磁场对镉胁迫下绿豆幼苗生长的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物磁学是研究和应用物质的磁性和磁场与生物特性之间相互联系和相互影响的一门新兴边缘学科。大量研究表明磁场处理能调动植物自身的调节作用,激发其内部活力,改善植物体内部的生理生化代谢,并对逆境胁迫如干旱、盐胁迫、低温等也有一定的缓解作用。镉(Cd2+)胁迫作为重金属胁迫的一种,会对植物产生伤害效应,影响植物的生长发育以及产量和品质。目前有关磁场对重金属抑制植物生长发育的影响及机理研究甚少。本研究以农作物绿豆幼苗为材料,通过外加磁场预处理,初步探讨了5μmol/LCd2+胁迫下磁场处理对绿豆幼苗生长发育的影响。并从膜脂过氧化、光合作用两方面入手,对其影响机理进行了分析,以期为提高植物抗重金属胁迫能力提供一定的理论基础。主要研究结果如下:
     0.与对照相比,0.6T磁场处理能促进绿豆幼苗株高和主根生长,使幼苗地上部分和根系的鲜、干重增加;相反,Cd2+胁迫下绿豆幼苗的株高和主根长受到抑制,地上部和根系的鲜、干重降低;而与单纯Cd2+胁迫相比,磁场与Cd2+复合处理不仅使幼苗株高增加,而且使主根长、地上部和根系的鲜、干重均增加。说明磁场预处理不仅促进了正常生长条件下绿豆幼苗的生长,而且促进了Cd2+胁迫下绿豆幼苗的生长。
     2.绿豆幼苗在Cd2+胁迫下叶片和根系的SOD、CAT、POD等保护酶活性在升高的同时,活性氧H2O2含量也增高,膜脂过氧化程度也加剧,表现在膜脂过氧化产物MDA含量明显增高;磁场预处理使绿豆幼苗叶片和根系的POD活性没有受到明显影响,但SOD和CAT活性均有一定程度的提高,使活性氧H2O2水平和膜脂过氧化产物MDA含量均降低;磁场与Cd2+复合处理与Cd2+单独处理相比,进一步提高了幼苗叶片和根系的SOD、CAT、POD等保护酶的活性,降低了幼苗叶片和根系的H2O2含量和膜脂过氧化产物MDA含量。说明磁场能通过诱导幼苗叶片和根系膜保护酶活性提高,使幼苗活性氧水平降低,进而降低了幼苗在正常生长条下及Cd2+胁迫下的膜脂过氧化程度。这可能是磁场促进正常生长条件下幼苗生长、显著缓解Cd2+胁迫抑制绿豆幼苗生长的原因之一。
     3.与对照相比,磁场处理使绿豆幼苗净光合速率、气孔导度、胞间隙CO2浓度明显升高,而气孔限制值无明显变化,说明磁场提高幼苗净光合速率的主要原因是气孔因素;而Cd2+胁迫降低了绿豆幼苗叶片的净光合速率、气孔导度、蒸腾速率、但胞间隙CO2浓度明显升高,而气孔限制值无明显变化,说明Cd2+抑制幼苗净光合速率的主要原因是非气孔因素;磁场预处理提高了Cd2+胁迫下绿豆幼苗叶片的净光合速率、气孔导度、蒸腾速率,而胞间隙CO2浓度明显降低、气孔限制值无显著变化,说明磁场处理提高了Cd2+胁迫下绿豆幼苗叶片叶肉细胞的光合能力,进而缓解Cd2+胁迫对绿豆幼苗叶片光合作用的抑制。上述结果也进一步说明磁场预处理促进正常生长条件下和Cd2+胁迫下绿豆幼苗生长的另一个原因是其促进了两种生长条件下幼苗的光合作用。磁场促进两种条件下幼苗光合作用的原因不仅有气孔因素,也有非气孔因素,但磁场促进正常生长条件下幼苗光合速率以气孔因素为主,而促进Cd2+胁迫幼苗光合速率以非气孔因素为主。
Biomagnetism is new and interdisciplinary subject, it study magnetism of matter and the connection and affection between magnetic field and organisms. A lot of researches show magnetic field treatment can mobilize the regulation ability of plant, stimulate its vigour, improve metabolism physiologically. It can also alleviate the inhibited effect of adversity stress, such as drought, salt stress, low temperature. Cadmium (Cd2+) stress as one of the heavy metal stress could harm plants, affect their development and yield and quality. Now, information is still lacking regarding the effects and mechanisms of magnetic field on the growth of plant under heavy metal stress. We investigated the effects of magnetic field on the growth of plant under Cd2+ stress. In order to understand the mechanisms of magnetic field on the growth of plant under Cd2+ stress, we investigated effects of magnetic field on the membrane lipid peroxidation and photosynthesis of mung bean seedings under Cd2+ stress. The main results were presented as follows:
     1. Compared to control treatment,0.6T magnetic field treatment could raise mung bean seeding height and main root length, and the fresh and dry weight of the over-ground part and roots were also increased. By the contrast, when the mung bean seedings were under Cd2+ stress, growth of mung bean seedings was inhibited, and the fresh and dry weight of the over-ground part and roots were also decreased. However, we found the above inhibited effect of Cd2+ stress could be clearly alleviated by 0.6T magnetic field treatment. The results indicated that magnetic field treatment can not only improve the growth of mung bean seedings under normal circumstance but also alleviate the inhibited effect of Cd2+ stress on growth of mung bean seedings.
     2. Compared to control treatment, Cd2+ stress respectively increased the activities of SOD, CAT and POD in leaf and root of mung bean seedings, and at the same time raised the content of H2O2. Membrane lipid peroxidation was intensified, which was represented by the increase of MDA.0.6T magnetic field treatment did not influence the activities of POD in leaf and root of mung bean seedings, but the activities of SOD, CAT were increased to some extent, and caused a decrease of MDA content and H2O2 level in leaf and root of mung bean seedings. Compared to Cd2+ stress alone, treatment of MF+Cd2+ caused a decrease of MDA content and H2O2 level, and at the same time, more increases in SOD, CAT, POD activities in leaf and root of mung bean seedings. The results showed that magnetic field treatment might decrease the levels of reactive oxygen species, and then inhibit membrane lipid peroxidation in leaf and root of seedings under normal circumstance and Cd2+ stress by enhancing the activities of the three antioxidant enzymes, which may be one of the mechanisms that magnetic field treatment improved the growth of mung bean seedings under normal circumstance and alleviated the inhibited effect of Cd2+ stress on growth of mung bean seedings.
     3 Compared to control treatment,0.6T magnetic field treatment enhanced net photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate respectively, but stomatal limitation was not changed by the magnetic field. These results showed that the magnetic field treatment-induced improvement of photosynthesis in mung bean seedings was mainly caused by stomatal factor. However, Cd2+ stress caused the decreases of net photosynthetic rate, stomatal conductance, transpiration rate, while intercellular CO2 concentration was enhanced and stomatal limitation was not changed respectively, showing that the inhibitive effect of Cd2+ stress on photosynthesis of mung bean seedings was mainly caused by nonstomatal factors.0.6T magnetic field treatment also enhanced net photosynthetic rate, stomatal conductance and transpiration rate, but reduced intercellular CO2 concentration and did not change stomatal limitation of mung bean seedings under Cd2+ stress respectively, which indicated that the magnetic field treatment enhanced the ability of photosynthesis of mung bean seedings under Cd2+ stress, so as to alleviate Cd2+ stress-induced inhibitive effect on photosynthesis in mung bean seedings. The above results further indicated that the other reason of promoting the growth of mung bean seedings by magnetic field treatment under normal condition and Cd2+ stress is the enhancement of photosynthesis of seedings by the magnetic field. Although under the two conditions, the magnetic field-induced improvement of photosynthesis in mung bean seedings was the results of both stomatal and nonstomatal factors, the stomatal limitation is dominant under normal condition, and the nonstomatal limitation becomes the dominant one under Cd2+ stress.
引文
[1]Esitken A. Effects of magnetic fields on yield and growth in strawberry'Camarosa' [J]. Hortic Sci Biotech.2003,78(2):145-147.
    [2]Martinez E, Carbonell MV, Amaya JM. A static magnetic field of 125 mT stimu-lates the initial growth stages of barley (Hordeum vulgare L.) [J]. Electro Magnetobiol. 2000,19(3):271-277.
    [3]李国栋,周万松,郭立文,等.生物磁学应用、技术、原理[M].北京:国防工业出版社,1993:12-64.
    [4]高和平,邹礼平,夏燎原.磁场处理水对蔬菜种子发芽影响的初步研究[J].种子,2004,23(9):41-43.
    [5]毛伟海.磁场对小麦的生物学效应及其应用研究进展[J].麦类作物,1997,17(1): 51-53.
    [6]依艳丽,刘孝义,夏艳玲.小麦、水稻磁处理效应的初步研究[J].沈阳农业大学学报,1993,24(2):153-156.
    [7]何铭章,王泽均.磁场对小麦生理影响的研究[J].生物化学与生物物理进展.1982,52(4):45-46.
    [8]习岗.外磁场对小麦萌发期过氧化物酶合成的影响及其激活效应[J].植物生理学报,1993,19(2):155-160.
    [9]张新华,李富军.几种物理技术在提高植物抗逆性中的研究进展[J].西北植物学报,2005,25(9):1894-1899.
    [10]史宇,何玉科.重金属污染环境的植物修复及其分子机制[J].植物生理与分子生物学报,2003,29(4):267-274.
    [11]Adriano DC. Trace Elements in the Terrestrial Environment [M]. New York:Spring er-Verlag, USA,1986:37-68.
    [12]宋静.土壤重金属修复技术[J].污染农业环境保护,1998,17(6):271-273.
    [13]郑喜砷,鲁安怀,高翔.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [14]王向健.重金属污染土壤修复技术现状与展望[J].环境保护科学,2004,4:78-81.
    [15]曹越,吴晓敬,李淑岩.土壤重金属污染来源及修复技术研究[J].环境科学 与管理,2010(3):62-64.
    [16]顾继光,林秋奇,胡韧,等.土壤-植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,2005,36(1):128-133.
    [17]陈吉美.镉对植物胁迫效应的研究进展[J].安徽农学通报,2010,16(3):46-47.
    [18]扬世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报,2004,27(1):71-74.
    [19]Florijn PJ, Van Beusichem ML.Uptake and distribution of cadmium in maize inbred lines.[J].Plant Soil,1993,150:25-32.
    [20]马海涛,李晓晨,郭志勇,等.Zn,Pb和Cd对小麦幼苗生理生化的影响[J].安徽农业科学,2007,35(3):647-648.
    [21]刘东华,蒋悟,李海峰,等.镉对大蒜根生长和根尖细胞超微结构的影响[J].华北农学报,2000,15(3):66-71.
    [22]孙光闻,朱祝军,方学智,陈日远,刘厚诚.镉对小白菜光合作用及叶绿素荧光参数的影响[J].植物营养与肥料学报,2005,11(5):700-703.
    [23]林舜华,陈章龙,陈清朗,等.汞、镉对水稻叶片光合作用的影响[J].环境科学学报,1981,1(4):324-330.
    [24]张宁.镉(Cd2+)胁迫下风眼莲伤害与抗性响应机制研究[D].沈阳:沈阳农业大学,2004,49-50.
    [25]王春春,沈振国.镉在植物体内的积累及其对绿豆幼苗生长的影响[J].南京农业大学学报,2001,24(4):9-13.
    [26]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,2003,19(2):103-108.
    [27]KellyJM, ParkerGR.Heavy metalae cumulation and growth of five forests Pecies asinfluenced by 5011 Cadmiumlevel [J].Environ.Qual.,1979,8:361-364.
    [28]曹仕木,林武.福对草葛的毒害及调控[J].福建热作科技,2003,28(1):7-8.
    [29]郑世英,王丽燕,商学芳.镉处理对绿豆种子萌发及蛋白质含量的影响[J].种子,2007,26(1):28-30.
    [30]张金彪,周碧青,黄维南.镉胁迫对草莓氮代谢及果实品质的影响[J].热带作物学报,2009,30(11):1624-1629.
    [31]周启星等.污染生态学[M].北京:科学出版社,2002256-29.
    [32]商学芳,张秀玲.镉对绿豆和蚕豆种子萌发及幼苗生长的影响[J]. 德州学院学报,2007,23(2):16-18.
    [33]Black MC, FerrelJR, Horning RC. DNA strand breakage in freshwater Mussels (Anodontia grandis) exposed to lead in the laboratory and field [J]. EnvironToxicol Chem,1996,15:802-808.
    [34]常学秀,王焕校.Cd2+、Al3+对蚕豆(Viciafaba L)DNA合成及修复的影响.生态学报,1999,19(6):855-859.
    [35]徐楠,施国新.Hg2+胁迫对浮萍体细胞DNA一级结构和抗氧化酶体系的损伤[J].植物生态学报,2003,27(3):299-303.
    [36]Britt AB, DNA damage and repair in plants [J]. Annu Rev Plant Physiol Plant Mol Biol.,1996,47:75-100.
    [37]Tuteja N, Singh MB, Misra MK, Bhalla PL, Tutcja R.Molecular mechanisms of DNA damage and repair:Progress in plants Crit Revs [J]. Biochem Molecul Biol.,2001, 36(4):337-397.
    [38]Adams RLP, Burdon RH.Molecular Biology of DNA Methylation[M]. New York, Berlin, Heidelberg, Tokyo:Springer Verlag.,1985,1-183.
    [39]葛才林,杨晓勇.重金属对水稻和小麦DNA甲基化水平的影响[J].植物生理与分子生物学学报,2002,28(5):363-368.
    [40]康浩,石贵玉,潘文平,梁超红.镉对植物毒害的研究进展[J].安徽农业科学,2008,36(26):11200-11204.
    [41]王焕校.污染生态学[M].北京:高等教育出版社,1999,44-68.
    [42]王正秋.铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响[J].过程工程学报,2002,2(6):558-562.
    [43]纪红梅,张芬琴.Cd2+胁迫与绿豆幼苗生长及有关生理生化变化[J]陕西师范大学学报(自然科学版)2001,29:93-95.
    [44]洪仁远,杨广笑.镉对小麦幼苗生长及超氧物歧化酶过氧化物酶活性的影响[J].天津师大学报(自然科学版),1992,2:48-51.
    [45]郭艳丽,台培东,韩艳萍,冯倩,李培军.镉胁迫对向日葵幼苗生长和生理特性的影响[J].环境工程学报,2009,12(3):2291-2296.
    [46]张司南,高培尧,谢庆恩,赵旭华,李霞.镉诱导拟南芥根尖过氧化氢积累导致植物根生长抑制[J],中国生态农业学报,2010,18(1):136-140.
    [47]刘俊,廖柏寒,周航等.镉胁迫下大豆生长发育的生理生态特征[J].生态学报,2010,30(2):0333-0340.
    [48]张芬琴,孟红梅,沈振,徐朗莱.镉胁迫下绿豆和箭舌豌豆幼苗的抗氧化反应[J]西北植物学报,2006,26(7):1384-1389.
    [49]吴旭红,付本丽.不同浓度镉对苜蓿生长及抗氧化系统的影响[J].黑龙江大 学自然科学学报,2005,22(3):363-365.
    [50]袁祖丽,吴中红,刘秀敏.镉胁迫对烤烟叶片抗氧化系统的影响[J].河南农业科学,2007,6:43-46.
    [51]周红卫,施国新,徐勤松.Cd2+污染水质对水花生根系抗氧化酶活性和超微结构的影响[J].植物生理学通讯,2003,39(3):211-214.
    [52]秦天才,吴玉树,黄巧云等.镉、铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学报,1997,16(3):31-34.
    [53]Sehutzendubel A, Nikolova P, Rudolf C, etal.Cadmium and H2O2-induced Oxidative stress in PoPulus canescens roots [J]. Plant Physiol Biochem,2002,40: 577-584.
    [54]Sheoran IS, Aggarwal N, Singh R.Effect of cadmium and nickel on in vivo carbon dixide exchange rate of pigeon pea(Cajamus cajan L.) [J]. Plant and soil,1990,129: 243-249.
    [55]De Filippis LF, Ziegler H. Effect of sublethal concentration of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena [J]. Plant Physiol, 1993,142:167-172.
    [56]Di Marco G, Tricoli D.Effect of water deficit on photosynthesis and electron trans-port in wheat grown in a natural environment [J]. Plant Physiol,1993,142:156-160.
    [57]Kumara C, Surinde Kumarb S.Photosynthetic activities of Pisumsativum seedings grown in presence of cadmium [J]. Lakshaman Plant Physiology and Biochemistry, 1999,37(4):297-303.
    [58]赵素达,付成秋,朱松龄.镉对石药光合作用和呼吸作用及叶绿素含量的影响[J].青岛海洋大学学报,2000,30(3):519-523.
    [59]杨居荣.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197.
    [60]周青,黄晓华,屠昆岗等.La对Cd伤害大豆幼苗的生态生理作用[J].中国环境科学,1998,18(5):442-445.
    [61]Markham JW, Kremer BP, Sperling KR. Effects of cadmium on Laminaria saccha rina in culture [J]. Mar Ecol Prog Ser,1980,3:31-39.
    [62]Padmaja K.Parsad DDK,Parsad ARK.Inhibition of chlorophy Ⅱ synthesis in Phase-olus vulgaris L. seedlings by cadmium acetate [J]. Photosynthetiea,1990,24:399-404
    [63]Assche F, Clijster H, Effects of metal on enzyme activity in plants [J]. Plant Cell Environ,1990,13:195-206.
    [64]严重玲,洪业汤,付舜珍等.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):488-492.
    [65]孙赛初,王焕校等.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121.
    [66]蒋文智.镉对烟草光合特性的影响[J].植物生理学通讯,1986,6:27-31.
    [67]杨丹慧,许春辉,王可扮等.镉离子对菠菜叶绿体色素蛋白质复合物及激发能分配的影响[J].植物学报,1990,32(3):198-204.
    [68]彭鸣,王焕校,吴玉树.镉·铅诱导的玉米(Zeamays L)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426-431.
    [69]Prasad MNV. Cadmium toxicity and tolerance in vascular plants [J]. Envi.Exper. Botanv,1995,35(4):524-545.
    [70]Prasad MNV. Inhibition of maize leaf chlorophylls, carotenoids and gas exchange functions by cadmium [J]. Photosynthetiea,1995,31(4):635-640.
    [71]李亚藏,梁彦兰,王庆成.镉对茶条槭和五角槭光合作用和叶绿素荧光特性的影响[J].西北植物学报,2009,29(9):1881-1886.
    [72]KastoriR, Petrovie M, Petrovie N, Effect of exces lead, cadmium, copper, and zine on water relations in sunflower [J]. Plant Nutr.,1992,15(11):2424-2439.
    [73]张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报,2006,32(1):1-8.
    [74]Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content,and differentiation in Scots pine roots. Plant Physiol,2001,127(3): 887-898.
    [75]龚雨松等.小麦幼苗根系镉螯合[J].植物生理学报,1990,16(1):19-25.
    [76]段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨[J].植物学报,1995,37(1):14-24.
    [77]常学秀,王焕校.Cd2+、Al3+对蚕豆(Viciafaba L)DNA合成及修复的影响[J].生态学报,1999,19(6):855-859.
    [78]郁建拴.浅谈重金属对生物毒性效应的分子机理[J].环境污染与防治,1996,18(4):28-31.
    [79]苏玲,章永松,林咸永等.维管植物的镉毒和耐性机制[J].植物营养与肥料学报,2000,6(1):106-112.
    [80]Pankovie D, