氮化硼—石墨烯复合纳米体系的电子结构与输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石墨烯、石墨烯纳米带、碳纳米管、单原子层六角氮化硼薄膜、六角氮化硼纳米带、六角氮化硼纳米管的成功制备,这些低维纳米材料在微纳电子器件领域展现出巨大的潜在应用前景,基于碳(C)及氮化硼(BN)的纳米材料很快成为凝聚态物理的研究热点,随着研究的深入,基于BNC的复合纳米结构由于具有独特的结构、丰富的物理化学性质、自旋极化特性及其电子结构和输运性质的可控调制特征,也很快引起了人们的关注。本文针对几种典型的BNC复合纳米材料的结构特征、电子结构及其输运性质进行了系统的研究,得到了如下主要研究成果:
     1.基于密度泛函理论的第一性原理方法,研究了尺寸效应对锯齿型BNC复合纳米带中半金属特性的制约机制。结果表明,所有的两片段BNC复合纳米带都具有反铁磁的基态,当纳米带中的固定ZGNR片段包含9条锯齿型碳链时,其电子性质基本上不受ZBNNR片段宽度变化的影响。对于具有固定的9条锯齿型BN链的纳米带,其电子结构随着ZGNR片段的增加而出现从半导体-半金属-金属的转变,转变尺寸依赖于复合界面的类型。
     2.基于密度泛函理论和非平衡格林函数方法,系统研究了两片段的复合纳米管BN_(20-n)C_nNTs以及四片段复合纳米管BN_mC_mBN_mC_mNTs和BN_mC_mNB_mC_mNTs (_m=3,4,5)的结构稳定性、电子结构及电子输运性质特征。结果表明,两片段复合纳米管BN_(20-n)C_nNTs属于带隙依赖于组分的窄带隙半导体;所有四片段的BN_mC_mBN_mC_mNTs都属于半导体,带隙随着直径的增长而下降,而所有四片段的BN_mC_mNB_mC_mNTs都属于金属。进一步的传输性质研究表明,两片段的复合管型并不能带来电子输运上的增益,而四片段的复合管型则在费米能级附近带来很好的增益。金属型的BN_5C_5NB_5C_5NT比半导体型的BN_5C_5BN_5C_5NT增益更明显,在其费米能级出现高达6G_0的传输平台。
     3.基于密度泛函理论和非平衡格林函数方法,系统研究了由单壁碳纳米管和单壁氮化硼纳米管构成的异质结构(BN/C)中的电子输运性质和可调制微分电阻效应。以(5,5)型碳纳米管和氮化硼纳米管为基础构建模型,结果表明,BN/C纳米管异质结的传输电导和微分电导将随着氮化硼管比例的增加而逐渐下降。
     4.基于密度泛函理论和非平衡格林函数方法,研究了将石墨烯纳米带中碳原子链替换为B(N)原子链构成的复合石墨烯纳米带中的电子输运性质。结果显示扶手型的复合纳米带从半导体转变为金属,而锯齿型的复合纳米带的电子输运性质得到了极大的提高,其费米能附近的电子传输电导增加到6G_0(5G_0)。
     5.基于安德森紧束缚模型,研究了无序双层六角氮化硼量子薄膜的电子性质。数值计算结果表明在双层都无序掺杂的情况下,六角氮化硼量子薄膜的电子是局域的,其表现为绝缘体性质;而对于单层掺杂(无论是氮原子还是硼原子)的双层六角氮化硼量子薄膜,在能谱的带尾出现了持续的迁移率边,这说明在单层掺杂的双层六角氮化硼量子薄膜中产生了金属绝缘体转变。
With the successful preparation of advanced nanomaterials of carbon (C) andboron nitride (BN), such as graphene, graphene nanoribbons (GNRs), h-BN-sheets,boron nitride nanoibbons (BNNRs), carbon nanotubes (CNTs) and boron nitridenanotubes (BNNTs), and their potential applications in future nano-electronics, theseC-or BN-based nanomaterials become the research focus in condensed matter physics.The boron nitride-graphene hybrid nanostructures with unique structure, rich physicaland chemical properties, spin polarization properties and modulated electronic andtransport properties soon arouse people's attention. In this thesis the structuralcharacteristics, electronic structures and transport properties of several typical boronnitride-graphene hybrid nanomaterials are systematically investigated. Somesignificant results are summarized as follows:
     1. We report the size limitation effct of the half-metallic properties in the hybridzigzag BNC nanoribbons using the density functional theory based first-principlesmethods. We find that all hybrid systems hold antiferromagnetic ground states.Systems holding ZGNR segments with fixed9zigzag carbon chains are metals notdepending on the variation of the ZBNNR segments. Transitions betweensemiconductor, half-metal and metal can be realized in both systems as the width ofthe carbon segment increases.
     2. The structures, stability and electronic properties of a series two-segmenthybrid nanotubes BN_(20-n)C_nNTs and some novel four-segment hybrid nanotubesBN_mC_mBN_mC_mNTs and BN_mC_mNB_mC_mNTs (m=3,4,5) are systematically investigatedusing the density functional theory in combination with non-equilibrium Green’sfunctions. We find that the two-segment nanotubes can be narrow band-gapsemiconductors depending on their chemical compositions. All four-segmentBN_mC_mNB_mC_mNTs are metals and all four-segment BN_mC_mBN_mC_mNTs aresemiconductors with band gaps decreasing as the increasing of their diameters.Further investigations on the transport properties of the pure C20NT, the two-segmentBN10C10NT and the four-segment BN_5C_5BN_5C_5NTs and BN_5C_5NB_5C_5NTs reveal thatthe two-segment hybrid manner could not improve the tube’s transport properties.However, an obvious transport enhancement is found in the four-segment nanotubes,especially in the metallic BN_5C_5NB_5C_5NTs where a6G_0transmission peak appears inits transport spectrum.
     3. The transport properties and differential conductance of the heterostructuresconstructed by single-wall carbon nanotube (SWCNT) and single-wall boron nitridenanotube (SWBNNT) are investigated using the density functional theory incombination with non-equilibrium Green’s functions. SWCNT(5,5) and SWBNNT (5,5) are taken as example. We find that the transmission conductance and differentialconductance of (5,5) BN/C nanotube heterostructure are continually depressed as theBNNT region increases.
