基底硬度及细胞密度对骨髓间充质干细胞骨分化的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨髓间充质干细胞(Mesenchymal stem cells, MSCs)作为成体干细胞中最重要的一种,是一类具有多向分化潜能(Multiple differentiation potentiality)的细胞,能够向神经细胞,肌细胞,成骨细胞,软骨细胞以及脂肪细胞等方向分化。因其多向分化的能力MSCs已成为组织再生、修复的重要种子细胞来源。目前的再生医学研究认为MSCs在心肌细胞受损后、脊髓损伤、骨损伤等组织修复和再生工程中发挥重要作用。然而,组织修复与再生研究中所用的生物材料的物理特性及细胞周围微环境,尤其是基底硬度对MSCs定向分化方面的作用机理,至今仍不明了。
     在组织修复与再生研究中,MSCs的定向诱导分化尤为重要,研究证明在复杂的组织微环境中,影响MSCs分化的因素不仅包括被广泛研究的生物化学因素,还包括传导力学信号的生物物理因素。不同的基底材料硬度(Matrix stiffness)和接种的细胞密度(Cell density)是否会调节MSCs分化以及如何影响其分化尚不清楚。本文着重研究基质硬度对MSCs向成骨和软骨分化的影响,在此基础上探讨不同细胞密度对其分化的影响,继而研究哪条信号通路在基底硬度诱导MSCs向成骨分化过程中起主要调控作用。本文的主要研究工作和结果如下:
     1. MSCs细胞形态和增殖对基底硬度及细胞密度的响应
     通过改变丙烯酰胺(Acrylamide)和甲叉双丙烯酰胺(Bis-acrylamide)的比例,使材料物理硬度控制在约0.5至100千帕之间。软基底上MSCs贴壁面积仅为硬基底上的40%且应力纤维少而弱。细胞在软硬凝胶上以低密度(1,000个/cm2)和高密度(20,000个/cm2)培养,结果显示,在低密度培养时,软基底显著抑制MSCs的增殖速度,且在软基底上P-Rb, P-P70显著降低,P27显著升高;高密度培养时,软硬基底对细胞增殖造成的差异消失。以上实验说明细胞增殖与基底硬度有关,但在高密度培养时,基底硬度对细胞增殖的影响消失,软硬基底上的细胞增殖没有显著差异。
     2.基底硬度和细胞密度对MSCs成骨和软骨分化的影响
     成骨分化的标记基因Alkaline Phosphatase (ALP), Type I collagen, alpha1(Col1α1),Runt-related transcription factor2(Runx2)在硬基底(Hard,40±3.6kPa)上mRNA水平明显升高,表明单纯的物理刺激即基底硬度就能促进MSCs的成骨分化,在骨诱导培养液中也同样得到以上实验结果;另外软骨分化的标记基因SOX-9(SRY-related high mobility group-box gene9),Aggrecan,Collagen II和Collagen X的mRNA水平在软基底(1.6±0.3kPa)上显著升高,SOX9的蛋白表达在软基底上明显升高,Alcian blue染色和Collagen II免疫荧光染色结果均显示软基底更有利于软骨分化。对成骨分化而言,高密度(20,000个/cm2)培养时成骨分化的标记基因ALP、Col1α1和Runx2的mRNA水平在软硬基底上无明显差异;而软骨分化则不受细胞密度的影响,无论高(20,000个/cm2)、低密度(1,000个/cm2)培养MSCs,SOX-9,Aggrecan和Collagen X的mRNA水平均在软基底上明显升高。本实验结果表明在组织工程应用中,低密度和硬基底培养有利于促进MSCs向成骨分化;软基底培养则有利于促进软骨分化,且此过程与细胞密度无关。
     3.不同硬度基底上RhoA和Rho-kinase (ROCK)及微管抑制剂对MSCs的影响
     通过对MSCs转染RhoAV14(constitutively active form of RhoA with GST tag)、加入Rho激酶特异性抑制剂Y-27632及微管抑制剂Paclitaxel,观察MSCs细胞形态变化、细胞增殖及细胞活性和成骨标记基因的表达。结果显示,转染RhoAV14刺激ERK磷酸化增强,促进MSCs增殖且上调软基底上成骨标记基因的表达。Y-27632影响细胞粘附,F-actin由中间均匀分布变为中间荧光微弱,仅有边缘荧光,同时Y-27632降低成骨分化标记基因的表达,上调软基底上神经元分化标记β3tubulin(TUBβ3)基因的表达。Paclitaxel作用后软硬基底上细胞增殖差异消失;细胞活性检测发现软基底上的细胞凋亡明显多于硬基底;检测Paclitaxel作用后成骨标记基因Runx2和神经分化标记基因TUBβ3,发现软基底上的Runx2明显受抑制,而硬基底上的Runx2抑制作用没有显著差异,TUBβ3加药组与对照组没有明显差异。综上,我们认为软硬基底调节的细胞分化过程中存在细胞骨架如微丝、微管以及RhoA和ROCK的参与。
     4. Smad1/5/8,ERK和AKT的活化通路参与硬基底促进的MSCs成骨分化过程
     为研究基底硬基底诱导MSCs向成骨分化的调节机制,对MSCs成骨分化调节相关信号因子进行了检测,发现硬基底在促进MSCs成骨分化的过程中激活Smad1/5/8,ERK,AKT蛋白的磷酸化,抑制P-38蛋白的磷酸化。而软基底促进软骨分化的过程中未检测到Smad1/5/8,AKT/ERK的磷酸化差异。分析以上结果推测Smad1/5/8、ERK和AKT的磷酸化在基底硬度调节的MSCs成骨分化中起关键作用,而软骨分化则是利用其他不同于成骨分化的通路。进一步利用重组腺病毒RasV12和RasN17分别外源性的激活和抑制ERK/AKT的磷酸化。结果RasN17能明显抑制ERK/AKT和Smad1/5/8的磷酸化;而RasV12只能刺激ERK的磷酸化,对AKT和Smad1/5/8的磷酸化作用不明显。腺病毒感染后的结果显示RasN17能显著抑制成骨分化的标志基因ALP,Col1α1和Runx2的mRNA水平。相反RasV12虽然能激活ERK磷酸化却并没有促进成骨分化的作用。提示基底硬度决定的细胞成骨分化机理除Ras-Smad1/5/8和ERK/AKT这条通路外应该还存在其他通路参与。
     综上所述,本文利用可调节力学特性的聚丙烯酰胺水凝胶模型培养MSCs,通过接种在不同的硬度基底上以及接种密度差异对比研究MSCs的成骨和软骨分化,发现细胞骨架、RhoA-ROCK参与其中,以及硬基底决定的成骨分化中关键信号通路Ras-Smad1/5/8/ERK/AKT。实验表明MSCs成骨及软骨分化方向的不同依赖于基底硬度和细胞密度对其的影响。进一步说明跟分化方向特异性相关的细胞外微环境因素有利于控制干细胞分化方向,从而可以调控细胞向需要的方向分化,为MSCs在组织工程和再生医学中的应用提供理论依据。
Bone marrow-derived mesenchymal stem cells (BMSCs) are an importantmultipotent adult stem cells with the potential to differentiate into a variety of cell types,including neural cells, vascular smooth muscle cells (SMCs), osteoblasts, chondrocytesand adipocytes. Therefore, MSCs are an important cell source for tissue repair andregeneration. Currently, rehabilitation study shows that MSCs are valuable inmyocardial damage repair and regeneration; they also can directionally differentiate intonerve cells in spinal injury regeneration and new bone production after bone injury.However, it is not yet well understood how the directional differentiation of MSCsrespond to the physical characteristics of biomaterial and microenvironment aroundcells, especially matrix elasticity.
