon nanotubes with oxygen adsorption [J], Eur. Phys. J. B2009,69:375–382.
    [146] Dag S., Gülseren O., Yildirim T., Ciraci S., Systematic study of adsorption of single atomson a carbon nanotube [J], Phys. Rev. B2003,67:165424.
    [147] Gomez-Navarro C., De Pablo P.J., Gomez-Herrero J., Bile B., Garcia-Vidal, F.J., Rubio A.,Flores F., Tuning the conductance of single-walled carbon nanotubes by ion irradiation inthe Anderson localization [J], Nature Mater.2005,4:534.
    [148] Collins P.G., Bradley K., Ishigami M., Zettl A., Extreme oxygen sensitivity of electronicproperties of carbon nanotubes [J], Science2000,287:1801.
    [149] Yamamoto, K., Kamimura, T., Matsumoto, K., Electrical transport characteristic of carbonnanotube after mass-separated ultra-low-energy oxygen ion beams irradiation [J], Appl. Surf.Sci.2006,252:5579.
    [150] Shim M., Back J.H., Ozel T., Kwon K.-W., Effects of oxygen on the electron transportproperties of carbon nanotubes: Ultraviolet adsorption and termally iinduced processes [J],Phys. Rev. B2005,71:205411.
    [151] Chan S.P., Chen G., Gong X.G., Liu Z.F., Oxidation of Carbon Nanotubes by Singleet O2[J],Phys. Rev. Lett.2003,90:086403.
    [152] Giannozzi P., Car R., Scoles G., Oxygen adsorption on graphite and nanotubes [J], J. Chem.Phys.2003,118:1003.
    [153] Jhi S.-H., Louie S.G., Cohen M.L., Reentrant semiconducting behavior of zigzag carbonnanotubes at substitutional doping by oxygen dimmers [J],Phys. Rev. Lett.2005,95:226403.
    [154] Grujicic M., Cao G., Singh R., The effect of topological defects and oxygen adsorption onthe electronic transport properties of single-walled carbon-nanotubes [J], Appl. Surf. Sci.2003,211:166.
    [155] Jhi S.-H., Louie S.G., Cohen M.L., Electronic properties of oxidized carbon nanotubes [J],Phys. Rev. Lett.2000,85:1710.
    [156] Kresse G., Hafner J., Ab initio molecular dynamics for liquid metals [J], Phys. Rev. B.1993,47: R558.
    [157] Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculationsusing a plane-wave basis set [J], Phys. Rev. B.1996,54:11169.
    [158] Bl chl P.E., Projector augented-wave method [J], Phys. Rev. B1994,50:17953.
    [159] Kresse G., Joubert D., From ultrasoft pseudopotentils to the projector augmented-wavemethod [J], Phys. Rev. B1999,59:1758.
    [160] Perdew J.P., Burke K., Ernzerhof M., Generalized gradient approximation made simple [J],Phys. Rev. Lett.1996,77:3865.
    [161] P ykk S., Chadi D.J., Dipolar Defect Model for Fatigue in Ferroelectric Perovskites [J],Phys. Rev. Lett.1999,83:1231.
    [162] Brandbyge M., Mozos J.-L., Ordejón P., Taylor J., Stokbro K., Density-functional methodfor nonequilibrium electron transport [J], Phys. Rev. B2002,65:165401.
    [163] Soler J.M., Artacho E., Gale J.D., García A., Junquera J., Ordejón P., Sánchez-Portal D., TheSIESTA method for ab initio order-N materials simulation [J], J. Phys. Condens. Matter2002,14:2745.
    [164] Yan Q., Wu J., Zhou G., Duan W., Gu B.-L., Ab initio study of transport properties ofmuiltiwalled carbon nanotubes [J], Phys. Rev.B2005,72:155425.
    [165] García-Suárez V.M., Ferrer J., Lambert C.J., Spin and molecular electronics in adomicallygenerated orbital landscapes [J], Phys. Rev Lett.2006,96:106804.
    [166] Kostov M.K., Santiso E.E., George A.M., Gubbins K.E., Buongiorno Nardelli M.,Dissociation of water on defective carbon substrates [J], Phys. Rev. Lett.2005,95:136105.
    [167] Mowbray D. J., Morgan C., Thygesen K.S., Influence of O2and N2on the conductivity ofcarbon nanotube networks [J], Phys. Rev. B2009,79:195431.
    [168] Li Z., Wang C.-Y., Ke S.-H., Yang W., First-principles study for transport properties ofdefective carbon nanotubes with oxygen adsorption [J], Eur. Phys. J. B2009,69:375–382.
    [169] Berger C., Song Z., Li X.,Wu X., Brown N.,Naud, C., Mayou D., Li T., Hass J.,Marchenkov A. N., Conrad E. H., First P. N., deHeer W. A., Electronic Confinement andCoherence in Patterned Epitaxial Graphene [J], Science2006,312:1191–1196.
    [170] Wang X., Li X., Zhang L., Yoon Y., Weber P. K., Wang H.,Guo J., Dai H., N-doping ofgraphene through electrothermal reactions with ammonia [J], Science2009,324:768–771.
    [171] Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Elias D. C., Jaszczak J. A.,Geim A. K., Giant intrinsic carrier mobilities in graphene and its bilayer [J], Phys. Rev. Lett.2008,100:016602.
    [172] Bolotin K. I., Sikes K. J., Jiang Z., Fudenberg G., Klima M., Hone J., Kim P., Stormer H. L.,Ultrahigh electron mobility in suspended graphene [J], Solid State Commun.2008,146:351–355.
    [173] Nomura K., MacDonald A.H., Intra-Landau-level cyclotron resonance in bilayer graphene[J], Phys. Rev. Lett.2006,96:256602.
    [174] Zhang Y., Tan Y.-W., Stormer H. L., Kim P., Experimental observation of the quantum Halleffect and Berry’s phase in graphene [J], Nature (London),2005,438:201–204.
    [175] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D.,Katsnelson M. I., Grigorieva I. V.,Dubonos S. V., Firsov A. A., Two-dimensional gas of massless Dirac fermions in graphene[J], Nature,2005,438P:197–200.
    [176] Miao F., Wijeratne S., Zhang Y., Coskun U. C., Bao W., Lau C. N., Phase-coherent transportin graphene quantum billiards [J], Science2007,317:1530–1533.
    [177] Young A. F., Kim P., Quantum interference and klein tunneling in graphene heterojunctions[J], Nat. Phys.2009,5:222–226.
    [178] Barone V., Hod O; Scuseria G. E., Electronic structure and stability of semiconductinggraphene nanoribbons [J]. Nano Lett.2006,6:748–2754.
    [179] Son Y.-W., Cohen M. L., Louie S. G., Energy gaps in graphene nanoribbons [J]. Phys. Rev.Lett.2006,97:216803.
    [180] Son Y.-W., Cohen M. L., Louie S. G., Half-metallic graphene nanoribbons [J], Nature2006,444:347–349.
    [181] Yu Z., Sun L. Z., Zhang C. X., Zhong J. X., Transport properties of corrugated graphenenanoribbons [J], Appl. Phys. Lett.2010,96:173101.
    [182] Xu Z., Xue K., Engineering graphene by Oxidation: a first-principles study [J],Nanotechnology2010,21:045704–045707.
    [183] Hernandez-Nieves A. D., Partoens B., Peeters F.M., Electronic and magnetic properties ofsuperlattices of graphene/graphane nanoribbons with different edge hydrogenation [J], Phys.Rev. B2010,82:165412.
    [184] Gomez-Navarro C., Weitz R. T., Bittner A. M., Scolari M., Mews A., Burghard M., Kern K.,Electronic transport properties of individual chemically reduced graphene oxide sheets [J],Nano Lett.2007,7:3499–3503.
    [185] Eda G., Fanchini G., Chhowalla M., Large-area ultrathin films of reduced graphene oxide asa transparent and flexible electronic material [J], Nat. Nanotechnol.2008,3:270–274.
    [186] Berger C., Song Z., Li T., Li X., Ogbazghi A. Y., Feng R., Dai Z., Marchenkov A. N.,Conrad E. H., First P. N., de Heer W. A., Ultrathin expitaxial graphite:2D electron gasproperties and a route toward graphene-based nanoelectronics [J], J. Phys. Chem. B2004,108:19912–19916.
    [187] Yang X., Dou X., Rouhanipour A., Zhi L., Rader H. J., M llen K., Two-DimensionalGraphene Nanoribbons [J], J. Am. Chem. Soc.2008,130:4216–4217.
    [188] Eda G., Mattevi C., Yamaguchi H., Kim H., Chhowalla M., Insulator to semimetal transitionin graphene oxide [J], J. Phys. Chem. C2009,113:15768–15771.
    [189] Hod O., Barone V., Peralta J. E., Scuseria G. E., Enhanced Half-Metallicity inEdge-Oxidized Zigzag Graphene Nanoribbons [J], Nano Lett.2007,7:2295–2299.
    [190] Lee G., Cho K., Electronic structures of zigzag graphene nanoribbons with edgehydrogenation and oxidation [J], Phys. Rev. B2009,79:165440.
    [191] Yan J.-A., Chou M. Y., Oxidation functional groups on graphene: Structural and electronicproperties [J], Phys. Rev. B2010,82:125403.
    [192] Yan J.-A., Xian L., Chou M. Y., Structural and electronic properties of oxidized graphene[J], Phys. Rev. Lett.,2009,103:086802.
    [193] Wang L., Sun Y. Y., Lee K., West D., Chen Z. F., Zhao J. J., Zhang S. B., Stability ofgraphene oxide phases from first-principles calculations [J], Phys. Rev. B2010,82:161406.
    [194] Cai W., Piner R. D., Stadermann F. J., Park S., Shaibat M. A., Ishii Y., Yang D., VelamakanniA., An S. J., Stoller M., An J., Chen D. M., Ruo R.S. Synthesis and Solid-State NMRStructural Characterization of13C-Labeled Graphite Oxide [J],Science2008,321:1815–1818.
    [195] GaoW., Alemany L. B., Ci L., Ajayan P.M., New insights into the structure and reduction ofgraphite oxide [J], Nat. Chem.2009,1:403–408.
    [196] Kresse G., Furthm ller, Efficient iterative schemes for ab initio total-energy calculationsusing a plane-wave basis set [J], J. Phys. Rev. B1996,54:11169–11186.
    [197] Bl chl P. E., Projector augmented-wave method [J], Phys. Rev. B1994,50:17953–17979.
    [198] Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple [J],Phys. Rev. Lett.1996,77:3865–3868.
    [199] Brandbyge M., Mozos J.-L., Ordej on, P., Taylor, J., Stokbro,K., Density-functional methodfor nonequilibrium electron transport [J], Phys. Rev. B2002,65:165401.
    [200] Li Z., Qian H., Wu J., Gu B.-L., Duan W., Role of symmetry in the transport properties ofgraphene nanoribbons under bias [J], Phys. Rev. Lett.2008,100:206802.
    [201] Peierls R. E. Quantum Theory of Solids; Clarendon: Oxford, U. K.,1955.
    [202] Tozzini V., Pellegrini V., Electronic structure and peierls instability in graphene nanoribbonssculpted in graphene [J], Phys. Rev. B2010,81:113404.
    [203] Xiang H., Kan E., Wei S.-H., Whangbo M.-H., Yang J.,“Narrow” Graphene NanoribbonsMade Easier by Partial Hydrogenation [J], Nano Lett.2009,9:4025–4030.
    [204] Longuet-Higgins H. C., Salem L., The Alternation of Bond Lengths in Long ConjugatedChain Molecules [J], Proc. R. Soc. London, Ser. A1959,251:172–185.
    [205] Zhang Y.Y., Hu J.P., Bernevig B.A., Wang X.R., Xie X.C., Liu W.M., Localization and theKosterlitz-Thouless Transition in Disordered Graphene [J], Phys. Rev. Lett.2009,102:106401.
    [206] Zhang Y.Y., Hu J.P., Bernevig B.A., Wang X.R., Xie X.C., Liu W.M., Quantum blockadeand loop currents in graphene with topological defects [J], Phys.Rev. B,2008,78:155413.
    [207] Han M.Y., Ozyilmaz B., Zhang Y., Kim P., Energy Band-gap engineering of graphenenanoribbons [J], Phys. Rev. Lett.,2007,98:206805.
    [208] Tapasztó L., Dobrik G., Lambin P., P Biró L., Tailoring the atomic structure of graphenenanoribbons by scanning tunnelling microscope lithography [J], Nat. Nanotechnol.2008,3:397.
    [209] Campos-Delgado J., Romo-Herrera J.M., Jia X., Cullen D.A., Muramatsu H., Kim Y.A.,Hayashi T., Ren Z., Smith D.J., Okun Y., et al., Bulk production of a new form of sp2carbon: Crystalline graphene nanoribbons [J], Nano Lett.2008,8:2773–2778.