     4. The electronic transport properties of hybrid graphene nanoribbons constructed by substituting C atom chain into B (N) atom chain are investigated using the densityfunctional theory in combination with the non-equilibrium Green’s functions. It isfound that the hybrid nanoribbon with armchair edge transits from semiconducting tometallic. While the transport properties of hybrid B (N) system with zigzag edge arehighly improved with the transmission conductance around the Fermi level increasingto6G_0(5G_0).
     5. Based on the Anderson tight-binding model, the electronic properties ofdisordered bilayer hexagonal boron nitride quantum films are investigated. Ournumerical results show that the electrons in disordered bilayer hexagonal boronnitride quantum film are localized, presenting an insulating behavior. However, forthe monolayer disordered bilayer hexagonal boron nitride quantum film, the energyspectrum has persistent mobility edges which are independent of the disorder strength.This indicates that a metal-insulator transition occurs in the monolayer disorderstructure.
引文
[1] Kroto H. W., Heath J. R., O'Brien S. C., C60: Buckminsterfullerene [J]. Nature,1985,318(6042):162-163.
    [2] Iijima Sumio. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [3] Novoselov K. S., Geim A. K., Morozov S. V., Electric field effect in atomically thin carbonfilms [J]. Science,2004,306(5696):666-669.
    [4] Novoselov K. S., Geim A. K., Morozov S. V., Two-dimensional gas of massless dirac fermionsin graphene [J]. Nature,2005,438(7065):197-200.
    [5] Berger Claire, Song Zhimin, Li Xuebin, Electronic confinement and coherence in patternedepitaxial graphene [J]. Science,2006,312(5777):1191-1196.
    [6] Wu Menghao, Wu Xiaojun, Gao Yi, Materials design of half-metallic graphene and graphenenanoribbons [J]. Applied Physics Letters,2009,94(22):223111-3.
    [7] Kim Keun Soo, Zhao Yue, Jang Houk, Large-scale pattern growth of graphene films forstretchable transparent electrodes [J]. Nature,2009,457(7230):706-710.
    [8] Biel Blanca, Triozon Franc ois, Blase X., Chemically induced mobility gaps in graphenenanoribbons: A route for upscaling device performances [J]. Nano Letters,2009,9(7):2725-2729.
    [9] Jiao Liying, Zhang Li, Wang Xinran, Narrow graphene nanoribbons from carbon nanotubes [J].Nature,2009,458(7240):877-880.
    [10] Castro Neto A. H., Guinea F., Impurity-induced spin-orbit coupling in graphene [J]. PhysicalReview Letters,2009,103(2):026804.
    [11] Ponomarenko L. A., Schedin F., Katsnelson M. I., Chaotic dirac billiard in graphene quantumdots [J]. Science,2008,320(5874):356-358.
    [12] Geim A. K., Novoselov K. S., The rise of graphene [J]. Nat Mater,2007,6(3):183-191.
    [13] Bostwick Aaron, Ohta Taisuke, Seyller Thomas, Quasiparticle dynamics in graphene [J]. NatPhys,2007,3(1):36-40.
    [14] Calogeracos Alex., Relativistic quantum mechanics: Paradox in a pencil [J]. Nat Phys,2006,2(9):579-580.
    [15] Oroszlány L., Rakyta P., Kormányos A., Theory of snake states in graphene [J]. PhysicalReview B,2008,77(8):081403.
    [16] Peres N. M. R., Guinea F., Castro Neto A. H., Electronic properties of disorderedtwo-dimensional carbon [J]. Physical Review B,2006,73(12):125411.
    [17] Aoki Yuki, Hirayama Hiroyuki, Hydrogen desorption from6h-sic(0001) surfaces duringgraphitization [J]. Applied Physics Letters,2009,95(9):094103-3.
    [18] Bruna M., Borini S., Optical constants of graphene layers in the visible range [J]. AppliedPhysics Letters,2009,94(3):031901-3.
    [19] Boukhvalov D. W., Katsnelson M. I., Destruction of graphene by metal adatoms [J]. AppliedPhysics Letters,2009,95(2):023109-3.
    [20] Ebbesen T. W., Ajayan P. M., Large-scale synthesis of carbon nanotubes [J]. Nature,1992,358(6383):220-222.
    [21] Park Dalkeun, Hoon Kim Young, Kee Lee Joong., Synthesis of carbon nanotubes on metallicsubstrates by a sequential combination of pecvd and thermal cvd [J]. Carbon,2003,41(5):1025-1029.
    [22] Wu M., Liu En-Zuo, Ge M. Y., Stability, electronic, and magnetic behaviors of cu adsorbedgraphene: A first-principles study [J]. Applied Physics Letters,2009,94(10):102505-3.
    [23] Niimi Y., Kambara H., Fukuyama Hiroshi, Localized distributions of quasi-two-dimensionalelectronic states near defects artificially created at graphite surfaces in magnetic fields [J].Physical Review Letters,2009,102(2):026803.
    [24] Yu Choongho, Shi Li, Yao Zhen, Thermal conductance and thermopower of an individualsingle-wall carbon nanotube [J]. Nano Letters,2005,5(9):1842-1846.
    [25] Novoselov K. S., Jiang Z., Zhang Y., Room-temperature quantum hall effect in graphene [J].Science,2007,315(5817):1379.
    [26] Novoselov K. S., Geim A. K., Morozov S. V., Two-dimensional gas of massless dirac fermionsin graphene [J]. Nature,2005,438(7065):197-200.
    [27] Son Young-Woo, Cohen Marvin L., Louie Steven G., Energy gaps in graphene nanoribbons [J].Physical Review Letters,2006,97(21):216803.
    [28] Son Young-Woo, Cohen Marvin L., Louie Steven G., Half-metallic graphene nanoribbons [J].Nature,2006,444(7117):347-349.
    [29] Areshkin Denis A., White Carter T., Building blocks for integrated graphene circuits [J]. NanoLetters,2007,7(11):3253-3259.
    [30] Treacy M. M. J., Ebbesen T. W., Gibson J. M., Exceptionally high young's modulus observedfor individual carbon nanotubes [J]. Nature,1996,381(6584):678-680.
    [31] Hone J., Whitney M., Piskoti C., Thermal conductivity of single-walled carbon nanotubes [J].Physical Review B,1999,59(4): R2514-R2516.
    [32] Javey Ali, Guo Jing, Farmer Damon B., Carbon nanotube field-effect transistors with integratedohmic contacts and high-κ gate dielectrics [J]. Nano Letters,2004,4(3):447-450.
    [33] Javey Ali, Kim Hyoungsub, Brink Markus, High-[kappa] dielectrics for advancedcarbon-nanotube transistors and logic gates [J]. Nat Mater,2002,1(4):241-246.
    [34] Tans Sander J., Verschueren Alwin R. M., Dekker Cees., Room-temperature transistor based ona single carbon nanotube [J]. Nature,1998,393(6680):49-52.
    [35] Weitz Ralf Thomas, Zschieschang Ute, Effenberger Franz, High-performance carbon nanotubefield effect transistors with a thin gate dielectric based on a self-assembled monolayer [J]. NanoLetters,2006,7(1):22-27.
    [36] Lu Chenguang, An Lei, Fu Qiang, Schottky diodes from asymmetric metal-nanotube contacts[J]. Applied Physics Letters,2006,88(13):133501-3.
    [37] Manohara Harish M., Wong Eric W., Schlecht Erich, Carbon nanotube schottky diodes usingti schottky and pt ohmic contacts for high frequency applications [J]. Nano Letters,2005,5(7):1469-1474.
    [38] Yang M. H., Teo K. B. K., Milne W. I., Carbon nanotube schottky diode and directionallydependent field-effect transistor using asymmetrical contacts [J]. Applied Physics Letters,2005,87(25):253116-3.
    [39] Kong Jing, Franklin Nathan R., Zhou Chongwu, Nanotube molecular wires as chemical sensors[J]. Science,2000,287(5453):622-625.
    [40] Star A., Han T. R., Joshi V., Nanoelectronic carbon dioxide sensors [J]. Advanced Materials,2004,16(22):2049-2052.
    [41] Yao Zhen, Kane Charles L., Dekker Cees., High-field electrical transport in single-wall carbonnanotubes [J]. Physical Review Letters,2000,84(13):2941-2944.
    [42] Graham A. P., Duesberg G. S., Seidel R., Towards the integration of carbon nanotubes inmicroelectronics [J]. Diamond and Related Materials,2004,13(4–8):1296-1300.
    [43] Chen Zhihong, Appenzeller Joerg, Knoch Joachim, The role of metal nanotube contact in theperformance of carbon nanotube field-effect transistors [J]. Nano Letters,2005,5(7):1497-1502.
    [44] Novoselov K. S., Jiang D., Schedin F., Two-dimensional atomic crystals [J]. Proceedings of theNational Academy of Sciences of the United States of America,2005,102(30):10451-10453.
    [45] Pacile D., Meyer J. C., Girit C. O., The two-dimensional phase of boron nitride:Few-atomic-layer sheets and suspended membranes [J]. Applied Physics Letters,2008,92(13):133107-3.
    [46] Han Wei-Qiang, Wu Lijun, Zhu Yimei, Structure of chemically derived mono-andfew-atomic-layer boron nitride sheets [J]. Applied Physics Letters,2008,93(22):223103-3.
    [47] Jin Chuanhong, Lin Fang, Suenaga Kazu, Fabrication of a freestanding boron nitride singlelayer and its defect assignments [J]. Physical Review Letters,2009,102(19):195505.
    [48] Gao Rui, Yin Longwei, Wang Chengxiang, High-yield synthesis of boron nitride nanosheetswith strong ultraviolet cathodoluminescence emission [J]. The Journal of Physical Chemistry C,2009,113(34):15160-15165.
    [49] Meyer J C, Chuvilin A, Galgara-Siller G, Selective Sputtering and Atomic Resolution Imagingof Atomically Thin Boron Nitride Membranes [J]. Nano Lett.,2009,9(7):2683-2689.
    [50] Saito R, Dresselhaus G, Dresselhaus M S., Physical properties of carbon nanotubes [M].London: Imperial College London Press,1998.
    [51] Wallace P. R., The band theory of graphite [J]. Physical Review,1947,71(9):622-634.
    [52] Watanabe Kenji, Taniguchi Takashi, Kanda Hisao., Direct-bandgap properties and evidence forultraviolet lasing of hexagonal boron nitride single crystal [J]. Nat Mater,2004,3(6):404-409.
    [53] Nakada Kyoko, Fujita Mitsutaka, Dresselhaus Gene, Edge state in graphene ribbons:Nanometer size effect and edge shape dependence [J]. Physical Review B,1996,54(24):17954-17961.
    [54] Kawai Takazumi, Miyamoto Yoshiyuki, Sugino Osamu, Graphitic ribbons withouthydrogen-termination: Electronic structures and stabilities [J]. Physical Review B,2000,62(24):R16349-R16352.
    [55] Han Melinda Y., zyilmaz Barbaros, Zhang Yuanbo, Energy band-gap engineering of graphenenanoribbons [J]. Physical Review Letters,2007,98(20):206805.
    [56] Jung J., Pereg-Barnea T., MacDonald A. H., Theory of interedge superexchange in zigzag edgemagnetism [J]. Physical Review Letters,2009,102(22):227205.
    [57] Park Cheol-Hwan, Louie Steven G., Energy gaps and stark effect in boron nitride nanoribbons[J]. Nano Letters,2008,8(8):2200-2203.
    [58] Zhang Zhuhua, Guo Wanlin., Energy-gap modulation of bn ribbons by transverse electric fields:First-principles calculations [J]. Physical Review B,2008,77(7):075403.
    [59] Lia L, Lu J, Wang L, Magnetic Properties of Fully Bare and Half-Bare Boron NitrideNanoribbons [J]. J. Phys. Chem. C,2009,113:2273-2276.
    [60] Barone Veronica, Peralta Juan E., Magnetic boron nitride nanoribbons with tunable electronicproperties [J]. Nano Letters,2008,8(8):2210-2214.
    [61] Zheng Fawei, Zhou Gang, Liu Zhirong, Half metallicity along the edge of zigzag boron nitridenanoribbons [J]. Physical Review B,2008,78(20):205415.
    [62] Dutta Sudipta, Manna Arun K., Pati Swapan K., Intrinsic half-metallicity in modified graphenenanoribbons [J]. Physical Review Letters,2009,102(9):096601.