     The differentiation of MSCs is especially important in tissue repair andregeneration. There is evidence that the tissue microenvironment includes not only thewidely studied biochemical cues, but also the biophysical factors that deliver signals forMSC differentiation. It is not clear whether and how matrix elasticity and cell seedingdensity collectively regulate MSCs. In this study, we investigated the collective effectsof substrate elasticity and cell seeding densities on ostogenesis and chondrogenesis. Inaddition, we studied the underlying mechanism during osteogenesis induced by matrixelasticity. The main experiments and results are as follows:
     1. Morphology and proliferation of MSCs on different matrix elasticity with differentcell densities
     To investigate the role of matrix elasticity in the proliferation and differentiation ofMSCs, we utilize tunable elasticity polyacrylamide hydrogels which can be manipulatedby adjusting the relative concentrations of acrylamide and bis-acrylamide. The physicalelasticities can be controlled between0.5kPa and100kPa. We cultured MSCs on softmatrix(1.6±0.3kPa for5%/0.05%acryl/bis) and hard matrix(40±3.6kPa for10%/0.5%acryl/bis), following by the observation of cell morphology and spreading area. Theresults showed that cells cultured on soft matrix have restricted spreading area, which isonly approximately40%of that on hard matrix24hours after culture. To determine theeffects of cell density and matrix elasticity on hMSC proliferation, the cell cycledistribution was determined. We also detected the cell cycle positive and negativeregulatory factor Phospho-Rb, P-P70S6kinase and P-27. The result showed that soft matrix with low cell density inhibited MSCs’ proliferation, and obviously decreased theexpression of P-Rb, P-P70and up-regulated p-27. However, both soft and hard matricescaused significant decreases cell percentage in the synthetic phase in high-density.These results suggest that the effect of matrix elasticity on hMSCs proliferation dependson cell density and that high cell density was able to override theproliferation-promotion effect of hard matrix.
     2. Effects of matrix elasticity and cell density on osteogenesis and chondrogenesis
     To determine the role of matrix elasticity on MSCs differentiation, we culturedMSCs on soft and hard hydrogel in growth medium. The result showed that hard matrixincreased the expression of osteogenic marker genes including Alkaline Phosphatase(ALP),Type I collagen, alpha1(Col1α1) and runt-related transcription factor2(Runx2).This demonstrated that hard matrix promote osteogenesis of MSCs, in both inductionand growth medium. In addition, we found that chondrogenesis was promoted on softmatrix(1.6±0.3kPa). Western blotting confirmed that SOX-9was significantly higher onsoft matrix. Alcian blue staining and collagen II immunostaining also confirmed theresult, the mRNA expressions of SOX-9, ACAN, Collagen II and Collagen X weresignificantly higher on soft matrix. There are studies indicating that cell densityinfluence MSC differentiation, so we detected the MSCs differentiation with diversecell density on soft and hard hydrogels. At high cell density (20,000/cm2), the cellsshowed no significant difference in osteogenic marker expressions between hard andsoft matrices; matrix elasticity affects chondrogenic process at both high and low cellseeding density (1,000/cm2). This finding illustrated that low cell density and hardmatrix are benefit for osteogenesis, however, matrix rigidity affects chondrogenicprocess at both high and low cell seeding density.
     3. The role of RhoA/ROCK and Paclitaxel in MSCs proliferation and differentiationon matrix
     To observe the MSCs morphology, proliferation and marker genes expressionvariation, we utilized RhoAV14(constitutively active form of RhoA with GST tag), Rhokinase inhibitor Y-27632and microtubule inhibitor Paclitaxel. RhoAV14transfectionup regulated ERK phosphorylation, MSCs proliferation and osteogenic marker genesexpression on soft matrix. Y-27632inhibited osteogenic marker genes expression andup regulated neurocyte marker gene β3tubulin expression, F-actin fluorescenceintensity from averaged at each fractional distance across the cell to a preferential distribution in the peripheral cortical layer. The MSCs’ proliferation difference wasdisappeared and the cell viability test showed that cell apoptosis on soft matrix wasmore than those on hard matrix with Paclitaxel treatment. Runx2mRNA expression wassignificantly down regulated on soft matrix, not on hard matrix. There were nosignificantly difference of TUBβ3mRNA expression between control and Paclitaxeltreatment. Based on above, the cell differentiation process which regulated by substrateelasticity exist cytoskeleton like microfilament, microtubule, RhoA and ROCKparticipation.
     4. Hard matrix induced Smad1/5/8, ERK, and AKT activation in osteogenesis
     To further investigate the matrix elasticity influence on MSCs differentiation, wefound that the phosphorylation of Smad1/5/8, ERK and AKT were up regulated, whileP-38was down regulated on hard matrix, in contrast, our results showed that ERK andAKT activations were not affected by matrix elasticity during chondrogenesis,suggesting that the phosphorylation of Smad1/5/8、ERK and AKT may play importantrole in osteogenesis induced by matrix elasticity, other signal networks may be involvedin chondrogenesis. To further test the roles of ERK phosphorylation in matrix-regulatedosteogenesis, recombinant adenoviruses with constitutive active Ras (RasV12) anddominant negative Ras (RasN17) were used to modulate the signaling cascades.RasN17markedly inhibited the phosphorylation of Smad1/5/8, ERK, and AKT, RasV12up-regulated ERK activation, but had little effect on Smad1/5/8and AKTphosphorylations. The expressions of osteogenic markers, such as Runx2, Col1α1andALP mRNA, were significantly down-regulated after RasN17infection. However,RasV12did not cause any up-regulation of osteogenic markers. These results suggestthat there should be other signals besides Ras-Smad1/5/8/ERK/AKT involved inosteogenesis which induced by matrix elasticity.
