Cu纳米线结构和性质的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜(Cu)作为一种广泛使用的商业金属具有许多优良的特性,如较高的强度、极好的延展性和良好的抗腐蚀性,另外,Cu具有较高的电导率、导热率和熔点以及较低的电阻率等优点常被用作电子器件中的互联线。随着纳米科学技术的出现和发展,一维Cu纳米线在大规模集成电路和纳米微机电系统中展现出了良好的应用前景。本文基于密度泛函理论框架下的第一性原理投影缀加波计算方法,对不同结构一维Cu纳米线的稳定性、电子特性、氧化性能以及将Cu纳米线填充纳米管的特性进行了研究,主要得到结如下结论:
     (1)系统的研究了不同维数下的Cu结构的结构和电子特性的变化。计算结果表明随着维数的降低,Cu结构中最近邻原子间距和系统结合能逐渐减小,其能带结构越来越密集且逐渐向费米能级靠近,且总态密度的带宽降低、峰值增大且整体态密度也逐渐向费米能级移动。同时,随着维数的降低,Cu原子间的相互作用明显增强。
     (2)系统的研究了[100]、[110]和[111]三个低指数晶向Cu纳米线的结构和电子特性,并对其相对稳定性进行了初步探讨。在Cu纳米线的弛豫结构中存在着“倒棱”现象,且随着纳米线尺寸的增加,表面原子的弛豫量也明显增加。起初在同-条直线上的原子弛豫后并不在同一条直线上(尤其是表面原子),因此,被称作“皱褶”的现象也存在于Cu纳米线中。随着线径的增加纳米线的结合能也逐渐增加,且逐渐接近体相结构Cu的结合能;从稳定性方面来讲,[110]晶向Cu纳米线最稳定,这与在实验中最容易形成该晶向Cu纳米线的实验结果一致。在电子特性方面:Cu纳米线表面原子间及表面原子与其最近邻原子间的相互作用明显增强,我们称这种现象为“趋肤效应”,因此相对于体相Cu晶体,Cu纳米线的机械性能得以提高。最后,计算结构表明Cu纳米线的电子传输性能随着线径的增加而增强。
     (3)系统的研究了单胞内包含1到14个Cu原子的22种不同截面形状Cu纳米线构型的平衡结构和电子特性。得到了每种构型纳米线在最稳定结构所对应的平衡态晶格常数。Cu纳米线的结合能随着每个单胞中Cu原子数目的增加而增加。对于一个具有固定多边形原子截面构型的纳米线结构,在轴向具有穿过多边形中心的线性原子链且链中原子正好位于两多边形中间位置的交错结构是最稳定的。所有稳定构型的Cu纳米线都具有金属性。最后,电荷密度分析表明相对于体相Cu晶体纳米线中都有所增强。
     (4)基于第一性原理计算研究了Cu纳米线与氧原子或氧分子的相互作用,给出了包含杂质的Cu纳米线的稳定性、机械和电子特性。(a)在氧原子和氧分子与Cu原子链的相互作用中,我们发现氧原子和氧分子与一维结构中的Cu原子间形成稳定的强化学键。在轴向应力拉伸过程中,包含氧原子或氧分子的原子链的断裂一般发生在远离氧原子或氧分子的Cu-Cu键处。氧原子或氧分子两侧的最近邻Cu原子上的部分电子转移到了电负性较大的O原子上,表明所形成的Cu-O键具有离子键特性。因此,合适的有氧环境会有助于形成稳定的Cu原子链。(b)在四方形Cu纳米线表面上吸附氧原子研究中,发现氧原子可以自发地吸附在Cu纳米线的表面,计算结果表明在Cu纳米线棱角处的长桥位(LB)是氧原子的最稳定吸附位置,而表面上的洞位(H)为第二稳定吸附位置。从差分电荷密度和投影态密度分析中发现Cu原子与吸附氧原子所形成的化学键在一定程度上表现为混合的离子键/共价键特性。另外,从局部几何结构和电子特性两方面讨论和分析了影响氧原子吸附的Cu纳米线系统中优先吸附位置的主要因素。
     (5)系统地研究了将Cu纳米线填充到无机纳米管中成为纳米缆系统时的结构和电子特性。(a)将[001]晶向的不同线径的的四方形Cu纳米线填充到扶手椅型(8,8)GaN纳米管中时,对于Cu5@(8,8)和Cu9@(8,8)复合结构,初始结构在优化后基本保持不变,而对Cu13@(8,8)复合系统,纳米管横截面形状发生变形。相对于Cu13@(8,8)复合结构,Cu5@(8,8)和Cu9@(8,8)复合结构其结合能非常小,表明管-线间的相互作用非常弱。从投影态密度和电荷密度两方面的分析可知,在Cu9@(8,8)复合结构中外部纳米管中Ga原子和N原子的电子对复合系统的电导没有影响,同时内部Cu9纳米线和外围纳米管间没有电荷的交迭,因此传导电子仅仅只是分布在填充在内部的Cu纳米线区域,而外围惰性的GaN纳米管只是起到了一个半导体电缆壳的作用。(b)将螺旋形Cu纳米线填充到一系列不同线径锯齿型(n,0)BeO纳米管中时,所形成Cum@(n,0)复合系统优化后的结构相对最初建立的圆筒结构基本保持不变。管-线间距约为的2.8A的Cu6@(10,0)和Cu8@(11,0)复合结构具有最大的结合能0.06eV,所以这两个复合结构是最稳定的结构,且这两种复合结构在费米能级附近处的能带结构几乎就是其组成成分(Cu纳米线和BeO纳米管)能带结构的叠加,且Cu纳米线填充到纳米管中后其量子电导没有发生变化。同样地,从投影态密度和电荷密度两方面的分析可知,在两种最稳定的复合结构中传导电子仅仅只是分布在填充在内部的Cu纳米线区域,而外围惰性的BeO纳米管只是起到了一个绝缘电缆壳的作用。因此纳米缆复合系统可应用于要求稳定传输电荷的超大规模集成电路和纳米微机电系统中。
Copper is a widely used commercial metal due to its availability and outstanding properties such as good strength, excellent malleability and superior corrosion resistance. There are many qualities that maintain Cu as the material of choice for making interconnects in electron device, for examples, Cu has excellent electrical conductivity, thermal conductivity, lower resistivity and higher melting point. As the advance of the nano science and technology one-dimensional (ID) copper nanowires (CuNWs) are of particular interest, which have been expected to apply in ultra-large-scale integration (ULSI) circuits and nano-electromechanical systems (NEMS) as well as others nanodevices. Therefore, in this paper, by using first-principles projector-augmented wave potential within density-functional theory, we have systematically investigated the stabilities, electronic properties and oxidative activity of CuNWs with different structures as well as the properties of CuNWs encapsulated in nanotubes. The main conclusions can be summarized as follows.
     (1) We systematically investigated the changes in the electronic structure of Cu in going from three-dimensional (3D) to two-dimensional (2D) to one-dimensional (1D) structure. The interatomic distance and the binding energy per bond shows significant drop as dimensionality decreases. The band structure and the density of states (DOS) show a gradual sharpening of the DOS bandwidth and an increase in its peak value with the lowering of dimensions. Meanwhile, the peak of the DOS shifts to the Fermi level and the interaction between adjacent Cu atoms becomes stronger as Cu undergo a change of dimensionality from3D to2D to1D.