    [63] Rubio Angel, Corkill Jennifer L., Cohen Marvin L., Theory of graphitic boron nitride nanotubes[J]. Physical Review B,1994,49(7):5081-5084.
    [64] Chopra Nasreen G., Luyken R. J., Cherrey K., Boron nitride nanotubes [J]. Science,1995,269(5226):966-967.
    [65] Terrones M., Hsu W. K., Terrones H., Metal particle catalysed production of nanoscale bnstructures [J]. Chemical Physics Letters,1996,259(5–6):568-573.
    [66] Terauchi Masami, Tanaka Michiyoshi, Matsumoto Takehisa, Electron energy-loss spectroscopystudy of the electronic structure of boron nitride nanotubes [J]. Journal of Electron Microscopy,1998,47(4):319-324.
    [67] Cumings John, Zettl A., Mass-production of boron nitride double-wall nanotubes andnanococoons [J]. Chemical Physics Letters,2000,316(3–4):211-216.
    [68] Hirano Takanori, Oku Takeo, Suganuma Katsuaki., Atomic structure and electronic state ofboron nitride fullerenes and nanotubes [J]. Diamond and Related Materials,2000,9(3–6):625-628.
    [69] Saito Yahachi, Okuda Mitsumasa, Tomita Masato, Extrusion of single-wall carbon nanotubesvia formation of small particles condensed near an arc evaporation source [J]. Chemical PhysicsLetters,1995,236(4–5):419-426.
    [70] Kuno Masaki, Oku Takeo, Suganuma Katsuaki., Synthesis of boron nitride nanotubes andnanocapsules with lab6[J]. Diamond and Related Materials,2001,10(3–7):1231-1234.
    [71] Narita Ichihito, Oku Takeo., Synthesis of boron nitride nanotubes by using yb6powder [J].Solid State Communications,2002,122(9):465-468.
    [72] Oku Takeo., Synthesis and atomic structures of boron nitride nanotubes [J]. Physica B:Condensed Matter,2002,323(1–4):357-359.
    [73] Han Weiqiang, Bando Yoshio, Kurashima Keiji, Synthesis of boron nitride nanotubes fromcarbon nanotubes by a substitution reaction [J]. Applied Physics Letters,1998,73(21):3085-3087.
    [74] Golberg D., Bando Y., Han W., Single-walled b-doped carbon, b/n-doped carbon and bnnanotubes synthesized from single-walled carbon nanotubes through a substitution reaction [J].Chemical Physics Letters,1999,308(3–4):337-342.
    [75] Golberg D., Bando Y., Eremets M., Nanotubes in boron nitride laser heated at high pressure [J].Applied Physics Letters,1996,69(14):2045-2047.
    [76] Yu D. P., Sun X. S., Lee C. S., Synthesis of boron nitride nanotubes by means of excimer laserablation at high temperature [J]. Applied Physics Letters,1998,72(16):1966-1968.
    [77] Blase X., Rubio A., Louie S. G., Stability and band gap constancy of boron nitride nanotubes [J].EPL (Europhysics Letters),1994,28(5):335.
    [78] Okada Susumu, Saito Susumu, Oshiyama Atsushi., Electronic and geometric structures ofmulti-walled bn nanotubes [J]. Physica B: Condensed Matter,2002,323(1–4):224-226.
    [79] Chen R. B., Chang C. P., Shyu F. L., Optical excitations of boron nitride ribbons and nanotubes[J]. Solid State Communications,2002,123(8):365-369.
    [80] Chopra Nasreen G., Zettl A., Measurement of the elastic modulus of a multi-wall boron nitridenanotube [J]. Solid State Communications,1998,105(5):297-300.
    [81] Dillon A. C., Jones K. M., Bekkedahl T. A., Storage of hydrogen in single-walled carbonnanotubes [J]. Nature,1997,386(6623):377-379.
    [82] Oku Takeo, Narita Ichihito., Calculation of h2gas storage for boron nitride and carbonnanotubes studied from the cluster calculation [J]. Physica B: Condensed Matter,2002,323(1–4):216-218.
    [83] Ci Lijie, Song Li, Jin Chuanhong, Atomic layers of hybridized boron nitride and graphenedomains [J]. Nat Mater,2010,9(5):430-435.
    [84] Suenaga K., Colliex C., Demoncy N., Synthesis of nanoparticles and nanotubes withwell-separated layers of boron nitride and carbon [J]. Science,1997,278(5338):653-655.
    [85] Weng-Sieh Z., Cherrey K., Chopra Nasreen G., Synthesis of b_{x}c_{y}n_{z} nanotubules [J].Physical Review B,1995,51(16):11229-11232.
    [86] Terrones Mauricio, Grobert Nicole, Terrones Humberto., Synthetic routes to nanoscale bxcynzarchitectures [J]. Carbon,2002,40(10):1665-1684.
    [87] Zhang Y., Gu H., Suenaga K., Heterogeneous growth of bcn nanotubes by laser ablation [J].Chemical Physics Letters,1997,279(5–6):264-269.
    [88] Bai X. D., Guo J. D., Yu Jie, Synthesis and field-emission behavior of highly oriented boroncarbonitride nanofibers [J]. Applied Physics Letters,2000,76(18):2624-2626.
    [89] Liao Lei, Liu Kaihui, Wang Wenlong, Multiwall boron carbonitride/carbon nanotube junctionand its rectification behavior [J]. Journal of the American Chemical Society,2007,129(31):9562-9563.
    [90] He Jun, Chen Ke-Qiu, Fan Zhi-Qiang, Transition from insulator to metal induced by hybridizedconnection of graphene and boron nitride nanoribbons [J]. Applied Physics Letters,2010,97(19):193305-3.
    [91] J. M. Pruneda., Origin of half-semimetallicity induced at interfaces of C-BN heterostructures [J].Physical Review B,2010,81(16):161409(1-4).
    [92] Ding Yi, Wang Yanli, Ni Jun., Electronic properties of graphene nanoribbons embedded inboron nitride sheets [J]. Applied Physics Letters,2009,95(12):123105-3
    [93] Liu Yuling, Wu Xiaojun, Zhao Yu, X. C. Zeng, Jinlong Yang, Half-metallicity in hybridgraphene/boron nitride nanoribbons with dihydrogenated edges [J]. The Journal of PhysicalChemistry C,2011,115(19):9442-9450.