     In summary, this study used hydrogel model which physical elasticity can becontrolled to culture the MSCs, to investigate the MSCs osteogenesis andchondrogenesis on soft and hard hydrogel, as well as the underlying signal transductionin osteogenesis. We found that cell cytoskeleton, RhoA-ROCK paticipate in MSCsdifferentiation and the phosphorylation of Smad1/5/8、ERK and AKT are involved inosteogenesis which determined by matrix elasticity. Our results demonstrated that thecollective effects of matrix elasticity and cell seeding density on MSCs differentiationare lineage dependent. Elucidation of the roles of lineage-specific extracellular cues will improve the control of stem cell fate to generate the desired cell types for potentialtherapeutic usage.
引文
[1] Einhorn T A. Enhancement of fracture-healing [J]. J Bone Joint Surg Am,1995,77(6):940-956.
    [2] Mijiyawa M, Oniankitan O, Attoh-Mensah K, et al. Musculoskeletal conditions in childrenattending two Togolese hospitals [J]. Rheumatology (Oxford),1999,38(10):1010-1013.
    [3] Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reportingof osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and TherapeuticCriteria Committee of the American Rheumatism Association [J]. Arthritis Rheum,1986,29(8):1039-1049.
    [4] Zeng Q Y, Chen R, Xiao Z Y, et al. Low prevalence of knee and back pain in southeast China;the Shantou COPCORD study [J]. J Rheumatol,2004,31(12):2439-2443.
    [5] Adebajo A O. Pattern of osteoarthritis in a West African teaching hospital [J]. Ann RheumDis,1991,50(1):20-22.
    [6] Fautrel B, Hilliquin P, Rozenberg S, et al. Impact of osteoarthritis: results of a nationwidesurvey of10,000patients consulting for OA [J]. Joint Bone Spine,2005,72(3):235-240.
    [7] Ohishi M, Schipani E. Bone marrow mesenchymal stem cells [J]. J Cell Biochem,2010,109(2):277-282.
    [8] Thomas E D. Landmarks in the development of hematopoietic cell transplantation [J]. WorldJ Surg,2000,24(7):815-818.
    [9] Murphy J M, Fink D J, Hunziker E B, et al. Stem cell therapy in a caprine model ofosteoarthritis [J]. Arthritis Rheum,2003,48(12):3464-3474.
    [10] Dezawa M, Kanno H, Hoshino M, et al. Specific induction of neuronal cells from bonemarrow stromal cells and application for autologous transplantation [J]. J Clin Invest,2004,113(12):1701-1710.
    [11] Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult humanmesenchymal stem cells [J]. Science,1999,284(5411):143-147.
    [12] Niedzwiedzki T, Dabrowski Z, Miszta H, et al. Bone healing after bone marrow stromal celltransplantation to the bone defect [J]. Biomaterials,1993,14(2):115-121.
    [13] Horwitz E M, Prockop D J, Fitzpatrick L A, et al. Transplantability and therapeutic effects ofbone marrow-derived mesenchymal cells in children with osteogenesis imperfecta [J]. NatMed,1999,5(3):309-313.
    [14] Gang E J, Jeong J A, Hong S H, et al. Skeletal myogenic differentiation of mesenchymalstem cells isolated from human umbilical cord blood [J]. Stem Cells,2004,22(4):617-624.
    [15] Sudhir K, Wilson E, Chatterjee K, et al. Mechanical strain and collagen potentiate mitogenicactivity of angiotensin II in rat vascular smooth muscle cells [J]. J Clin Invest,1993,92(6):3003-3007.
    [16] Seib F P, Prewitz M, Werner C, et al. Matrix elasticity regulates the secretory profile ofhuman bone marrow-derived multipotent mesenchymal stromal cells (MSCs)[J]. BiochemBiophys Res Commun,2009,389(4):663-667.
    [17] Engler A J, Griffin M A, Sen S, et al. Myotubes differentiate optimally on substrates withtissue-like stiffness: pathological implications for soft or stiff microenvironments [J]. J CellBiol,2004,166(6):877-887.
    [18] Berry M F, Engler A J, Woo Y J, et al. Mesenchymal stem cell injection after myocardialinfarction improves myocardial compliance [J]. Am J Physiol Heart Circ Physiol,2006,290(6): H2196-2203.
    [19] Engler A J, Sen S, Sweeney H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell,2006,126(4):677-689.
    [20] Wang N, Tolic-Norrelykke I M, Chen J, et al. Cell prestress. I. Stiffness and prestress areclosely associated in adherent contractile cells [J]. Am J Physiol Cell Physiol,2002,282(3):C606-616.
    [21] Lee M S, Lill M, Makkar R R. Stem cell transplantation in myocardial infarction [J]. RevCardiovasc Med,2004,5(2):82-98.
    [22] McBeath R, Pirone D M, Nelson C M, et al. Cell shape, cytoskeletal tension, and RhoAregulate stem cell lineage commitment [J]. Dev Cell,2004,6(4):483-495.
    [23] Chen C S, Mrksich M, Huang S, et al. Geometric control of cell life and death [J]. Science,1997,276(5317):1425-1428.
    [24] Font-Rodriguez D E, Scuderi G R, Insall J N. Survivorship of cemented total kneearthroplasty [J]. Clin Orthop Relat Res,1997,345):79-86.
    [25] NIH consensus conference: Total hip replacement. NIH Consensus Development Panel onTotal Hip Replacement [J]. JAMA,1995,273(24):1950-1956.
    [26] Laupacis A, Bourne R, Rorabeck C, et al. Costs of elective total hip arthroplasty during thefirst year. Cemented versus noncemented [J]. J Arthroplasty,1994,9(5):481-487.
    [27] Lavernia C J, Guzman J F, Gachupin-Garcia A. Cost effectiveness and quality of life in kneearthroplasty [J]. Clin Orthop Relat Res,1997,345):134-139.