     (2) The relaxed structures and electronic properties have been investigated for CuNWs in [100],[110] and [111] crystallographic directions with different cross sections. For all studied CuNWs, the relaxed structures show a "round corner" phenomenon and the relaxation amount of the surface Cu atoms increases with increasing CuNWs size. The atoms on the same line originally are not on the same line after relaxation, especially the surface atoms; i.e., so-called rumple phenomenon exits. The binding energy per bond shows significant increase as the size of the nanowire increases. The [110] crystallographic wire is more stable than the others and easily synthesize in experiment, in agreement with the experimental result. The enhanced interactions appear between the surface atoms as well as the surface atoms and their first nearest neighbor atoms; we term this phenomenon the "skin effect", which enhances the mechanical properties of the nanowire compared to bulk. Finaly, the electronic transport properties enhances with the increase diameter of CuNWs.
     (3) The equilibrium structure and electronic properties of22free-standing CuNWs having different cross sections with1-14Cu atoms per unit cell have been systematically investigated. For each wire the equilibrium lattice constant was obtained. The binding energy increases with increasing atom number per unit cell in different structures. As for the polygonal structures of a fixed cross section, the preferred structures should be the staggered ones which contain a linear chain along the wire axis passes through the center of the polygons, where each chain atom is just located at a point equidistant from the planes of polygons. All the nanowires are metallic. Finally, the density of charge revealed delocalized metallic bonding and an enhanced interaction appears between the atoms for all of the CuNWs compared with that in Cu bulk crystal.
     (4) In this study, we have investigated the interaction of atomic or molecular oxygen with the CuNWs via total-energy calculations using first-principles calculations,(a) The energetics, mechanical, and electronic properties of the contaminated CuNWs have been presented. The impurities (O atom or O2molecule) form stable and strong bonds with the monatomic Cu chain. Upon elongation, the nanowires contaminated with atomic impurities usually break from the remote Cu-Cu bond. The electron transferring from neighboring Cu atoms to O atom shows some degree of ionic character of the Cu-O bond. Our findings indicate that the Cu chains can be easily formed in the presence of molecular or atomic oxygen.(b) The structural stability and electronic properties of a single oxygen atom adsorbed on the surface of foursquare Cu nanowires for a wide range of adsorption sites have been systematically investigated. We find that the oxygen atom can adsorb exothermically or spontaneously on the surface of CuNWs. We found that the long bridge site at the edge of the CuNWs is the most stable site for oxygen adsorption, which is always slightly energetically favorable than the hollow site on the surface. The O-Cu chemical bond shows some degree of mixed ionic/covalence character from a detailed investigation of the different charge density and the projected density of states. In addition, the main factors affecting the preferred adsorption site of the oxygen adsorbed CuNW systems are analyzed from the local geometrical configurations and electronic properties.
     (5) The structural and electronic properties of nanocables systems formed by CuNWs encapsulated in inorganic nanotubes have been systemically studied.(a) When the four squares CuNWs in [100] crystallographic directions with different cross sections encapsulated into the armchair (8,8) GaNNT, the initial shapes are preserved without any visible changes for the Cu5@(8,8) and Cu9@(8,8) combined systems, but a quadraticlike cross-section shape is formed for the outer nanotube of the Cu13@(8,8) combined system due to the stronger attraction between nanowire and nanotube. The extremely small (larger) formation energies indicating that the interactions between nanowire and nanotube are very weak (stronger) for the Cus@(8,8) and Cu9@(8,8)(Cu13@(8,8)) combined systems (system). The electrons of Ga and N atoms in outer GaN sheath affect the electron conductance of the encapsulated metallic nanowire in the Cu13@(8,8) combined system. But in the Cu5@(8,8) and Cu9@(8,8) combined systems, the conduction electrons are distributed only on the copper atoms, charge transport will occur only in the inner copper nanowire, which are effectively insulated by the outer GaN nanotube.(b) As for the Cum@(n,0) combined systems of helical CuNWs encapsulated in a series of zigzag (n,0) BeONTs, the initial cylindrical shapes are preserved without any visible changes. The most stable combined systems are Cu6@(10,0) and Cug@(11,0) with an optimal tube-wire distance of about2.8A and a simple superposition of the band structures of their components near the Fermi level. A quantum conductance of3G0is obtained for both Cu6and Cu8nanowires in either free-standing state or filled into BeONTs. Both the projected densities of states (PDOS) and charge density analyses also show their conduction electrons are localized on the inner CuNW, therefore, the electronic transport will occur in the inner CuNW and the outer BeONT only function as an insulating sheath. So the combined systems of nanocables is top-priority in the ULSI circuits and MEMS devices that demand steady transport of electrons
引文
[1]C. He, W. X. Zhang, J. L. Deng. Electric field and size effects on atomic structures and conduction properties of ultrathin Cu nanowires [J]. J. Phys. Chem. C,2011, 115(8):3327-3331.
    [2]L. Cademartiri, G. A. Ozin. Ultrathin nanowires-a materials chemistry perspective [J]. Adv. Mater.,2009,21(9):1013-1020.
    [3]V. K. Sutrakarl, D. R. Mahapatra. Formation of stable ultra-thin pentagon Cu nanowires under high strain rate loading [J]. J. Phys.:Condens. Matter,2008, 20(33):335206-6.
    [4]B. L. Wang, J. J. Zhao, X. S. Chen, D. N. Shi, G. H. Wang. Structures and quantum conductances of atomic-sized copper nanowires [J]. Nanotechnology,2006,17(13): 3178-3182.
    [5]G. R. Zhou, Q. M. Gao. Freezing behavior of one-dimensional copper nanowires [J]. Solid State Commun.,2006,138(8):399-403.
    [6]J. C. Gonzalez, V. Rodrigues, J. Bettini, L. G. C. Rego, A. R. Rocha, P. Z. Coura, S. O. Dantas, F. Sato, D. S. Galvao, D. Ugarte. Indication of unusual pentagonal structures in atomic-size Cu nanowires [J]. Phys. Rev. Lett.,2004,93(12): 126103-4.
    [7]E. P. M. Amorim, E. Z. da Silva. Ab initio study of linear atomic chains in copper nanowires [J]. Phys. Rev. B,2010,81(11):115463-9.
    [8]S. R. Chun, W. A. Sasangka, C. L. Gan, H. Cai, C. M. Ng. Low temperature bonding via copper nanowires for 3D integrated circuits [C]. Mater. Res. Soc. Symp. Proc., 2010,1249:F04-21.
    [9]V. K. Sutrakar, D. R. Mahapatra. Coupled effect of size, strain rate, and temperature on the shape memory of a pentagonal Cu nanowire. Nanotechnology,2009,20(4): 045701-10.
    [10]S. Iijima. Helical microtubules of graphite carbon [J]. Nature,1991,354:56-58.
    [11]A. I. Mares, J. M. van Ruitenbeek. Observation of shell effects in nanowires for the noble metals Cu, Ag, and Au [J]. Phys. Rev. B,2005,72(20):205402-7.
    [12]J. Sloan, D. M. Wright, H. G. Woo, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, M. L. Green. Capillarity and silver nanowire formation observed in single walled carbon nanotubes [J]. Chem. Commun.,1999,8: 699-700.
    [13]C. H. Kiang, J. S. Choi, T. T. Tran, A. D. Bacher. Molecular Nanowires of 1 nm Diameter from Capillary Filling of Single-Walled Carbon Nanotubes [J]. J. Phys. Chem. B,1999,103(35):7449-7451.
    [14]A. Govindaraj, B. C. Satishkumar, M. Nath, C. N. R. Rao. Metal Nanowires and Intercalated Metal Layers in Single-Walled Carbon Nanotube Bundles [J]. Chem. Mater.,2000,12(1):202-205.
    [15]G. Y. Zhang, E. G. Wang. Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation [J]. Appl. Phys. Lett.,2003,82(12): 1926-1928.