    [94] Fan Yingcai, Zhao Mingwen, Zhang Xuejuan, Manifold electronic structure transition of bncbiribbons [J]. Journal of Applied Physics,2011,110(3):034314-6.
    [95] Yao Zhen, Postma Henk W. Ch, Balents Leon, Carbon nanotube intramolecular junctions [J].Nature,1999,402(6759):273-276.
    [96] Bockrath Marc, Cobden David H., McEuen Paul L., Single-electron transport in ropes of carbonnanotubes [J]. Science,1997,275(5308):1922-1925.
    [97] Dumitrica Traian, Belytschko Ted, Yakobson Boris I., Bond-breaking bifurcation states incarbon nanotube fracture [J]. The Journal of Chemical Physics,2003,118(21):9485-9488.
    [98] Rueckes Thomas, Kim Kyoungha, Joselevich Ernesto, Carbon nanotube-based nonvolatilerandom access memory for molecular computing [J]. Science,2000,289(5476):94-97.
    [99] Liu C., Fan Y. Y., Liu M., Hydrogen storage in single-walled carbon nanotubes at roomtemperature [J]. Science,1999,286(5442):1127-1129.
    [100] Kawaguchi Masayuki., B/c/n materials based on the graphite network [J]. Advanced Materials,1997,9(8):615-625.
    [101] Stephan O., Ajayan P. M., Colliex C., Doping graphitic and carbon nanotube structures withboron and nitrogen [J]. Science,1994,266(5191):1683-1685.
    [102] Kim Shin Young, Park Jeunghee, Choi Hyun Chul, X-ray photoelectron spectroscopy and firstprinciples calculation of bcn nanotubes [J]. Journal of the American Chemical Society,2007,129(6):1705-1716.
    [103] Miyamoto Yoshiyuki, Rubio Angel, Cohen Marvin L., Chiral tubules of hexagonal bc_{2}n [J].Physical Review B,1994,50(7):4976-4979.
    [104] Blase X., Charlier J. C., De Vita A., Theory of composite BxCyNz nanotube heterojunctions [J].Applied Physics Letters,1997,70(2):197-199.
    [105] Blase X., Rubio Angel, Louie Steven G., Quasiparticle band structure of bulk hexagonal boronnitride and related systems [J]. Physical Review B,1995,51(11):6868-6875.
    [106] Blase X., Charlier J. C., De Vita A., Structural and electronic properties of composite bxcynznanotubes and heterojunctions [J]. Applied Physics A: Materials Science&Processing,1999,68(3):293-300.
    [107] Azevedo S, Paiva R de, Kaschny J R, Stability and electronic structure of b x n y c z nanotubes[J]. Journal of Physics: Condensed Matter,2006,18(48):10871.
    [108] Azevedo S., Paiva R. de., Structural stability and electronic properties of carbon-boron nitridecompounds [J]. Europhysics Letters,2006,75(1):126.
    [109] Wang W. L., Bai X. D., Liu K. H., Direct synthesis of b c n single-walled nanotubes bybias-assisted hot filament chemical vapor deposition [J]. Journal of the American ChemicalSociety,2006,128(20):6530-6531.
    [110] Xu Zhi, Lu Wengang, Wang Wenlong, Converting metallic single-walled carbon nanotubes intosemiconductors by boron/nitrogen co-doping [J]. Advanced Materials,2008,20(19):3615-3619.
    [111] Meunier Vincent, Roland Christopher, Bernholc J., Electronic and field emission properties ofboron nitride/carbon nanotube superlattices [J]. Applied Physics Letters,2002,81(1):46-48.
    [112] Hongxia Liu, Heming Zhang, Jiuxu Song, Electronic structures of an (8,0) boron nitride/carbonnanotube heterojunction [J]. Journal of Semiconductors,2010,31(1):013001.
    [113] Fan Yingcai, Hou Keyu, Wang Zhenhai, Theoretical insights into the built-in electric field andband offsets of bn/c heterostructured zigzag nanotubes [J]. Journal of Physics D: AppliedPhysics,2011,44(9):095405.
    [114] Khalfoun Hafid, Hermet Patrick, Henrard Luc, B and n codoping effect on electronic transportin carbon nanotubes [J]. Physical Review B,2010,81(19):193411.
    [115] Du Aijun, Chen Ying, Zhu Zhonghua, C-bn single-walled nanotubes from hybrid connection ofbn/c nanoribbons: Prediction by ab initio density functional calculations [J]. Journal of theAmerican Chemical Society,2009,131(5):1682-1683.
    [116] Zhang Zi-Yue, Zhang Zhuhua, Guo Wanlin, Stability and electronic properties of a novel c-bnheteronanotube from first-principles calculations [J]. The Journal of Physical Chemistry C,2009,113(30):13108-13114.
    [117] Fan Yingcai, Zhao Mingwen, He Tao, Electronic properties of bn/c nanotube heterostructures[J]. Journal of Applied Physics,2010,107(9):094304-6.
    [118]谢希德,陆栋,固体能带理论[M].上海:复旦大学出版社,2007.
    [119] Born M, Huang K, Dynamical theory of crystal lattices [M]. Oxford: Oxford University Press,1954.
    [120] Hohenberg P., Kohn W., Inhomogeneous electron gas [J]. Physical Review,1964,136(3B):B864-B871.
    [121] Kohn W., Sham L. J., Self-consistent equations including exchange and correlation effects [J].Physical Review,1965,140(4A): A1133-A1138.
    [122] Slater J. C. A, simplification of the hartree-fock method [J]. Physical Review,1951,81(3):385-390.
    [123] Wigner E., On the interaction of electrons in metals [J]. Physical Review,1934,46(11):1002-1011.
    [124] Ceperley D. M., Alder B. J., Ground state of the electron gas by a stochastic method [J].Physical Review Letters,1980,45(7):566-569.
    [125] Perdew J. P., Zunger Alex., Self-interaction correction to density-functional approximations formany-electron systems [J]. Physical Review B,1981,23(10):5048-5079.
    [126] Perdew John P., Chevary J. A., Vosko S. H., Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J].Physical Review B,1992,46(11):6671-6687.
    [127] Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized gradient approximation madesimple [J]. Physical Review Letters,1996,77(18):3865-3868.
    [128] Brandbyge Mads, Mozos José-Luis, Ordejón Pablo, Density-functional method fornonequilibrium electron transport [J]. Physical Review B,2002,65(16):165401.
    [129] Datta A, Electronic transport in mesoscopic systems [M]. Cambridge: Cambridge UniversityPress,1995.
    [130] Anderson P. W., Absence of diffusion in certain random lattices [J]. Physical Review,1958,109(5):1492-1505.
    [131] Mott N. F., Twose W. D., The theory of impurity conduction [J]. Advances in Physics,1961,10(38):107-163.
    [132]冯端,金国钧,凝聚态物理学[M].北京:高等教育出版社,2003,276-280.
    [133] Hiramoto Hisashi, Kohmoto Mahito., Scaling analysis of quasiperiodic systems: Generalizedharper model [J]. Physical Review B,1989,40(12):8225-8234.
    [134] Geisel T., Ketzmerick R., Petschel G., New class of level statistics in quantum systems withunbounded diffusion [J]. Physical Review Letters,1991,66(13):1651-1654.
    [135] Zhang K. W., Yuan H. Q., Zhong J. X,. Electronic dynamics in an incommensurate systems [J].Acta Physica Sinica,1999,48(3):497-504.
    [136] Hiramoto. H., Abe. S., Dynamics of an Electron in Quasiperiodic Systems. II. Harper's Model[J]. Journal of the Physical Society of Japan,1988,57:1365-1371.
    [137] Mermin N. D., Wagner H., Absence of ferromagnetism or antiferromagnetism in one-ortwo-dimensional isotropic heisenberg models [J]. Physical Review Letters,1966,17(22):1133-1136.
    [138] Du Xu, Skachko Ivan, Barker Anthony, Approaching ballistic transport in suspended graphene[J]. Nat Nano,2008,3(8):491-495.
    [139] Novoselov K. S., Jiang Z., Zhang Y., Room-temperature quantum hall effect in graphene [J].Science,2007,315(5817):1379.
    [140] Zhang Yuanbo, Tan Yan-Wen, Stormer Horst L., Experimental observation of the quantum halleffect and berry's phase in graphene [J]. Nature,2005,438(7065):201-204.
    [141] Lee Changgu, Wei Xiaoding, Kysar Jeffrey W., Measurement of the elastic properties andintrinsic strength of monolayer graphene [J]. Science,2008,321(5887):385-388.
    [142] Balandin Alexander A., Ghosh Suchismita, Bao Wenzhong, Superior thermal conductivity ofsingle-layer graphene [J]. Nano Letters,2008,8(3):902-907.
    [143] Campos Leonardo C., Manfrinato Vitor R., Sanchez-Yamagishi Javier D., Anisotropic etchingand nanoribbon formation in single-layer graphene [J]. Nano Letters,2009,9(7):2600-2604.
    [144] Yamashiro Atsushi, Shimoi Yukihiro, Harigaya Kikuo, Spin-and charge-polarized states innanographene ribbons with zigzag edges [J]. Physical Review B,2003,68(19):193410.
    [145] Lee Hosik, Son Young-Woo, Park Noejung, Magnetic ordering at the edges of graphiticfragments: Magnetic tail interactions between the edge-localized states [J]. Physical Review B,2005,72(17):174431.
    [146] Sluiter Marcel H. F., Kawazoe Yoshiyuki., Cluster expansion method for adsorption:Application to hydrogen chemisorption on graphene [J]. Physical Review B,2003,68(8):085410.
    [147] Sofo Jorge O., Chaudhari Ajay S., Barber Greg D., Graphane: A two-dimensional hydrocarbon[J]. Physical Review B,2007,75(15):153401.
    [148] Elias D. C., Nair R. R., Mohiuddin T. M. G., Control of graphene's properties by reversiblehydrogenation: Evidence for graphane [J]. Science,2009,323(5914):610-613.
    [149] Samarakoon Duminda K., Wang Xiao-Qian., Chair and twist-boat membranes in hydrogenatedgraphene [J]. ACS Nano,2009,3(12):4017-4022.
    [150] Leenaerts O., Peelaers H., Hernández-Nieves A. D., First-principles investigation of graphenefluoride and graphane [J]. Physical Review B,2010,82(19):195436.
    [151] Bhattacharya A., Bhattacharya S., Majumder C., Third conformer of graphane: A first-principlesdensity functional theory study [J]. Physical Review B,2011,83(3):033404.
    [152] Wen Xiao-Dong, Hand Louis, Labet Vanessa, Graphane sheets and crystals under pressure [J].Proceedings of the National Academy of Sciences,2011,108(17):6833-6837.
    [153] Samarakoon Duminda K., Chen Zhifan, Nicolas Chantel, Structural and electronic properties offluorographene [J]. Small,2011,7(7):965-969.
    [154] Arnaud B., Lebègue S., Rabiller P., Huge excitonic effects in layered hexagonal boron nitride[J]. Physical Review Letters,2006,96(2):026402.
    [155] Paul T. K., Bhattacharya P., Bose D. N., Characterization of pulsed laser deposited boron nitridethin films on inp [J]. Applied Physics Letters,1990,56(26):2648-2650; S.S. Dana.[J].Materials Science Forum,1991,229:54-55.
    [156] Zhou Jian, Wang Qian, Sun Qiang, Electronic and magnetic properties of a bn sheet decoratedwith hydrogen and fluorine [J]. Physical Review B,2010,81(8):085442.
    [157] Hiura Hidefumi., Tailoring graphite layers by scanning tunneling microscopy [J]. AppliedSurface Science,2004,222(1–4):374-381.
    [158] Berger Claire, Song Zhimin, Li Tianbo, Ultrathin epitaxial graphite:2d electron gas propertiesand a route toward graphene-based nanoelectronics [J]. The Journal of Physical Chemistry B,2004,108(52):19912-19916.
    [159] Nakamura Jun, Nitta Toshihiro, Natori Akiko., Electronic and magnetic properties of bncribbons [J]. Physical Review B,2005,72(20):205429.
    [160] Topsakal M., Aktürk E., Ciraci S., First-principles study of two-and one-dimensionalhoneycomb structures of boron nitride [J]. Physical Review B,2009,79(11):115442.