    [28] Schmalzried T P, Callaghan J J. Wear in total hip and knee replacements [J]. J Bone JointSurg Am,1999,81(1):115-136.
    [29] Prockop D J. Marrow stromal cells as stem cells for nonhematopoietic tissues [J]. Science,1997,276(5309):71-74.
    [30] Friedenstein A J. Stromal mechanisms of bone marrow: cloning in vitro and retransplantationin vivo [J]. Haematol Blood Transfus,1980,25(19-29.
    [31] Friedenstein A J, Chailakhjan R K, Lalykina K S. The development of fibroblast colonies inmonolayer cultures of guinea-pig bone marrow and spleen cells [J]. Cell Tissue Kinet,1970,3(4):393-403.
    [32] Rogers I, Casper R F. Umbilical cord blood stem cells [J]. Best Pract Res Clin ObstetGynaecol,2004,18(6):893-908.
    [33] Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bonemarrow and dental pulp [J]. J Bone Miner Res,2003,18(4):696-704.
    [34] Tsai M S, Lee J L, Chang Y J, et al. Isolation of human multipotent mesenchymal stem cellsfrom second-trimester amniotic fluid using a novel two-stage culture protocol [J]. HumReprod,2004,19(6):1450-1456.
    [35] Igura K, Zhang X, Takahashi K, et al. Isolation and characterization of mesenchymalprogenitor cells from chorionic villi of human placenta [J]. Cytotherapy,2004,6(6):543-553.
    [36] Crisan M, Deasy B, Gavina M, et al. Purification and long-term culture of multipotentprogenitor cells affiliated with the walls of human blood vessels: myoendothelial cells andpericytes [J]. Methods Cell Biol,2008,86(295-309.
    [37] Kunisaki S M, Armant M, Kao G S, et al. Tissue engineering from human mesenchymalamniocytes: a prelude to clinical trials [J]. J Pediatr Surg,2007,42(6):974-979; discussion979-980.
    [38] Vaananen H K. Mesenchymal stem cells [J]. Ann Med,2005,37(7):469-479.
    [39] Sordi V, Malosio M L, Marchesi F, et al. Bone marrow mesenchymal stem cells express arestricted set of functionally active chemokine receptors capable of promoting migration topancreatic islets [J]. Blood,2005,106(2):419-427.
    [40] Honczarenko M, Le Y, Swierkowski M, et al. Human bone marrow stromal cells express adistinct set of biologically functional chemokine receptors [J]. Stem Cells,2006,24(4):1030-1041.
    [41] Campagnoli C, Roberts I A, Kumar S, et al. Identification of mesenchymal stem/progenitorcells in human first-trimester fetal blood, liver, and bone marrow [J]. Blood,2001,98(8):2396-2402.
    [42] Weiss M L, Medicetty S, Bledsoe A R, et al. Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson'sdisease [J]. Stem Cells,2006,24(3):781-792.
    [43] da Silva Meirelles L, Chagastelles P C, Nardi N B. Mesenchymal stem cells reside invirtually all post-natal organs and tissues [J]. J Cell Sci,2006,119(Pt11):2204-2213.
    [44] Barrilleaux B, Phinney D G, Prockop D J, et al. Review: ex vivo engineering of living tissueswith adult stem cells [J]. Tissue Eng,2006,12(11):3007-3019.
    [45] Vacanti V, Kong E, Suzuki G, et al. Phenotypic changes of adult porcine mesenchymal stemcells induced by prolonged passaging in culture [J]. J Cell Physiol,2005,205(2):194-201.
    [46] Conget P A, Minguell J J. Phenotypical and functional properties of human bone marrowmesenchymal progenitor cells [J]. J Cell Physiol,1999,181(1):67-73.
    [47] Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stemcells from human bone marrow, adipose tissue, and umbilical cord blood [J]. Exp Hematol,2005,33(11):1402-1416.
    [48] Ceradini D J, Kulkarni A R, Callaghan M J, et al. Progenitor cell trafficking is regulated byhypoxic gradients through HIF-1induction of SDF-1[J]. Nat Med,2004,10(8):858-864.
    [49] D'Ippolito G, Diabira S, Howard G A, et al. Marrow-isolated adult multilineage inducible(MIAMI) cells, a unique population of postnatal young and old human cells with extensiveexpansion and differentiation potential [J]. J Cell Sci,2004,117(Pt14):2971-2981.
    [50] Gregory C A, Singh H, Perry A S, et al. The Wnt signaling inhibitor dickkopf-1is requiredfor reentry into the cell cycle of human adult stem cells from bone marrow [J]. J Biol Chem,2003,278(30):28067-28078.
    [51] Luo J, Chen J, Deng Z L, et al. Wnt signaling and human diseases: what are the therapeuticimplications?[J]. Lab Invest,2007,87(2):97-103.
    [52] Langer R, Vacanti J P. Tissue engineering [J]. Science,1993,260(5110):920-926.
    [53] Friedenstein A J, Chailakhyan R K, Gerasimov U V. Bone marrow osteogenic stem cells: invitro cultivation and transplantation in diffusion chambers [J]. Cell Tissue Kinet,1987,20(3):263-272.
    [54] Jiang Y, Jahagirdar B N, Reinhardt R L, et al. Pluripotency of mesenchymal stem cellsderived from adult marrow [J]. Nature,2002,418(6893):41-49.
    [55] Marijnissen W J, van Osch G J, Aigner J, et al. Alginate as a chondrocyte-delivery substancein combination with a non-woven scaffold for cartilage tissue engineering [J]. Biomaterials,2002,23(6):1511-1517.
    [56] Kraus K H, Kirker-Head C. Mesenchymal stem cells and bone regeneration [J]. Vet Surg,2006,35(3):232-242.
    [57] Gaustad K G, Boquest A C, Anderson B E, et al. Differentiation of human adipose tissue stemcells using extracts of rat cardiomyocytes [J]. Biochem Biophys Res Commun,2004,314(2):420-427.
    [58] Brazelton T R, Rossi F M, Keshet G I, et al. From marrow to brain: expression of neuronalphenotypes in adult mice [J]. Science,2000,290(5497):1775-1779.
    [59] Peppas N A, Langer R. New challenges in biomaterials [J]. Science,1994,263(5154):1715-1720.
    [60] Vacanti C A, Langer R, Schloo B, et al. Synthetic polymers seeded with chondrocytesprovide a template for new cartilage formation [J]. Plast Reconstr Surg,1991,88(5):753-759.