    [16]W. S. Yun, J. Kim, K. Park, J. S. Ha, Y.J. Ko, K. Park, S. K. Kim, Y. J. Doh, H. J. Lee, J. P. Salvetat, L. Forro. Fabrication of metal nanowire using carbon nanotube as a mask [J]. J. Vac. Sci. Technol. A,2000,18(4):1329-1332.
    [17]K. B. Lee, S. M. Lee, J. Cheon. Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration [J]. Adv. Mater.,2001, 13(7):517-520.
    [18]B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, K. S. Kim. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase [J]. Science,2001, 294(5541):348-351.
    [19]Y. Oshima, A. Onga, K. Takayanagi. Helical gold nanotube synthesized at 150 K [J]. Phys. Rev. Lett.,2003,91(20):205503-4.
    [20]Y. Kondo, K. Takayanagi. Gold nanobridge stabilized by surface structure [J]. Phys. Rev. Lett.,1997,79(18):3455-3458.
    [21]Y. Kondo, K. Takayanagi. Synthesis and characterization of helical multi-shell gold nanowires [J]. Science,2000,289(5479):606-609.
    [22]Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama, K. Takayanagi, Y. Kondo. Evidence of a single-wall platinum nanotube [J]. Phys. Rev. B,2002,65(12): 121401-4.
    [23]A. I. Yanson, I. K. Yanson, J. M. van Ruitenbeek. Observation of shell structure in sodium nanowires [J]. Nature,1999,400:144-146.
    [24]A. I. Yanson, I. K. Yanson, J. M. van Ruitenbeek. Supershell structure in alkali metal nanowires [J]. Phys. Rev. Lett.,2000,84(25):5832-5835.
    [25]A. I. Yanson, I. K. Yanson and J. M. van Ruitenbeek. Shell effects in alkali metal nanowires [J]. Low Temp. Phys.,2001,27(9-10):807-820.
    [26]A. I. Yanson, I. K. Yanson, J. M. van Ruitenbeek. Crossover from electronic to atomic shell structure in alkali metal nanowires [J]. Phys. Rev. Lett.,2001,87(21): 216805-4.
    [27]N. Agrait, Y. A. Levy, J. M. van Ruitenbeek. Quantum properties of atomic-sized conductors [J]. Phy. Rep.,2003,377(2-3):81-279.
    [28]A. I. Mares, A. F. Otte, L. G. Soukiassian, R. H. M. Smit, J. M. van Ruitenbeek. Observation of electronic and atomic shell effects in gold nanowires [J]. Phys. Rev. B,2004,70(7):073401-4.
    [29]I. K. Yanson, O. I. Shklyarevskii, Sz. Csonka, H. van Kempen, S. Speller, A. I. Yanson, J. M. van Ruitenbeek. Atomic-size oscillations in conductance histograms for gold nanowires and the influence of work hardening [J]. Phys. Rev. Lett.,2005,95(25):256806-4.
    [30]V. Rodrigues, T. Fuhrer, D. Ugarte. Signature of atomic structure in the quantum conductance of gold nanowires [J]. Phys. Rev. Lett.,2000,85(19):4124-4127.
    [31]V. Rodrigues, J. Bettini, A. R. Rocha, L. G. C. Rego, D. Ugarte. Quantum conductance in silver nanowires:correlation between atomic structure and transport properties [J]. Phys. Rev. B,2002,65(15):153402-4.
    [32]J. J. Zhao, R. H. Xie. Electronic and photonic properties of doped carbon nanotubes [J]. J. Comput. and Theor. Nanosci.,2003,3(6):459-463.
    [33]R. H. Xie, J. J. Zhao, Q. Rao. Encyclopedia of nanoscience and nanotechnology [M]. California:American Scientific Publishers,2004, (2):505-535.
    [34]R. Ma, D. Golberg, Y. Bando, T. Sasaki. Syntheses and properties of B-C-N and BN nanostructures [J]. Philos. Trans. R. Soc. Lond. A,2004,362(1823): 2161-2186.
    [35]C. K. Yang, J. J. Zhao, J. P. Lu. Magnetism of transition-metal/carbon-nanotube hybrid structures [J]. Phys. Rev. Lett.,2003,90(25):257203-4.
    [36]C. K. Yang, J. J. Zhao, J. P. Lu. Complete spin polarization for a carbon nanotube with an adsorbed atomic transition-metal chain [J]. Nano Lett.,2004,4(4): 561-563.
    [37]N. Tokuda, H. Watanabe, D. Hojo, S. Yamasaki, K. Miki, K. Yamabe. Fabrication of Cu nanowires along atomic step edge lines on Si (111) substrates [J]. Appl. Surf. Sci.,2004,237(1/4):529-532.
    [38]K. Locharoenrat, A. Sugawara, S. Takase, H. Sano, G. Mizutani. Shadow deposition of copper nanowires on the faceted NaCl (110) template [J]. Surf. Sci., 2007,601(18):4449-4453.
    [39]C. F. Monson, A. T. Woolley. DNA-templated construction of copper nanowires [J]. Nano Lett.,2003,3(3):359-363.
    [40]D. Golberg, P. M. F. J. Costa, M. Mitome, S. Hampel, D. Haase, C. Mueller, A. Leonhardt, Y. Bando. Copper-filled carbon nanotubes:rheostatlike behavior and femtogram copper mass transport [J]. Adv. Mater.,2007,19(15):1937-1942.
    [41]H. Mehrez, S. Ciraci. Yielding and fracture mechanisms of nanowires [J]. Phys. Rev. B,1997,56(19):12632-12642.
    [42]F. Meng, S. Jin. The solution growth of copper nanowires and nanotubes is driven by screw dislocations [J]. Nano Lett.,2012,12(1):234-239.
    [43]B. L. Wang, S. Y. Yin, G. H. Wang, A. Buldum, J. J. Zhao. Novel stucture and properties of gold nanowires [J]. Phys. Rev. Lett.,2001,86(10):2046-2049.
    [44]J. L. Wang, X. S. Chen, G. H. Wang, B. L. Wang, W. Lu, J. J. Zhao. Melting behavior in ultrathin metallic nanowires [J]. Phys. Rev. B,2002,66(8):085408-5.
    [45]B. L. Wang, S.Y. Yin, G. H. Wang, J. J. Zhao. Structures and electronic properties of ultrathin titanium nanowires [J]. J. Phys.:Condens. Matter,2001,13(20): L403-L408.
    [46]B. L. Wang, G. H. Wang, J. J. Zhao. Melting behavior of ultrathin titanium nanowires [J]. Phys. Rev. B,2003,67(19):193403-4.
    [47]B. L. Wang, G. H. Wang, Y. Ren, H. Q. Sun, X. S. Chen, J. J. Zhao. Electronic and magnetic properties of ultrathin rhodium nanowires [J]. J. Phys.:Condens. Matter, 2003,15(14):2327-2334.
    [48]B. L. Wang, G. H. Wang, J. J. Zhao. Magic structures of helical multi-shell zirconium nanowires [J]. Phys. Rev. B,2002,65(23):235406-5.
    [49]B. L. Wang, X. S. Chen, G. B. Chen, G. H. Wang, J. J. Zhao. Electronic and magnetic properties of multishell Co nanowires coated with Cu [J]. Solid State Commun.,2004,129(1):25-30.
    [50]B. L. Wang, J. J. Zhao, D. N. Shi, J. M. Jia, G. H. Wang. Electronic and elastic properties of helical nickel nanowires [J]. Chin. Phys. Lett.,2005,22(5): 1195-1198.
    [51]B. L. Wang, D. N. Shi, J. J. Jia, G. H. Wang, X. S. Chen, J. J. Zhao. Elastic and plastic defomation of nickel nanowire under uniaxial compression [J]. Physica E, 2005,30(1-2):45-50.