    [210] Kosynkin D.V., Higginbotham A., Sinitskii A., Lomeda J.R., Dimiev A., Price B.K, Tour J.,Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J], Nature(London)2009,458:872–876.
    [211] Wang W.L., Meng S., Kaxiras E., Graphene nanoflakes with large spin [J], Nano Lett.2008,8:241.
    [212] Shi Z., Yang R., Zhang L., Wang Y., Liu D., Shi D., Wang E., Zhang G., Adv. Mater.2011,23:3061.
    [213] Zhang C. X., He C.Y., Yu Z.Z., Zhang K.W., Sun L.Z., Zhang J.X., Transport Properties ofZigzag Graphene Nanoribbons Decorated by Carboxyl Group Chains [J], J. Phys.Chem. C2011,115:21893–21898.
    [214] Rigo V.A., Martins T.B., daSilva A.J.R., Fazzio A., Miwa R.H., Electronic, structural, andtransport properties of Ni-doped graphene nanoribbons [J], Phys. Rev.B2009,79:075435.
    [215] Tao C., Jiao L., Yazyev O.V., Chen Y.C., Feng J., Zhang X., Capaz R.B., Tour J.M., Zettl A.,Louie S.G., Dai H., Crommie M.F., Spatially resolving edge states of chiral graphenenanoribbons [J], Nat. Phys.2011,10:1038.
    [216] Nakada K., Fujita M., Dresselhaus G., Dresselhaus M.S., Edge state in graphene ribbons:Nanometer size effect and edge shape depedence [J], Phys. Rev. B1996,54:17954
    [217]Gunlyckea D., Li J., Mintmire J.W., White C.T., Altering low-bias transport in zigzag-edgegraphene nanostrips with edge chemistry [J], Appl. Phys. Lett.2007,91:112108.
    [218] Kan E., Xiang H., Wu F., Lee C., Yang J., Whangbo M.-H., Ferrimagnetism in zigzaggraphene nanoribbons induced by main-group adatoms [J], Appl. Phys. Lett.2010,96:102503.
    [219] Cervantes-Sodi F., Csányi G., Piscanec S., Ferrari A.C., Edge-functionalized andsubstitutionally doped graphene nanoribbons: Electronic and spin properties [J], Phys. Rev.B2008,77:165427.
    [220] Li X.L., Wang X., Zhang L., Lee S., Dai H., Chemically derived, ultrasmooth graphenenanoribbons semiconductors [J], Science,2008,319:1229.
    [221] Zeng M.G., Shen L., Yang M., Zhang C., Feng Y., Charge and spin transport ingraphene-based heterostructure [J], Appl. Phys. Lett.2011,98:053101.
    [222] Taylor J., Guo H., Wang J., Ab initio modeling of quantum transport properties ofmolecular electronic devices [J], Phys. Rev. B2001,63:245407.
    [223] Soler J.M., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal, D.,The SIESTA method for ab initio order-N materials simulation [J], J. Phys.: Condens.Matter2002,14:2745.
    [224] Sanvito S., Kwon Y.-K., Tománek D., Lambert C.J., Fractional quantum conductance incarbon nanotubes [J], Phys. Rev. Lett.,2000,84:1974.
    [225] Choi H.J., Ihm J., Steven G.L., Marvin L.C., Defects, Quasibound States, and QuantumConductance in Metallic Carbon Nanotubes [J], Phys. Rev. Lett2000,84:2917.
    [226] Craciuna M.F., Russob S., Yamamotoc M., Taruchac S., Tuneable electronic properties ingraphene [J], Nano Today2011,6:42.
    [227] Craciun M.F., Russo R., Yamamoto M., Oostinga J.B., Morpurgo A.F., Tarucha S., Trilayergraphene is a semimetal with a gate-tunable band overlap [J], Nat. Nanotechnol.2009,4:383.
    [228] Andriotis A.N., Menon M., Structural and conducting properties of metal carbon-nanotubecontacts: Extended molecule approximation [J], Phys. Rev. B2007,76:045412.
    [229] Palacios J.J., Tarakeshwar P., Kim D.M., Metal contacts in carbon nanotube field-effecttransistors: Beyond the Schottky barrier paradigm [J], Phys. Rev. B2008,77:113403.
    [230] Avouris P., Chen Z., Perebeinos V., Carbon-based electronic [J], Nat. Nanotechnol.2007,2:605.
    [231] Wang W., Ang P.K., Wang Z.Q., Tang A.L., Thong J.T.L., Loh P.K., High Mobility, Printable,and Solution-Processed Graphene Electronics [J], Nano Lett.2010,10:92.
    [232] Eda G., Fanchini G., Chhowalla M., Larger-area ultrathin filems of reduced graphene oxideas a transparent and flexible electronic material [J], Nat. Nanotechnol.2008,3:270.
    [233] Zhang C.X., He C.Y., Xue L., Zhang K.W., Sun L.Z., Zhong J.X., Transport properties ofZigzag graphene nanoribbons with oxygen edge decoration [J], Org. Electronics,2012,13:2494.
    [234] Craciuna M.F., Russo S., Yamamoto M., Tarucha S., Tuneable electronic properties ingraphene [J], Nano Today2011,6:42.
    [235] Collins P.G., Bradley K., Ishigami M., Zettl A., Extreme oxygen sensitivity of electronicproperties of carbon nanotubes [J], Science2000,287:1801.
    [236] Neto A.H.C., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K., The electronicproperties of graphene [J], Rev. Mod. Phys.2009,81:109.
    [237] Areshkin D.A., White C.T., Building blocks for integrate graphene circuits [J], Nano Lett.2007,7:3253.
    [238] Geim A.K., Novoselov K.S., The rise of graphene [J], Nature Mater.2007,6:183-191.
    [239] Han M.Y., Ozyilmaz B., Zhang Y., Kim P., Energy band-gap engineering of graphenenanoribbons [J], Phys. Rev. Lett.2007,98:206805.
    [240] Tao C., Jiao L., Yazyev O.V., Chen Y.-C., Feng J., Zhang X., Capaz R.B., Tour J.M., Zettl A.,Louie S.G., Dai H., Crommie M.F., Spatially resolving edge states of chiral graphenenanoribbons [J], Nat. Phys.2011,10:1038.
    [241] Zhao P., Chauhan J., Guo J., Computational Study of Tuneling Transistor Based onGraphene [J], Nano Lett.2009,9:684.
    [242] Pereira V.M., Castro Neto A.H., Supercritical Coulomb impurities in gapped graphene [J],Phys. Rev. B2008,80:045401.
    [243] Pereira V.M., Castro Neto A.H., Strain engineering of graphene’s electronic structure [J],Phys. Rev. Lett.,2009,103:046801.
    [244] Guinea F., Katsnelson M.I., Geim A.K., Energy gaps and a zero-field quantum Hall effect ingraphene by strain engineering [J], Nat. Phys.2010,6:30.
    [245] Warner J.H., Margine E.R., Mukai M., Robertson A.W., Giustino F., Kirkland A.I.,Dislocation-Driven Deformatioins in Graphene [J], Science2012,337:209.
    [246] Ni Z.H., Yu T., Lu Y.H., Wang Y.Y., Feng Y.P., Shen Z.X., Uniaxial strain on graphene:Raman spectroscopy study and band-gap opening [J], ACS Nano2008,2:2301.
    [247] Metzger C., Remi S., Liu M., Kusminskiy S.V., Castro N., A.H. Swan A.K., Goldberg, B.B.,Biaxial strain in graphene Adhered to Shallow Depressions [J], Nano Lett.2010,10:6.
    [248] Gui G., Li J., Zhong J., Band structure engineering of graphene by strain: First-principlescalculations[J]. Phys. Rev. B,2008,78:075435.
    [249] Li J., Sun L., Zhong J., Strain effects on the electronic and structure properties of BoronNitride nanoribbons[J]. Chinese Phys. Lett.2010,27:077101
    [250] Li Y., Jiang X., Liu Z., Strain Effects in Graphene and Graphene Nanoribbons: TheUnderlying Mechanism[J]. Nano Res.2010,3:545-556.
    [251] Lu Y., Guo J., Band Gap of Strained Graphene Nanoribbons [J]. Nano Res.2010,3:189-199.
    [252] Amorim R.G., Fazzio A., Antonelli A., Novaes F.D., Silva A.J.R.d., Divacancies in grapheneand carbon nanotubes [J], Nano Lett.2007,7:2459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700