    [161] Ding Yi, Wang Yanli, Ni Jun., The stabilities of boron nitride nanoribbons with differenthydrogen-terminated edges [J]. Applied Physics Letters,2009,94(23):233107-3.
    [162] Kan Er-Jun, Li Zhenyu, Yang Jinlong, Will zigzag graphene nanoribbon turn to half metal underelectric field?[J]. Applied Physics Letters,2007,91(24):243116-3.
    [163] Li Zhenyu, Yang Jinlong, Hou J. G., Half-metallicity in edge-modified zigzag graphenenanoribbons [J]. Journal of the American Chemical Society,2008,130(13):4224-4225.
    [164] Wu Menghao, Wu Xiaojun, Zeng Xiao Cheng., Exploration of half metallicity in edge-modifiedgraphene nanoribbons [J]. The Journal of Physical Chemistry C,2010,114(9):3937-3944.
    [165] Li Yafei, Zhou Zhen, Shen Panwen, Spin gapless semiconductor metal half-metal properties innitrogen-doped zigzag graphene nanoribbons [J]. ACS Nano,2009,3(7):1952-1958.
    [166] Lee Yea-Lee, Kim Seungchul, Park Changwon, Controlling half-metallicity of graphenenanoribbons by using a ferroelectric polymer [J]. ACS Nano,2010,4(3):1345-1350.
    [167] Kresse G., Hafner J., Ab initio molecular dynamics for liquid metals [J]. Physical Review B,1993,47(1):558-561.
    [168] Kresse G., Hafner J., Ab initio molecular-dynamics simulation of theliquid-metal–amorphous-semiconductor transition in germanium [J]. Physical Review B,1994,49(20):14251-14269.
    [169] Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set [J]. Computational Materials Science,1996,6(1):15-50.
    [170] Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculationsusing a plane-wave basis set [J]. Physical Review B,1996,54(16):11169-11186.
    [171] Tans Sander J., Devoret Michel H., Dai Hongjie, Individual single-wall carbon nanotubes asquantum wires [J]. Nature,1997,386(6624):474-477.
    [172] Hamada Noriaki, Sawada Shin-ichi, Oshiyama Atsushi., New one-dimensional conductors:Graphitic microtubules [J]. Physical Review Letters,1992,68(10):1579-1581.
    [173] Seah Choon-Ming, Chai Siang-Piao, Mohamed Abdul Rahman. Synthesis of aligned carbonnanotubes [J]. Carbon,2011,49(14):4613-4635.
    [174] Redlich Ph, Loeffler J., Ajayan P. M., B c n nanotubes and boron doping of carbonnanotubes [J]. Chemical Physics Letters,1996,260(3–4):465-470.
    [175] Ma, R.; Golberg, D.; Bando, Y.; Sasaki, T. Philos. Trans. R. Soc., London A2004,362,216and references therein.
    [176] Zhu H. Y., Klein D. J., March N. H., Small band-gap graphitic cbn layers [J]. Journal of Physicsand Chemistry of Solids,1998,59(8):1303-1308.
    [177] Lammert Paul E., Crespi Vincent H., Rubio Angel., Stochastic heterostructures and diodium inb/n-doped carbon nanotubes [J]. Physical Review Letters,2001,87(13):136402.
    [178] Liu Yi, Guo Hong., Current distribution in b-and n-doped carbon nanotubes [J]. PhysicalReview B,2004,69(11):115401.
    [179] Ewels C. P., Glerup M., Nitrogen doping in carbon nanotubes [J]. Journal of Nanoscience andNanotechnology,2005,5(9):1345-1363.
    [180] Lee R. S., Gavillet J., Chapelle M. Lamy de la, Catalyst-free synthesis of boron nitridesingle-wall nanotubes with a preferred zig-zag configuration [J]. Physical Review B,2001,64(12):121405.
    [181] Taylor Jeremy, Guo Hong, Wang Jian., Ab initio modeling of quantum transport properties ofmolecular electronic devices [J]. Physical Review B,2001,63(24):245407.
    [182] Martel R., Schmidt T., Shea H. R., Single-and multi-wall carbon nanotube field-effecttransistors [J]. Applied Physics Letters,1998,73(17):2447-2449.
    [183] Son Young-Woo, Cohen Marvin L., Louie Steven G., Electric field effects on spin transport indefective metallic carbon nanotubes [J]. Nano Letters,2007,7(11):3518-3522.
    [184] Yan Qimin, Wu Jian, Zhou Gang, Ab initio study of transport properties of multiwalled carbonnanotubes [J]. Physical Review B,2005,72(15):155425.
    [185] García-Suárez Víctor M., Ferrer Jaime, Lambert Colin J., Tuning the electrical conductivity ofnanotube-encapsulated metallocene wires [J]. Physical Review Letters,2006,96(10):106804.
    [186] Hod Oded, Barone Verónica, Peralta Juan E., Enhanced half-metallicity in edge-oxidized zigzaggraphene nanoribbons [J]. Nano Letters,2007,7(8):2295-2299.
    [187] Gibbs G. V., Cox D. F., Ross N. L., A mapping of the electron localization function for earthmaterials [J]. Physics and Chemistry of Minerals,2005,32(3):208-221.
    [188] Osorio-Guillén J. M., Simak S. I., Wang Y., Bonding and elastic properties of superconductingmgb2[J]. Solid State Communications,2002,123(6–7):257-262.
    [189] Gibbs G. V., Cox D. F., Boisen Jr M. B., The electron localization function: A tool for locatingfavorable proton docking sites in the silica polymorphs [J]. Physics and Chemistry of Minerals,2003,30(5):305-316.
    [190] Morozov S. V., Novoselov K. S., Katsnelson M. I., Giant intrinsic carrier mobilities in grapheneand its bilayer [J]. Physical Review Letters,2008,100(1):016602.
    [191] Bolotin K. I., Sikes K. J., Jiang Z., Ultrahigh electron mobility in suspended graphene [J]. SolidState Communications,2008,146(9–10):351-355.
    [192] Nomura Kentaro, MacDonald Allan H., Quantum hall ferromagnetism in graphene [J]. PhysicalReview Letters,2006,96(25):256602.
    [193] Miao F., Wijeratne S., Zhang Y., Phase-coherent transport in graphene quantum billiards [J].Science,2007,317(5844):1530-1533.
    [194] Young Andrea F., Kim Philip., Quantum interference and klein tunnelling in grapheneheterojunctions [J]. Nat Phys,2009,5(3):222-226.
    [195] Wang Xinran, Li Xiaolin, Zhang Li, N-doping of graphene through electrothermal reactionswith ammonia [J]. Science,2009,324(5928):768-771.
    [196] Yu Zhizhou, Sun L. Z., Zhang C. X., Transport properties of corrugated graphene nanoribbons[J]. Applied Physics Letters,2010,96(17):173101-3.
    [197] Xu Zhiping, Xue Kun., Engineering graphene by oxidation: A first-principles study [J].Nanotechnology,2010,21(4):045704.
    [198] Hernández-Nieves A. D., Partoens B., Peeters F. M., Electronic and magnetic properties ofsuperlattices of graphene/graphane nanoribbons with different edge hydrogenation [J]. PhysicalReview B,2010,82(16):165412.
    [199] Areshkin Denis A., Gunlycke Daniel, White Carter T., Ballistic transport in graphene nanostripsin the presence of disorder: Importance of edge effects [J]. Nano Letters,2006,7(1):204-210.
    [200] Geim A. K., Novoselov K. S., The rise of graphene [J]. Nat Mater,2007,6(3):183-191.
    [201] Li T. C., Lu Shao-Ping., Quantum conductance of graphene nanoribbons with edge defects [J].Physical Review B,2008,77(8):085408.
    [202] Ihnatsenka S., Zozoulenko I. V., Kirczenow G. Band-gap engineering and ballistic transport inedge-corrugated graphene nanoribbons [J]. Physical Review B,2009,80(15):155415.
    [203] Ramasubramaniam Ashwin., Electronic structure of oxygen-terminated zigzag graphenenanoribbons: A hybrid density functional theory study [J]. Physical Review B,2010,81(24):245413.
    [204] Zhang Z L, Chen Y P, Xie Y E, Spin-polarized transport properties of fe atomic chain adsorbedon zigzag graphene nanoribbons [J]. Journal of Physics D: Applied Physics,2011,44(21):215403.
    [205] Semenoff G. W., Semenoff V., Zhou Fei., Domain walls in gapped graphene [J]. PhysicalReview Letters,2008,101(8):087204.
    [206] Lahiri Jayeeta, Lin You, Bozkurt Pinar, An extended defect in graphene as a metallic wire [J].Nat Nano,2010,5(5):326-329.
    [207] Bahamon D. A., Pereira A. L. C., Schulz P. A., Third edge for a graphene nanoribbon: Atight-binding model calculation [J]. Physical Review B,2011,83(15):155436.
    [208] Li Zuanyi, Qian Haiyun, Wu Jian, Role of symmetry in the transport properties of graphenenanoribbons under bias [J]. Physical Review Letters,2008,100(20):206802.
    [209] Gu nther S., Da nhardt S., Wang B., Single terrace growth of graphene on a metal surface [J].Nano Letters,2011,11(5):1895-1900.
    [210] Shi Zhiwen, Yang Rong, Zhang Lianchang, Patterning graphene with zigzag edges byself-aligned anisotropic etching [J]. Advanced Materials,2011,23(27):3061-3065.
    [211] Hu X H,Xu J M,Sun L T,2012Acta Phys. Sin.6147106(in Chinese)
    [212] Castro Neto A. H., Guinea F., Peres N. M. R., The electronic properties of graphene [J].Reviews of Modern Physics,2009,81(1):109-162.
    [213] Tworzyd o J., Trauzettel B., Titov M., Sub-poissonian shot noise in graphene [J]. PhysicalReview Letters,2006,96(24):246802.
    [214] Balandin Alexander A. Thermal properties of graphene and nanostructured carbon materials [J].Nat Mater,2011,10(8):569-581.
    [215] Corso Martina, Auw rter Willi, Muntwiler Matthias, Boron nitride nanomesh [J]. Science,2004,303(5655):217-220.
    [216] Paul T. K., Bhattacharya P., Bose D. N., Characterization of pulsed laser deposited boron nitridethin films on inp [J]. Applied Physics Letters,1990,56(26):2648-2650.
    [217] Li Chun, Bando Yoshio, Zhi Chunyi, Thickness-dependent bending modulus of hexagonalboron nitride nanosheets [J]. Nanotechnology,2009,20(38):385707.
    [218] Li Jin, Gui Gui, Zhong Jianxin, Tunable bandgap structures of two-dimensional boron nitride[J]. Journal of Applied Physics,2008,104(9):094311-5.
    [219] Watanabe Kenji, Taniguchi Takashi, Kanda Hisao, Direct-bandgap properties and evidence forultraviolet lasing of hexagonal boron nitride single crystal [J]. Nat Mater,2004,3(6):404-409.
    [220] Kubota Yoichi, Watanabe Kenji, Tsuda Osamu, Deep ultraviolet light-emitting hexagonal boronnitride synthesized at atmospheric pressure [J]. Science,2007,317(5840):932-934.
    [221] Chen Zhi-Gang, Zou Jin, Liu Gang, Novel boron nitride hollow nanoribbons [J]. ACS Nano,2008,2(10):2183-2191.
    [222] Pereira J. Milton, Vasilopoulos P., Peeters F. M., Tunable quantum dots in bilayer graphene [J].Nano Letters,2007,7(4):946-949.
    [223] Ohta Taisuke, Bostwick Aaron, Seyller Thomas, Controlling the electronic structure of bilayergraphene [J]. Science,2006,313(5789):951-954.
    [224] Li J,Gui G,Sun L Z Zhong J X,2010Acta Phys. Sin.598820(in Chinese)
    [225] Zhong Jianxin, Stocks G. Malcolm, Persistent mobility edges and anomalous quantum diffusionin order-disorder separated quantum films [J]. Physical Review B,2007,75(3):033410.
    [226] Zhong Jianxin, Stocks G. Malcolm., Localization/quasi-delocalization transitions andquasi-mobility-edges in shell-doped nanowires [J]. Nano Letters,2005,6(1):128-132.
    [227] Shklovskii B. I., Shapiro B., Sears B. R., Statistics of spectra of disordered systems near themetal-insulator transition [J]. Physical Review B,1993,47(17):11487-11490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700