    [52]G. Bilalbegovic. Structure and stability of finite gold nanowires [J]. Phys. Rev. B, 1998,58(23):15412-15415.
    [53]E. Tosatti, S. Prestipino, S. Kostlmeier, A. Dal Corso, F. D. Di Tolla. String Tension and Stability of Magic Tip-Suspended Nanowires [J]. Science,2001, 291(5502):288-290.
    [54]G. Bilalbegovic. Structures and melting in infinite gold nanowires [J]. Solid State Commun.,2000,115(2):73-76.
    [55]J. A. Torres, E. Tosatti, A. Dal Corso, F. Ercolessi, J. J. Kohanoff, F. D. Di Tolla, J. M. Soler. The puzzling stability of monatomic gold wires [J]. Surf. Sci.,1999, 426(3):L441-L446.
    [56]G. Bilalbegovic. Metallic nanowires:multi-shelled or filled? [J]. Comput. Mater Sci.,2000,18(3-4):333-338.
    [57]H. J. Hwang, J. W. Kang. Structures of cylindrical ultrathin copper nanowires [J]. J. Korean Phys. Soc.,2002,40(2):283-288.
    [58]J. W. Kang, H. J. Hwang. Oscillations of ultra-thin copper nanobridges at room temperature:molecular dynamics simulations [J]. Physica E,2002,15(2):82-87.
    [59]J. W. Kang, H. J. Hwang. Pentagonal multi-shell Cu nanowires [J]. J. Phys.: Condens. Matter,2002,14(10):2629-2636.
    [60]O. Gulseren, F. Erolessi, E. Tosatti. Noncrystalline structures of ultrathin unsupported nanowires [J]. Phys. Rev. Lett.,1998,80(17):3775-3778.
    [61]F. Di Tolla, A. Dal Corso, J. A. Torres, E. Tosatti. Electronic properties of ultra-thin aluminum nanowires [J]. Surf. Sci.,2000,454-456:947-951.
    [62]O. Gulseren, F. Erolessi, E. Tosatti. Premelting of thin wires [J]. Phys. Rev. B, 1995,51(11):7377-7380.
    [63]G. M. Finbow, R. M. Lyden-Bell, I. R. McDonald. Atomistic simulation of the stretching of nanoscale metal wires [J]. Mol. Phys.,1997,92(4):705-714.
    [64]J. Diao, K. Gall, M. L. Dunn. Surface-stress-induced phase transformation in metal nanowires [J]. Nature Mater.,2003,2:656-660.
    [65]Y. Kondo, K. Takayanagi. Gold nanobridge stabilized by surface structure [J]. Phys. Rev. Lett.,1997,79(18):3455-3458.
    [66]J. Diao, K. Gall, M. L. Dunn. Surface stress driven reorientation of gold nanowires [J]. Phys. Rev. B,2004,70(7):075413-9.
    [67]P. Sen, O. Gulseren, T. Yildirim, I. P. Batra, S. Ciraci. Pentagonal nanowires:A first-principles study of the atomic and electronic structure [J]. Phys. Rev. B,2002, 65(23):235433-7.
    [68]I. Lisiecki, A. Filankembo, H. Sack-Kongehi, K. Weiss, M. P. Pileni, J. Urban. Structural investigations of copper nanorods by high-resolution TEM [J]. Phys. Rev. B,2000,61(7):4968-4974.
    [69]E. P. M. Amorim, A. J. R. da Silva, A. Fazzio, E. Z. da Silva. Short linear atomic chains in copper nanowires [J]. Nanotechnology,2007,18(14):145701-4.
    [70]A. Kushima, Y. Umeno, T. Kitamura. Ideal strength of a Cu multi-shell nano-wire [J]. Modelling Simul. Mater. Sci. Eng.,2006,14(6):1031-1039.
    [71]W. W. Liang, M. Zhou. Shape memory effect in Cu nanowires [J]. Nano Lett., 2005,5(10):2039-2043.
    [72]J. J. Zhao, C. Buia, J. Han, J. P. Lu. Quantum transport properties of ultrathin silver nanowires [J]. Nanotechnology,2003,14(5):501-504
    [73]C. M. Lieber. Nanoscale science and technology:Building a big future from small things [J]. MRS Bulletin,2003,28(7):486-491.
    [74]F. Patolsky, C. M. Lieber. Nanowire nanosensors [J]. Mater. Today,2005,8(4): 20-28.
    [75]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang. Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science,2001, 2925523):1897-1899.
    [76]X, Duan, Y. Huang, R. Agarwal, C. M. Lieber. Single-nanowire electrically driven lasers [J]. Nature,2003,421:241-245.
    [77]M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang. Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts [J]. J. Phys. Chem. B,2003,107(3): 659-663.
    [78]Y. Wu, J. Xiang, C. Yang, W. Lu, C, M. Lieber. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures [J]. Nature,2004,430:61-64.
    [79]X. Duan, Y. Hunag, Y. Cui, J. F. Wang, C. M. Lieber. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2003,409:66-69.
    [80]K. Terabe, T. Hasegawa, M. Aono. Quantized conductance atomic switch [J]. Nature,2005,433:47-50.
    [81]E. C. Walter, R. M. Penner, H. Liu, K. H. Ng, M. P. Zach, F. Favier. Sensors from electrodeposited metal nanowires [J]. Surf. Interface Anal.,2002,34:409-412.
    [82]E. Comini, G. S. Faglia, G. Sberveglieri, Z. Pan, Z. L. Wang. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts [J]. Appl. Phys. Lett.,2002,81(10):1869-1871.
    [83]Y. Cui, Q. Wei, H. Park, C. M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science,2001, 293(5533):1289-1292.
    [84]Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber. Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems [J]. Science,2003, 302(5649):1377-1379.
    [85]R. Landauer. Conductance determined by transmission:probes and quantised constriction resistance [J]. J. Phys.:Condens. Matter,1989,1(43):8099-8110.
    [86]张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007,1.
    [87]熊家炯.材料设计[M].天津:天津大学出版社,2000:2-30.
    [88]R. M. Martin. Electronic structure:basic theory and practical methods [M]. Cambridge:Cambridge University Press,2004.
    [89]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].北京:清华大学出版社,1984:6-11.
    [90]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [91]M. Bom, K. Huang. Dynamical theory of crystal lattices [M]. London:Oxford University Press,1954.
    [92]D. R. Hartree. The wave mechanics of an atom with a non-Coulomb central field [J]. Proc. Cam. Phil. Soc.,1928,24(5):89-110.
    [93]V. Fork. Noherungsmethode zur Losung des quanten mechanischen mehrkorper problems [J]. Z. Phys.,1930,61:209.
    [94]L. H. Thomas. The calculation of atomic field [J]. Proc. Camb. Phi. Soc.,1927, 23(2):42-548.
    [95]E. Fermi. A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements [J]. Z. Phys.,1928,48:73-79.
    [96]P. Hohenberg, W. Kohn. Inhomogeneous electron gas [J]. Phys. Rev.,1964, 136(613):864-871.
    [97]W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev.,1965,140(4A):1133-1138.
    [98]J. C. Slater, T. M. Wilson, J. H. Wood. Comparison of several exchange potentials for electrons in the Cu+ ion [J]. Phys. Rev.,1969,179:28-38.
    [99]L. Hedin, B. L. Lundqvist. Explicit local exchange-correlation potentials [J], J. Phys. C,1971,4(14):2064-2069.
    [100]D. M. Ceplerley, B. J. Alder. Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett.,1980,45(7):566-569.