    [61] Vacanti J P, Langer R. Tissue engineering: the design and fabrication of living replacementdevices for surgical reconstruction and transplantation [J]. Lancet,1999,354Suppl1(SI32-34.
    [62] Tosh D, Slack J M. How cells change their phenotype [J]. Nat Rev Mol Cell Biol,2002,3(3):187-194.
    [63] Dennis J E, Charbord P. Origin and differentiation of human and murine stroma [J]. StemCells,2002,20(3):205-214.
    [64] Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells inmultiple human organs [J]. Cell Stem Cell,2008,3(3):301-313.
    [65] Nagoshi N, Shibata S, Kubota Y, et al. Ontogeny and multipotency of neural crest-derivedstem cells in mouse bone marrow, dorsal root ganglia, and whisker pad [J]. Cell Stem Cell,2008,2(4):392-403.
    [66] Crisan M, Huard J, Zheng B, et al. Purification and culture of human blood vessel-associatedprogenitor cells [J]. Curr Protoc Stem Cell Biol,2008, Chapter2(Unit2B21-2B213.
    [67] Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couplesangiogenesis to osteogenesis during skeletal development [J]. J Clin Invest,2007,117(6):1616-1626.
    [68] Caplan A I. Adult mesenchymal stem cells for tissue engineering versus regenerativemedicine [J]. J Cell Physiol,2007,213(2):341-347.
    [69] Prockop D J."Stemness" does not explain the repair of many tissues by mesenchymalstem/multipotent stromal cells (MSCs)[J]. Clin Pharmacol Ther,2007,82(3):241-243.
    [70] Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bonemarrow differentiate in vitro according to a hierarchical model [J]. J Cell Sci,2000,113(Pt7)(1161-1166.
    [71] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-timequantitative PCR and the2(-Delta Delta C(T)) Method [J]. Methods,2001,25(4):402-408.
    [72] Phinney D G, Prockop D J. Concise review: mesenchymal stem/multipotent stromal cells: thestate of transdifferentiation and modes of tissue repair--current views [J]. Stem Cells,2007,25(11):2896-2902.
    [73] Ortiz L A, Dutreil M, Fattman C, et al. Interleukin1receptor antagonist mediates theantiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury [J].Proc Natl Acad Sci U S A,2007,104(26):11002-11007.
    [74] Kunter U, Rong S, Djuric Z, et al. Transplanted mesenchymal stem cells accelerateglomerular healing in experimental glomerulonephritis [J]. J Am Soc Nephrol,2006,17(8):2202-2212.
    [75] Minguell J J, Erices A. Mesenchymal stem cells and the treatment of cardiac disease [J]. ExpBiol Med (Maywood),2006,231(1):39-49.
    [76] Phinney D G, Isakova I. Plasticity and therapeutic potential of mesenchymal stem cells in thenervous system [J]. Curr Pharm Des,2005,11(10):1255-1265.
    [77] Barry F, Boynton R, Murphy M, et al. The SH-3and SH-4antibodies recognize distinctepitopes on CD73from human mesenchymal stem cells [J]. Biochem Biophys Res Commun,2001,289(2):519-524.
    [78] Kim S, Honmou O, Kato K, et al. Neural differentiation potential of peripheral blood-andbone-marrow-derived precursor cells [J]. Brain Res,2006,1123(1):27-33.
    [79] Choquet D, Felsenfeld D P, Sheetz M P. Extracellular matrix rigidity causes strengthening ofintegrin-cytoskeleton linkages [J]. Cell,1997,88(1):39-48.
    [80] Christman K L, Fok H H, Sievers R E, et al. Fibrin glue alone and skeletal myoblasts in afibrin scaffold preserve cardiac function after myocardial infarction [J]. Tissue Eng,2004,10(3-4):403-409.
    [81] Flaim C J, Chien S, Bhatia S N. An extracellular matrix microarray for probing cellulardifferentiation [J]. Nat Methods,2005,2(2):119-125.
    [82] Philp D, Chen S S, Fitzgerald W, et al. Complex extracellular matrices promotetissue-specific stem cell differentiation [J]. Stem Cells,2005,23(2):288-296.
    [83] Badylak S F. Regenerative medicine and developmental biology: the role of the extracellularmatrix [J]. Anat Rec B New Anat,2005,287(1):36-41.
    [84] Cukierman E, Pankov R, Stevens D R, et al. Taking cell-matrix adhesions to the thirddimension [J]. Science,2001,294(5547):1708-1712.
    [85] Friedl P, Zanker K S, Brocker E B. Cell migration strategies in3-D extracellular matrix:differences in morphology, cell matrix interactions, and integrin function [J]. Microsc ResTech,1998,43(5):369-378.
    [86] Huang H, Kamm R D, Lee R T. Cell mechanics and mechanotransduction: pathways, probes,and physiology [J]. Am J Physiol Cell Physiol,2004,287(1): C1-11.
    [87] Pelham R J, Jr., Wang Y. Cell locomotion and focal adhesions are regulated by substrateflexibility [J]. Proc Natl Acad Sci U S A,1997,94(25):13661-13665.
    [88] Wang H B, Dembo M, Wang Y L. Substrate flexibility regulates growth and apoptosis ofnormal but not transformed cells [J]. Am J Physiol Cell Physiol,2000,279(5): C1345-1350.
    [89] Flanagan L A, Ju Y E, Marg B, et al. Neurite branching on deformable substrates [J].Neuroreport,2002,13(18):2411-2415.
    [90] Khatiwala C B, Peyton S R, Putnam A J. Intrinsic mechanical properties of the extracellularmatrix affect the behavior of pre-osteoblastic MC3T3-E1cells [J]. Am J Physiol Cell Physiol,2006,290(6): C1640-1650.
    [91] Reinhart-King C A, Dembo M, Hammer D A. The dynamics and mechanics of endothelialcell spreading [J]. Biophys J,2005,89(1):676-689.
    [92] Baharvand H, Hashemi S M, Kazemi Ashtiani S, et al. Differentiation of human embryonicstem cells into hepatocytes in2D and3D culture systems in vitro [J]. Int J Dev Biol,2006,50(7):645-652.
    [93] Murphy K C, Leach J K. A reproducible, high throughput method for fabricating fibrin gels[J]. BMC Res Notes,2012,5(423.
    [94] Ando T, Yamazoe H, Moriyasu K, et al. Induction of dopamine-releasing cells from primateembryonic stem cells enclosed in agarose microcapsules [J]. Tissue Eng,2007,13(10):2539-2547.
    [95] Neuss S, Apel C, Buttler P, et al. Assessment of stem cell/biomaterial combinations for stemcell-based tissue engineering [J]. Biomaterials,2008,29(3):302-313.
    [96] Tse J R, Engler A J. Preparation of hydrogel substrates with tunable mechanical properties [J].Curr Protoc Cell Biol,2010, Chapter10, Unit1016.
    [97] Shih Y R, Tseng K F, Lai H Y, et al. Matrix stiffness regulation of integrin-mediatedmechanotransduction during osteogenic differentiation of human mesenchymal stem cells [J].J Bone Miner Res,2011,26(4):730-738.
    [98] Alonso J L, Goldmann W H. Feeling the forces: atomic force microscopy in cell biology [J].Life Sci,2003,72(23):2553-2560.
    [99] Wenger M P, Bozec L, Horton M A, et al. Mechanical properties of collagen fibrils [J].Biophys J,2007,93(4):1255-1263.
    [100] Dimitriadis E K, Horkay F, Maresca J, et al. Determination of elastic moduli of thin layers ofsoft material using the atomic force microscope [J]. Biophys J,2002,82(5):2798-2810.
    [101] Stolz M, Raiteri R, Daniels A U, et al. Dynamic elastic modulus of porcine articular cartilagedetermined at two different levels of tissue organization by indentation-type atomic forcemicroscopy [J]. Biophys J,2004,86(5):3269-3283.
    [102] Li Q S, Lee G Y, Ong C N, et al. AFM indentation study of breast cancer cells [J]. BiochemBiophys Res Commun,2008,374(4):609-613.
    [103] Rehfeldt F, Engler A J, Eckhardt A, et al. Cell responses to the mechanochemicalmicroenvironment--implications for regenerative medicine and drug delivery [J]. Adv DrugDeliv Rev,2007,59(13):1329-1339.
    [104] Rowlands A S, George P A, Cooper-White J J. Directing osteogenic and myogenicdifferentiation of MSCs: interplay of stiffness and adhesive ligand presentation [J]. Am JPhysiol Cell Physiol,2008,295(4): C1037-1044.
    [105] Powell S K, Kleinman H K. Neuronal laminins and their cellular receptors [J]. Int J BiochemCell Biol,1997,29(3):401-414.
    [106] Saha K, Irwin E F, Kozhukh J, et al. Biomimetic interfacial interpenetrating polymernetworks control neural stem cell behavior [J]. J Biomed Mater Res A,2007,81(1):240-249.
    [107] Reilly G C, Engler A J. Intrinsic extracellular matrix properties regulate stem celldifferentiation [J]. J Biomech,2010,43(1):55-62.
    [108] Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k [J]. FEBS Lett,1997,410(1):78-82.
    [109] Dufner A, Thomas G. Ribosomal S6kinase signaling and the control of translation [J]. ExpCell Res,1999,253(1):100-109.
    [110] Nourse J, Firpo E, Flanagan W M, et al. Interleukin-2-mediated elimination of the p27Kip1cyclin-dependent kinase inhibitor prevented by rapamycin [J]. Nature,1994,372(6506):570-573.
    [111] Kato J, Matsushime H, Hiebert S W, et al. Direct binding of cyclin D to the retinoblastomagene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4[J].Genes Dev,1993,7(3):331-342.
    [112] Yeh Y T, Lee C I, Lim S H, et al. Convergence of physical and chemical signaling in themodulation of vascular smooth muscle cell cycle and proliferation by fibrillarcollagen-regulated P66Shc [J]. Biomaterials,2012,33(28):6728-6738.
    [113] Hur S S, del Alamo J C, Park J S, et al. Roles of cell confluency and fluid shear in3-dimensional intracellular forces in endothelial cells [J]. Proc Natl Acad Sci U S A,2012,109(28):11110-11115.
    [114] Thomson K S, Korte F S, Giachelli C M, et al. Prevascularized Microtemplated FibrinScaffolds for Cardiac Tissue Engineering Applications [J]. Tissue Eng Part A,2013,
    [115] Yeh Y T, Hur S S, Chang J, et al. Matrix stiffness regulates endothelial cell proliferationthrough septin9[J]. PLoS One,2012,7(10): e46889.
    [116] Georges P C, Janmey P A. Cell type-specific response to growth on soft materials [J]. J ApplPhysiol,2005,98(4):1547-1553.
    [117] Maloney J M, Walton E B, Bruce C M, et al. Influence of finite thickness and stiffness oncellular adhesion-induced deformation of compliant substrata [J]. Phys Rev E Stat NonlinSoft Matter Phys,2008,78(4Pt1):041923.
    [118] Solon J, Levental I, Sengupta K, et al. Fibroblast adaptation and stiffness matching to softelastic substrates [J]. Biophys J,2007,93(12):4453-4461.
    [119] Wang N, Butler J P, Ingber D E. Mechanotransduction across the cell surface and through thecytoskeleton [J]. Science,1993,260(5111):1124-1127.
    [120] Gilden J, Krummel M F. Control of cortical rigidity by the cytoskeleton: emerging roles forseptins [J]. Cytoskeleton (Hoboken),2010,67(8):477-486.
    [121] Nagata K, Asano T, Nozawa Y, et al. Biochemical and cell biological analyses of amammalian septin complex, Sept7/9b/11[J]. J Biol Chem,2004,279(53):55895-55904.
    [122] Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction [J]. Nature,2011,474(7350):179-183.
    [123] Park J S, Chu J S, Tsou A D, et al. The effect of matrix stiffness on the differentiation ofmesenchymal stem cells in response to TGF-beta [J]. Biomaterials,2011,32(16):3921-3930.
    [124] Du J, Chen X, Liang X, et al. Integrin activation and internalization on soft ECM as amechanism of induction of stem cell differentiation by ECM elasticity [J]. Proc Natl AcadSci U S A,2011,108(23):9466-9471.
    [125] Sugimoto H, Mundel T M, Sund M, et al. Bone-marrow-derived stem cells repair basementmembrane collagen defects and reverse genetic kidney disease [J]. Proc Natl Acad Sci U S A,2006,103(19):7321-7326.
    [126] Fajas L. Adipogenesis: a cross-talk between cell proliferation and cell differentiation [J]. AnnMed,2003,35(2):79-85.
    [127] Friedenstein A Y, Lalykina K S. Lymphoid cell populations are competent systems forinduced osteogenesis [J]. Calcif Tissue Res,1970, Suppl:105-106.
    [128] Giordano A, Galderisi U, Marino I R. From the laboratory bench to the patient's bedside: anupdate on clinical trials with mesenchymal stem cells [J]. J Cell Physiol,2007,211(1):27-35.
    [129] Schulze M, Belema-Bedada F, Technau A, et al. Mesenchymal stem cells are recruited tostriated muscle by NFAT/IL-4-mediated cell fusion [J]. Genes Dev,2005,19(15):1787-1798.
    [130] Cho K J, Trzaska K A, Greco S J, et al. Neurons derived from human mesenchymal stemcells show synaptic transmission and can be induced to produce the neurotransmittersubstance P by interleukin-1alpha [J]. Stem Cells,2005,23(3):383-391.
    [131] Prindull G, Zipori D. Environmental guidance of normal and tumor cell plasticity: epithelialmesenchymal transitions as a paradigm [J]. Blood,2004,103(8):2892-2899.
    [132] Spees J L, Olson S D, Ylostalo J, et al. Differentiation, cell fusion, and nuclear fusion duringex vivo repair of epithelium by human adult stem cells from bone marrow stroma [J]. ProcNatl Acad Sci U S A,2003,100(5):2397-2402.
    [133] Polak J M, Bishop A E. Stem cells and tissue engineering: past, present, and future [J]. Ann NY Acad Sci,2006,1068(352-366.
    [134] Raghunath J, Salacinski H J, Sales K M, et al. Advancing cartilage tissue engineering: theapplication of stem cell technology [J]. Curr Opin Biotechnol,2005,16(5):503-509.
    [135] Kollet O, Shivtiel S, Chen Y Q, et al. HGF, SDF-1, and MMP-9are involved instress-induced human CD34+stem cell recruitment to the liver [J]. J Clin Invest,2003,112(2):160-169.
    [136] Marcacci M, Kon E, Moukhachev V, et al. Stem cells associated with macroporousbioceramics for long bone repair:6-to7-year outcome of a pilot clinical study [J]. TissueEng,2007,13(5):947-955.
    [137] Hernigou P, Poignard A, Beaujean F, et al. Percutaneous autologous bone-marrow graftingfor nonunions. Influence of the number and concentration of progenitor cells [J]. J Bone JointSurg Am,2005,87(7):1430-1437.
    [138] Thomas C H, Collier J H, Sfeir C S, et al. Engineering gene expression and protein synthesisby modulation of nuclear shape [J]. Proc Natl Acad Sci U S A,2002,99(4):1972-1977.
    [139] Nishihira S, Okubo N, Takahashi N, et al. High-cell density-induced VCAM1expressioninhibits the migratory ability of mesenchymal stem cells [J]. Cell Biol Int,2011,35(5):475-481.
    [140] Rastegar F, Shenaq D, Huang J, et al. Mesenchymal stem cells: Molecular characteristics andclinical applications [J]. World J Stem Cells,2010,2(4):67-80.
    [141] Mendez-Ferrer S, Michurina T V, Ferraro F, et al. Mesenchymal and haematopoietic stemcells form a unique bone marrow niche [J]. Nature,2010,466(7308):829-834.
    [142] Rubina K, Kalinina N, Efimenko A, et al. Adipose stromal cells stimulate angiogenesis viapromoting progenitor cell differentiation, secretion of angiogenic factors, and enhancingvessel maturation [J]. Tissue Eng Part A,2009,15(8):2039-2050.
    [143] Kinnaird T, Stabile E, Burnett M S, et al. Marrow-derived stromal cells express genesencoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivoarteriogenesis through paracrine mechanisms [J]. Circ Res,2004,94(5):678-685.
    [144] Tolar J, Le Blanc K, Keating A, et al. Concise review: hitting the right spot withmesenchymal stromal cells [J]. Stem Cells,2010,28(8):1446-1455.
    [145] Cancedda R, Dozin B, Giannoni P, et al. Tissue engineering and cell therapy of cartilage andbone [J]. Matrix Biol,2003,22(1):81-91.
    [146] Grigolo B, Roseti L, Fiorini M, et al. Transplantation of chondrocytes seeded on ahyaluronan derivative (hyaff-11) into cartilage defects in rabbits [J]. Biomaterials,2001,22(17):2417-2424.
    [147] Casabona F, Martin I, Muraglia A, et al. Prefabricated engineered bone flaps: an experimentalmodel of tissue reconstruction in plastic surgery [J]. Plast Reconstr Surg,1998,101(3):577-581.
    [148] Lee C H, Singla A, Lee Y. Biomedical applications of collagen [J]. Int J Pharm,2001,221(1-2):1-22.
    [149] Currie L J, Sharpe J R, Martin R. The use of fibrin glue in skin grafts and tissue-engineeredskin replacements: a review [J]. Plast Reconstr Surg,2001,108(6):1713-1726.
    [150] Tonnesen H H, Karlsen J. Alginate in drug delivery systems [J]. Drug Dev Ind Pharm,2002,28(6):621-630.
    [151] Agrawal C M, Ray R B. Biodegradable polymeric scaffolds for musculoskeletal tissueengineering [J]. J Biomed Mater Res,2001,55(2):141-150.
    [152] Bischofs I B, Safran S A, Schwarz U S. Elastic interactions of active cells with soft materials[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2004,69(2Pt1):021911.
    [153] Bischofs I B, Schwarz U S. Cell organization in soft media due to active mechanosensing [J].Proc Natl Acad Sci U S A,2003,100(16):9274-9279.
    [154] Lo C M, Wang H B, Dembo M, et al. Cell movement is guided by the rigidity of the substrate[J]. Biophys J,2000,79(1):144-152.
    [155] Reinhart-King C A, Dembo M, Hammer D A. Cell-cell mechanical communication throughcompliant substrates [J]. Biophys J,2008,95(12):6044-6051.
    [156] Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions [J]. Nat RevMol Cell Biol,2006,7(4):265-275.
    [157] Gilbert P M, Havenstrite K L, Magnusson K E, et al. Substrate elasticity regulates skeletalmuscle stem cell self-renewal in culture [J]. Science,2010,329(5995):1078-1081.
    [158] Thomas S M, DeMarco M, D'Arcangelo G, et al. Ras is essential for nerve growth factor-andphorbol ester-induced tyrosine phosphorylation of MAP kinases [J]. Cell,1992,68(6):1031-1040.
    [159] Khatiwala C B, Kim P D, Peyton S R, et al. ECM compliance regulates osteogenesis byinfluencing MAPK signaling downstream of RhoA and ROCK [J]. J Bone Miner Res,2009,24(5):886-898.
    [160] Jin G, Chieh-Hsi Wu J, Li Y S, et al. Effects of active and negative mutants of Ras on ratarterial neointima formation [J]. J Surg Res,2000,94(2):124-132.
    [161] Feig L A, Cooper G M. Inhibition of NIH3T3cell proliferation by a mutant ras protein withpreferential affinity for GDP [J]. Mol Cell Biol,1988,8(8):3235-3243.
    [162] Wang Y, Huang S, Sah V P, et al. Cardiac muscle cell hypertrophy and apoptosis induced bydistinct members of the p38mitogen-activated protein kinase family [J]. J Biol Chem,1998,273(4):2161-2168.
    [163] Gnudi L, Frevert E U, Houseknecht K L, et al. Adenovirus-mediated gene transfer ofdominant negative ras(asn17) in3T3L1adipocytes does not alter insulin-stimulatedP13-kinase activity or glucose transport [J]. Mol Endocrinol,1997,11(1):67-76.
    [164] Li J, Law H K, Lau Y L, et al. Differential damage and recovery of human mesenchymalstem cells after exposure to chemotherapeutic agents [J]. Br J Haematol,2004,127(3):326-334.
    [165] Park K, Millet L J, Kim N, et al. Measurement of adherent cell mass and growth [J]. ProcNatl Acad Sci U S A,2010,107(48):20691-20696.
    [166] Tee S Y, Fu J, Chen C S, et al. Cell shape and substrate rigidity both regulate cell stiffness [J].Biophys J,2011,100(5): L25-27.
    [167] Katsumi A, Milanini J, Kiosses W B, et al. Effects of cell tension on the small GTPase Rac[J]. J Cell Biol,2002,158(1):153-164.
    [168] Matthews B D, Overby D R, Mannix R, et al. Cellular adaptation to mechanical stress: roleof integrins, Rho, cytoskeletal tension and mechanosensitive ion channels [J]. J Cell Sci,2006,119(Pt3):508-518.
    [169] Riento K, Ridley A J. Rocks: multifunctional kinases in cell behaviour [J]. Nat Rev Mol CellBiol,2003,4(6):446-456.
    [170] Singhvi R, Kumar A, Lopez G P, et al. Engineering cell shape and function [J]. Science,1994,264(5159):696-698.
    [171] Fu X D, Flamini M, Sanchez A M, et al. Progestogens regulate endothelial actin cytoskeletonand cell movement via the actin-binding protein moesin [J]. Mol Hum Reprod,2008,14(4):225-234.
    [172] Asparuhova M B, Ferralli J, Chiquet M, et al. The transcriptional regulator megakaryoblasticleukemia-1mediates serum response factor-independent activation of tenascin-Ctranscription by mechanical stress [J]. FASEB J,2011,25(10):3477-3488.
    [173] Lee J, Ko M, Joo C K. Rho plays a key role in TGF-beta1-induced cytoskeletalrearrangement in human retinal pigment epithelium [J]. J Cell Physiol,2008,216(2):520-526.
    [174] Bishop A L, Hall A. Rho GTPases and their effector proteins [J]. Biochem J,2000,348Pt2(241-255.
    [175] Yamashita M, Otsuka F, Mukai T, et al. Simvastatin antagonizes tumor necrosis factor-alphainhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulatingSmad signaling and Ras/Rho-mitogen-activated protein kinase pathway [J]. J Endocrinol,2008,196(3):601-613.
    [176] Olson M F, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42GTPases in cellcycle progression through G1[J]. Science,1995,269(5228):1270-1272.
    [177] Pacary E, Legros H, Valable S, et al. Synergistic effects of CoCl(2) and ROCK inhibition onmesenchymal stem cell differentiation into neuron-like cells [J]. J Cell Sci,2006,119(Pt13):2667-2678.
    [178] Pacary E, Petit E, Bernaudin M. Concomitant inhibition of prolyl hydroxylases and ROCKinitiates differentiation of mesenchymal stem cells and PC12towards the neuronal lineage [J].Biochem Biophys Res Commun,2008,377(2):400-406.
    [179] Collins C, Guilluy C, Welch C, et al. Localized tensional forces on PECAM-1elicit a globalmechanotransduction response via the integrin-RhoA pathway [J]. Curr Biol,2012,22(22):2087-2094.
    [180] Schiff P B, Horwitz S B. Taxol stabilizes microtubules in mouse fibroblast cells [J]. Proc NatlAcad Sci U S A,1980,77(3):1561-1565.
    [181] Jaiswal R K, Jaiswal N, Bruder S P, et al. Adult human mesenchymal stem cell differentiationto the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase [J]. JBiol Chem,2000,275(13):9645-9652.
    [182] Higuchi C, Myoui A, Hashimoto N, et al. Continuous inhibition of MAPK signalingpromotes the early osteoblastic differentiation and mineralization of the extracellular matrix[J]. J Bone Miner Res,2002,17(10):1785-1794.
    [183] Massague J, Xi Q. TGF-beta control of stem cell differentiation genes [J]. FEBS Lett,2012,586(14):1953-1958.
    [184] Chakladar A, Dubeykovskiy A, Wojtukiewicz L J, et al. Synergistic activation of the murinegastrin promoter by oncogenic Ras and beta-catenin involves SMAD recruitment [J].Biochem Biophys Res Commun,2005,336(1):190-196.
    [185] Flaim C J, Teng D, Chien S, et al. Combinatorial signaling microenvironments for studyingstem cell fate [J]. Stem Cells Dev,2008,17(1):29-39.
    [186] Ringden O, Le Blanc K. Allogeneic hematopoietic stem cell transplantation: state of the artand new perspectives [J]. APMIS,2005,113(11-12):813-830.
    [187] Pereira R F, O'Hara M D, Laptev A V, et al. Marrow stromal cells as a source of progenitorcells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesisimperfecta [J]. Proc Natl Acad Sci U S A,1998,95(3):1142-1147.
    [188] Koc O N, Gerson S L, Cooper B W, et al. Rapid hematopoietic recovery after coinfusion ofautologous-blood stem cells and culture-expanded marrow mesenchymal stem cells inadvanced breast cancer patients receiving high-dose chemotherapy [J]. J Clin Oncol,2000,18(2):307-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700