    [101]J. P. Perdew, A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B,1981,23(10): 5048-5079.
    [102]C. Lee, W. Yang, R. C. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37(2): 785-789.
    [103]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A,1988,38(6):3098-3100.
    [104]J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B,1992,45(23):13244-13249.
    [105]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais. Atoms molecules solids and surfaces:applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B, 1992,46(11):6671-6687.
    [106]J. P. Perdew, K. Burke, M. Emzerhof. Generalized gradient approximation made simple [J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [107]D. R. Hamann, M. Schluter, C. Chiang. Norm-conserving pseudopotential [J]. Phys. Rev. Lett,1979,43(20):1494-1497.
    [108]D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B,1990,41(11):7892-7895.
    [109]P. E. Blochl. Projector augmented-wave method [J]. Phys. Rev. B,1994,50(24): 17953-17979.
    [110]G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave Method [J], Phys. Rev. B,1999,59(3):1758-1775.
    [111]R. P. Feynman. Forces in molecules [J]. Phys. Rev.,1939,56(4):340-343.
    [112]H. Hellmann. Einfuhrung in die Quantumchemie [M]. Leipzig:Deuticke,1937.
    [113]P. Pulay. Convergence acceleration of iterative sequences, the case of scf iteration [J], Chem. Phys. Lett.,1980,73(2):393-398.
    [114]M. P. Teter, M. C. Payne, D. C. Allan. Solution of Schrodinger's equation for large systems [J]. Phys. Rev. B,1989,40(18):12255-12263.
    [115]W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling. Numerical Recipes: The art of scientific computing [M]. Cambridge:Cambridge University Press, 1986.
    [116]G. Kresse, J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous semiconductor transition in germanium [J]. Phys. Rev. B, 1994,49(20):14251-14269.
    [117]G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metal [J]. Phys. Rev. B,1993,47(1):558-561.
    [118]G. Kresse, J. Furthmiiller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B,1996,54(16): 11169-11186.
    [119]G. Kresse, J. Furthmuller. Efficient of ab initio total-energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci.,1996, 6(1):15-50.
    [120]E. R. Davidson, In. G. H. F. Dicrcksen, S. Wilson. NATO Science Series C: Mathematical and Physical Sciences [M]. New York:Plenum Advanced Study Institute,1983,113:95-98.
    [121]D. M. Wood, A. Zunger. A new method for diagonalising large matrices [J]. J. Phys. A:Math. Gen.,1985,18(9):1343-1359.
    [122]H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations [J]. Phys. Rev. B,1976,13(12):5188-5192.
    [123]P. E. Blochl. O. Jepsen, O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev. B,1994,49(23):16223-16233.
    [124]C. L. Fu, K. M. Ho. First-principles calculation of the equilibrium ground-state properties of transition metals:Applications to Nb and Mo [J]. Phys. Rev. B,1983, 28(10):5480-5486.
    [125]M. Methfessel, A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals [J], Phys. Rev. B,1989,40(6):3616-3621.
    [126]G. Rubio-Bollinger, S. R. Bahn, N, Agrait, K. W. Jacobsen, S. Vieira. Mechanical properties and formation mechanisms of a wire of single gold atoms [J]. Phys. Rev. Lett.,2001,87(2):026101-4.
    [127]N. Nilius, T. M. Wallis, W. Ho. Development of one-dimensional band structure in artificial gold chains [J]. Science,2002,297(5588):1853-1856.
    [128]C. Z. Li, N. J. Tao. Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution [J]. Appl. Phys. Lett.,1998,72(8): 894-896.
    [129]S. R. Bahn, W. Jacobsen, Chain formation of metal atoms [J]. Phys. Rev. Lett., 2001,87(26):266101-4.
    [130]D. Kriiger, H. Fuchs, R. Rousseau, D. Marx, M. Parrinello. Pulling monatomic gold wires withsingle molecules:An ab initio simulation [J]. Phys. Rev. Lett., 2002,89(18):186402-4.
    [131]D. Sanchez-Portal, E. Artacho, J. Junquera, A. Garcia, J. M. Soler. Zigzag equilibrium structure in monatomic wires [J]. Surf. Sci.,2001,482-485(2): 1261-1265。
    [132]L. De Maria, M. Springborg. Electronic structure and dimerization of a single monatomic gold wire [J]. Chem. Phys. Lett.,2000,323(3-4):293-299.
    [133]C. Pampuch, O. Rader, R. Klaesges, G. Carbone. Evolution of the electronic structure in epitaxial Co, Ni, and Cu films [J]. Phys. Rev. B,2001,63(15): 153409-4.
    [134]C. Ataca, S. Cahangirov, E. Durgun, Y. R. Jang, S. Ciraci, Structural, electronic, and magnetic properties of 3d transition metal monatomic chains:First-principles calculations [J]. Phys. Rev. B,2008,77(21):214413-12.
    [135]R. Beeklllan, E. H. Johnston, Y. Luo, J. E. Green, J. R. Heath. Bridging dimensions:demultiplexing ultrahigh-density nanowire circuits [J]. Seience,2005, 310(5747):465-468.
    [136]Y. Huang, X. F. Duan, Q. Q. Wei, C. M. Lieber. Directed assembly of one-dimensional nanostructures into functional networks [J]. Science,2001, 291(5504):630-633.
    [137]Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, C. M. Lieber. Logic gates and computation from assembled nanowire building blocks [J]. Science,2001, 294(5545):1313-1317.
    [138]H. G. Craighead. Nanoelectromechanical systems [J]. Science,2000,290(5496): 1532-1535.
    [139]N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, J. R. Heath. Ultrahigh-density nanowire lattices and circuits [J]. Science,2003, 300(5616):112-115.
    [140]P. Sen, S. Ciraci, A. Buldum, I. P. Batra. Structure of aluminum atomic chains [J]. Phys. Rev. B,2001,64(19):195420-6.
    [141]J. Opitz, P. Zahn, I. Mertig. Ab initio calculated electronic structure of metallic nanowires and nanotubes [J]. Phys. Rev. B,2002,66(24):245417-9.
    [142]T. Nautiyal, S. J. Youn, K. S. Kim. Effect of dimensionality on the Electronic structure of Cu, Ag, and Au [J]. Phys. Rev. B,2003,68(3):033407-4.
    [143]B. S. Simpkins, M. A. Mastro, C. R. Eddy, P. E. Pehrsson. Surface-induced transients in gallium nitride nanowires [J]. J. Phys. Chem. C,2009,113(22): 9480-9485.
    [144]R. Qin, J. X. Zheng, J. Lu, L. Wang, L. Lai, G. F. Luo, J. Zhou, H. Li, Z. X. Gao, G. P. Li, W. N. Mei. Origin of p-type doping in zinc oxide nanowires included by phosphorus doping:A first principles study [J]. J. Phys. Chem. C,2009,113(22): 9541-9545.
    [145]P. Chantrenne, J. L. Barrat. Analytical model for the thermal conductivity of nanostructures [J]. Superlattices Microstruct.,2004,35(3-6):173-186.
    [146]S. Ramanathan, S. Patibandla, S. Bandyopadhyay, J. D. Edwards, J. Anderson. Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires:evidence of the quantum confined stark effect [J]. J. Mater. Sci.:Mater Electron.,2006,17(9):651-655.
    [147]Y. Cui, C. M. Lieber. Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J]. Science,2001,291(5505):851-853.
    [148]A. N. Cleland, M. L. Roukes. A nanometre-scale mechanical electrometer [J]. Nature,1998,392:160-163.
    [149]K. Valenzuela, S. Raghavan, P. A. Deymier, J. Hoying. Formation of copper nanowires by electroless deposition using microtubules as templates [J]. J. Nanosci.Nanotechnol.,2008,8(7):3416-3421.
    [150]X. G. Liu, Y. H. Zhou. Electrochemical synthesis and room temperature oxidation behavior of Cu nanowires [J]. J. Mater. Res.,2005,20(9):2371-2378.
    [151]E. P. M. Amorim, E. Z. da Silva. Mechanochemistry in Cu nanowires:N and N2 enhancing the atomic chain formation [J]. Phys. Rev. B,2010,82(15):153403-4.
    [152]J. W. Zhu, D. N. Shi, J. J. Zhao, B. L. Wang. Coupled effects of size and uniaxial force on phase transitions in copper nanowires [J]. Nanotechnology,2010,21(18): 185703-8.
    [153]M. E. T. Molares, E. M. Hohberger, Ch. Schaeflein, R. H. Blick, R. Neumann, C. Trautmann. Electrical characterization of electrochemically grown single copper nanowires [J]. Appl. Phys. Lett.,2003,82(13):2139-2141.
    [154]Y. T. Pang, G. W. Meng, Y. Zhang, Q. Fang, L. D. Zhang. Copper nanowire arrays for infrared polarizer [J]. Appl. Phys. A,2003,76(4):533-536.
    [155]H. Choi, S. H. Park. Seedless growth of free-standing copper nanowires by chemical vapor deposition [J]. J. Am. Chem. Soc.,2004,126(20):6248-6249.
    [156]Z. Liu, Y. Bando. A novel method for preparing copper nanorods and nanowires [J]. Adv. Mater.,2003,15(4):303-305.
    [157]Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, Y. Qian. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process [J]. J. Phys. Chem. B,2003,107(46):12658-12661.
    [158]T. W. Cornelius, J. Brotz, N. Chtanko, D. Dobrev, G. Miehe, R. Neumann, M. E. Toimil Molares. Controlled fabrication of poly- and single-crystalline bismuth nanowires [J]. Nanotechnology,2005,16(5):S246-S249.
    [159]J. Liu, J. L. Duan, M. E. Toimil-Molares, S. Karim, T. W. Cornelius, D. Dobrev, H. J. Yao, Y. M. Sun, M. D. Hou, D. Mo, Z. G. Wang, R. Neumann. Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires:the influence of deposition parameters [J]. Nanotechnology,2006,17(8):1922-1926.
    [160]S. Karim, M. E. Toimil-Molares, A. G Balogh, W. Ensinger, T. W. Cornelius, E. U. Khan, R. Neumann. Morphological evolution of Au nanowires controlled by Rayleigh instability [J]. Nanotechnology,2006,17(24):5954-5959.
    [161]X. J. Zhang, D. Zhang, X. M. Ni, H. G. Zheng, One-step preparation of copper nanorods with rectangular cross sections [J], Solid State Commun.,2006,139(8): 412-414.
    [162]J. L. Duan, J. Liu, H. J. Yao, D. Mo, M. D. Hou, Y. M. Sun, Y. F. Chen, L. Zhang. Controlled synthesis and diameter-dependent optical properties of Cu nanowire arrays [J]. Mater. Sci. Eng. B,2008,147(1):57-62
    [163]T. Gao, G. W. Meng, J. Zhang, Y. W. Wang, C. H. Liang, J. C. Fan, L. D. Zhang, Template synthesis of single-crystal Cu nanowire arrays by electrodeposition [J]. Appl. Phys. A,2001,73(2):251-254.
    [164]C. Kittel. Introduction to solid state physics [M]. Wiley, New York,1996.
    [165]K. Gall, M. Haftel, J. Diao, M. L. Dunn, N. Bernstein and M. J. Mehl. Stability and structural transition of gold nanowires under their own surface stresses [J] Mater. Res. Soc. Symp. Proc.,2005,854E:U5.7.1.-U5.7.7.
    [166]G. Richter, K. Hillerich, D. S. Gianola, R. Monig, O. Kraft, C. A. Volkert. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition [J]. Nano Lett.,2009,9(8):3048-3052.
    [167]E. Z. da Silva, F. D. Novaes, A. J. R. da Silva, A. Fazzio. Theoretical study of the formation, evolution, and breaking of gold nanowires [J]. Phys. Rev. B,2004, 69(11):115411-11.
    [168]F. Ma, K. W. Xu. Surface induced electron redistribution:A mechanism for mechanical strengthening of Au nanowires [J]. Scr. Mater.2006,55(10):951-954.
    [169]U. Landman, W. D. Luedtke, N. A. Burnham, R. J. Colton. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture [J]. Science,1990, 248(4954):454-461.
    [170]B. J. Van Wees, H. Van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. Van der Marel, C. T. Foxon. Quantized conductance of point contacts in a two-dimensional electron gas [J]. Phys. Rev. Lett.,1998,60(9): 848-850.
    [171]G. E. Tommei, F. Baletto, R. Ferrando, R. Spadacini, A. Danani. Energetics of fcc and decahedral nanowires of Ag, Cu, Ni, and C60:A quenched molecular dynamics study [J]. Phys. Rev. B,2004,69(11):115426-8.
    [172]C. Q. Sun, H. L. Bai, S. Li, B. K. Tay, C. Li, T. P. Chen, E. Y. Jiang. Length, strength, extensibility, and thermal stability of a Au-Au bond in the gold monatomic chain [J]. J. Phys. Chem. B,2004,108(7):2162-2167.
    [173]L. Olesen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, J. Schiotz, P. Stoltze, K. W. Jacobsen, J. K. Norskov. Quantized conductance in an atom-sized point contact [J]. Phys. Rev. Lett.,1994,72(14):2251-2254.
    [174]B. Z. Li, T. D. Sullivan, T. C. Lee, B. Dinesh. Reliability challenges for copper interconnects [J]. Microelectron. Reliab.,2004,44(3):365-380.
    [175]A. Soon, M. Todorova, B. Delley, C. Stampfl. Oxygen adsorption and stability of surface oxides on Cu(111):A first-principles investigation [J]. Phys. Rev. B,2006, 73(16):165424-12.
    [176]J. C. Tung, G. Y. Guo. Systematic ab initio study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires [J]. Phys. Rev. B, 2007,76(9):094413-12.
    [177]T. Kizuka. Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width [J]. Phys. Rev. B,2008,77(15):155401-11.
    [178]H. Ohnishi, Y. Kondo, K. Takayanagi. Quantized conductance through individual rows of suspended gold atoms [J]. Nature,1998,395:780-783.
    [179]A. I. Yanson, G R. Bollinger, H. E. van der Brom, N. Agrai't, J. M. van Ruitenbeek. Formation and manipulation of a metallic wire of single gold atoms [J]. Nature, 1998,395:783-785.
    [180]M. Okamoto, K. Takayanagi. Structure and conductance of a gold atomic chain [J]. Phys. Rev. B,1999,60(11):7808-7811.
    [181]N. V. Skorodumova, S. I. Simak. Spatial configurations of monoatomic gold chains [J]. Comput. Mater. Sci.,2000,17(2-4):178-181.
    [182]E. Z. da Silva, A. J. R. da Silva, A. Fazzio. How Do Gold Nanowires Break? [J]. Phys. Rev. Lett.,2001,87(25):256102-4.
    [183]J. Nakamura, N. Kobayashi, M. Aono. Electronic states and structural stability of gold nanowires [J]. Riken Rev.,2001,37:17-20.
    [184]P. Velez, S. A. Dassie, E. P. M. Leiva. When do nanowires break? A model for the theoretical study of the long-term stability of monoatomic nanowires [J]. Chem. Phys. Lett.,2008,460(1-3):261-265.
    [185]D. Sanchez-Portal, E. Artacho, J. Junquera, P. Ordejon, A. Garcia, J. M. Soler. Stiff monatomic gold wires with a spinning zigzag geometry [J]. Phys. Rev. Lett., 1999,83(19):3884-3887.
    [186]H. Koizuma, Y. Oshima, Y. Kondo, K. Takayanagi. Quantitative high-resolution microscopy on a suspended chain of gold atoms [J]. Ultramicroscopy,2001,88(1): 17-24.
    [187]H. Hakkinen, R. N. Barnett, U. Landman. Gold nanowires and their chemical modifications [J]. J. Phys. Chem. B,1999,103(42):8814-8816.
    [188]S. R. Bahn, N. Lopez, J. K. Norskov, K. W. Jacobsen. Adsorption-induced restructuring of gold nanochains [J]. Phys. Rev. B,2002,66(8):081405-4.
    [189]S. B. Legoas, D. S. Galvao, V. Rodrigues, D. Ugarte. Origin of anomalously long interatomic distances in suspended gold chains [J]. Phys. Rev. Lett.,2002,88(7): 076105-4.
    [190]N. V. Skorodumova, S. I. Simak. Stability of gold nanowires at large Au-Au separations [J]. Phys. Rev. B,2003,67(12):121404(R)-4.
    [191]N. V. Skorodumova, S. I. Simak. Stabilization of monoatomic gold wires by carbon impurities [J]. Solid State Commun.,2004,130(11):755-757.
    [192]F. D. Novaes, A. J. R. da Silva, E. Z. da Silva, A. Fazzio. Effect of impurities in the large Au-Au distances in gold nanowires [J]. Phys. Rev. Lett.,2003,90(3): 036101-4.
    [193]F. D. Novaes, E. Z. da Silva, A. J. R. da Silva, A. Fazzio. Effect of impurities on the breaking of Au nanowires [J]. Surf. Sci.,2004,566-568(1):367-371.
    [194]S. B. Legoas, V. Rodrigues, D. Ugarte, D. S. Galvao. Contaminants in suspended gold chains:An ab initio molecular dynamics study [J]. Phys. Rev. Lett.,2004, 93(21):216103-4.
    [195]F. D. Novaes, A. J. R. da Silva, E. Z. da Silva, A. Fazzio. Oxygen clamps in gold nanowires [J]. Phys. Rev. Lett.,2006,96(1):016104-4.
    [196]H. Zhai, B. Kiran, L. Wang. Observation of Au2H- impurity in pure gold clusters and implications for the anomalous Au-Au distances in gold nanowires [J]. J. Chem. Phys.,2004,121(17):8231-8236.
    [197]E. Hobi Jr., A. Fazzio, A. J. R. da Silva. Temperature and quantum effects in the stability of pure and doped gold nanowires [J]. Phys. Rev. Lett.,2008,100(5): 056104-4.
    [198]A. E. Kochetov and A. S. Mikhaylushkin. Interaction of Au nanowires with impurities [J]. Eur. Phys. J. B,2008,61(4):441-444.
    [199]P. Velez, S. A. Dassie, E. P. M. Leiva. Kinetic model for the long term stability of contaminated monoatomic nanowires [J]. Phys. Rev. B,2010,81(12):125440-12.
    [200]C. Untiedt, A. I. Yanson, R. Grande, G. Rubio-Bollinger, N. Agrait, S. Vieira, J. M. van Ruitenbeek. Calibration of the length of a chain of single gold atoms [J]. Phys. Rev. B,2002,66(8):085418-6.
    [201]A. Hasmy, L. Rincon, R. Hernandez, V. Mujica, M. Marquez, C. Gonzalez. On the formation of suspended noble-metal monatomic chains [J]. Phys. Rev. B,2008, 78(11):115409-5.
    [202]F. Sato, A. S. Moreira, J. Bettini, P. Z. Coura, S. O. Dantas, D. Ugarte, D. S. Galvao. Transmission electron microscopy and molecular dynamics study of the formation of suspended copper linear atomic chains [J]. Phys. Rev. B,2006, 74(19):193401-4.
    [203]T. Frederiksen, M. Paulsson, M. Brandbyge. Inelastic fingerprints of hydrogen contamination in atomic gold wire systems [J]. J. Phys.:Conf. Ser.,2007,61: 312-316.
    [204]H. Ishida. Embedded Green-function calculation of the conductance of oxygen-incorporated Au and Ag monatomic wires [J]. Phys. Rev. B,2007,75(20): 205419-8.
    [205]H. Ishida. Ballistic conductance of oxygen and sulfur-incorporated zigzag Au atomic wires [J]. Phys. Rev. B,2008,77(15):155415-5.
    [206]M. Kiguchi, T. Nakazumi, K. Hashimoto, K. Murakoshi. Atomic motion in H2 and D2 single-molecule junctions induced by phonon excitation [J]. Phys. Rev. B, 2010,81(4):045420-4.
    [207]W. H. A. Thijssen, D. Marjenburgh, R. H. Bremmer, J. M. van Ruitenbeek. Oxygen-enhanced atomic chain formation [J]. Phys. Rev. Lett.,2006,96(2): 026806-4.
    [208]W. H. A. Thijssen, M. Strange, J. M. J. aan de Brugh, J. M. van Ruitenbeek. Formation and properties of metal-oxygen atomic chains [J]. New J. Phys.,2008, 10:033005.
    [209]C. Zhang, R. N. Barnett, U. Landman. Bonding, conductance, and magnetization of oxygenated Au nanowires [J]. Phys. Rev. Lett.,2008,100(4):046801-4.
    [210]Y. Qi, D. Guan, Y. Jiang, Y. Zheng, C. Liu. How Do Oxygen Molecules Move into Silver Contacts and Change Their Electronic Transport Properties? [J]. Phys. Rev. Lett.,2006,97(25):256101-4.
    [211]X. Duan, O. Warschkow, A. Soon, B. Delley, C. Stampfl. Density functional study of oxygen on Cu(100) and Cu(110) surfaces [J]. Phys. Rev. B,2010,81(7): 075430-15.
    [212]S. Jaatinen, M. Rusanen, P. Salo. A multi-scale Monte Carlo study of oxide structures on the Cu(100) surface [J]. Surf. Sci.,2007,601(8):1813-1821.
    [213]A. Puisto, H. Pitkanen, M. Alatalo, S. Jaatinen, P. Salo, A. S. Foster, T. Kangas, K. Laasonen. Adsorption of atomic and molecular oxygen on Cu(100) [J]. Catal. Today,2005,100(3-4):403-406.
    [214]S. Y. Liem, G. Kresse, J. H. R Clarke. First principles calculation of oxygen adsorption and reconstruction of Cu(110) surface [J]. Surf. Sci.,1998,415(1-2): 194-211.
    [215]Z. X. Wang, F. H. Tian. The adsorption of O atom on Cu (100), (110), and (111) low-index and step defect surfaces [J]. J. Phys. Chem. B,2003,107(25): 6153-6161.
    [216]X. Y. Pang, L. Q. Xue, G. C. Wang. Adsorption of atoms on Cu surfaces:a density functional theory study [J]. Langmuir,2007,23(9):4910-4917.
    [217]T. Kangas, K. Laasonen, A. Puisto, H. Pitkanen, M. Alatalo. On-surface and sub-surface oxygen on ideal and reconstructed Cu(100) [J]. Surf. Sci.,2005, 584(1):62-69.
    [218]M. Kittel, M. Polcik, R. Terborg, J. T. Hoeft, P. Baumgartel, A. M. Bradshaw, R. L. Toomes, J. H. Kang, D. P. Woodruff, M. Pascal, C. L. A. Lamont, E. Rotenberg. The structure of oxygen on Cu(100) at low and high coverages [J]. Surf. Sci., 2001,470(3):311-324.
    [219]S. Stolbov, T. S. Rahman. Relationship between electronic and geometric structures of the O/Cu(001) system [J]. J. Chem. Phys.,2002,117(18): 8523-8530.
    [220]N. V. Skorodumova, S. I. Simak, A. E. Kochetov, B. Johansson. Ab initio study of electronic and structural properties of gold nanowires with light-element impurities [J]. Phys. Rev. B,2007,75(23):235440-4.
    [221]A. Grigoriev, N. V. Skorodumova, S. I. Simak, G. Wendin, B. Johansson, R. Ahuja. Electron transport in stretched monoatomic gold wires [J]. Phys. Rev. Lett.,2006, 97(23):236807-4.
    [222]R. Bader. Atoms in molecules:a quantum theory [M]. New York:Oxford University Press,1990.
    [223]R. L. Liang, Y. Zhang, J. M. Zhang, V. Ji. Adsorption of oxygen atom on the pristine and antisite defected SiC nanotubes [J]. Physica B,2010,405(12): 2673-2679.
    [224]H. P. Li, N. Q. Zhao, C. N. He, C. S. Shi, X. W. Du, J. J. Li. Fabrication and growth mechanism of Ni-filled carbon nanotubes by the catalytic method [J]. J. Alloys Compd.,2008,465(1-2):51-55.
    [225]V. V. Ivanovskaya, C. Kohler, G. Seifert.3d metal nanowires and clusters inside carbon nanotubes:Structural, electronic, and magnetic properties [J]. Phys. Rev. B,2007,75(7):075410-7.
    [226]C.Z. Li, H.X. He, A. Bogozi, J.S. Bunch, N. J. Tao. Molecular detection based on conductance quantization of nanowires [J]. Appl. Phys. Lett.,2000,76(10): 1333-1335.
    [227]D. I. Dimitrov, A. Milchev, K. Binder. Capillary rise in nanopores:Molecular dynamics evidence for the Lucas-Washburn equation [J]. Phys. Rev. Lett.,2007, 99(5):054501-4.
    [228]M. Monthioux. Filling single-wall carbon nanotubes [J]. Carbon,2002,40(10): 1809-1823.
    [229]J. Sloan, A. I. Kirkland, J. L. Hutchison, M. L. H. Green, ntegral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes [J]. Chem. Commun.,2002,13:1319-1332.
    [230]A. Kutana, K. P. Giapis. Contact angles, ordering, and solidification of liquid mercury in carbon nanotube cavities [J]. Phys. Rev. B,2007,76(19):195444-5.
    [231]C. K. Yang, J. J. Zhao, J. P. Lu. Transition metal/carbon nanotube hybrid structures [J]. Int. J. Nanosci.,2005,4(1):139-148.
    [232]N. Fujima, T. Oda. Structures and magnetic properties of iron chains encapsulated in tubal carbon nanocapsules [J]. Phys. Rev. B,2005,71(11):115412-9.
    [233]C. K. Yang, J. J. Zhao, J. P. Lu. Binding energies and electronic structures of adsorbed titanium chains on carbon nanotubes [J]. Phys. Rev. B,2002,66(4): 041403(R)-4.
    [234]J. J. Zhao, A. Buldum, J. Han, J. P. Lu. Gas molecule adsorption in carbon nanotubes and nanotube bundles [J]. Nanotechnology,2002,13(2):195-200.
    [235]Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, J. P. Lu, P. R. Schleyer, C. K. Yang. True nanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores [J]. J. Phys. Chem. B,2006,110(6):2529-2532.
    [236]R. Tenne. Inorganic Nanotubes and Fullerene-Like Materials [J]. Chem. Eur. J., 2002,8(23):5296-5304.
    [237]C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj. Inorganic nanowires [J]. Prog. Solid State Chem.,2003,31(1-2):5-147.
    [238]R. Tenne, C. N. R. Rao. Inorganic nanotubes [J]. Philos. Trans. R. Soc. Lond. A, 2004,362(1823):2099-2125.
    [239]J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, P. Yang. Single-crystal gallium nitride nanotubes [J]. Nature,2003,422:599-602.
    [240]S. M. Lee, Y. H. Lee, Y. G. Hwang, J. Elsner, D. Porezag, T. Frauenheim. Stability and electronic structure of GaN nanotubes from density-functional calculations [J]. Phys. Rev. B,1999,60(11):7788-7791.
    [241]M. Zhang, Z. M. Su, L. K. Yan, Y. Q. Qiu, G. H. Chen, R. S. Wang. Theoretical interpretation of different nanotube morphologies among Group Ⅲ (B, Al, Ga) nitrides [J]. Chem. Phys. Lett.,2005,408(1-3):145-149.
    [242]B. Baumeier, P. Kruger, J. Pollmann. Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes [J]. Phys. Rev. B,2007,76(8):085407-10.
    [243]M. A. Gorbunova, I. R. Shen, Y. N. Makurin, V. V. Ivanovskaya, A. L. Ivanovskii. Electronic structure and magnetism in BeO nanotubes induced by boron, carbon and nitrogen doping, and beryllium and oxygen vacancies inside tube walls [J]. Physica E,2008,41(1):164-168.
    [244]P. B. Sorokin, A. S. Fedorov, L. A. Chernozatonski. Structure and properties of BeO nanotubes [J]. Phys. Solid State,2006,48(2):398-401.
    [245]S. Duman, A. Sutlu, S. Bagcl, H. M. Tiituncu, G. P. Srivastava. Structural, elastic, electronic, and phonon properties of zinc-blende and wurtzite BeO [J]. J. Appl. Phys.,2009,105(3):033719-8.
    [246]R. Z. Ma, Y. Bando, T. Sato. Coaxial nanocables:Fe nanowires encapsulated in BN nanotubes with intermediate C layers [J]. Chem. Phys. Lett.,2001,350(1-2): 1-5.
    [247]D. Golberg, Y. Bando, K. Kurashima, T. Sato. Nanotubes of boron nitride filled with molybdenum clusters [J]. J. Nanosci. Nanotechnol.,2001,1(1):49-54.
    [248]D. Golberg, F. F. Xu, Y. Bando. Filling boron nitride nanotubes with metals [J]. Appl. Phys. A,2003,76(4):479-485.
    [249]C. C. Tang, Y. Bando, D. Golberg, X. X. Ding, S. R. Qi. Boron nitride nanotubes filled with Ni and NiSi2 nanowires in situ [J]. J. Phys. Chem. B,2003,107(27): 6539-6543.
    [250]W. Q. Han, C. W. Chang, A. Zettl. Encapsulation of one-dimensional potassium halide crystals within BN nanotubes [J]. Nano Lett.,2004,4(7):1355-1357.
    [251]R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, A. I. Kirkland, M. C. Novotny, S. R. Bailey, J. L. Hutchison, M. L. H. Green. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes [J]. Science,2000,289(5483):1324-1326.
    [252]Y. J. Kang, J. Choi, C. Y. Moon, K. J. Chang. Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms [J]. Phys. Rev. B,2005, 71(11):115441-7.
    [253]C. Y. Yam, C. C. Ma, X. J. Wang, G. H. Chen. Electronic structure and charge distribution of potassium iodide intercalated single-walled carbon nanotubes [J]. Appl. Phys. Lett.,2004,85(19):4484-4486.
    [254]S. Ohnishi, A. J. Freeman, M. Weinert. Surface magnetism of Fe(001) [J]. Phys. Rev. B,1983,28(12):6741-6748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700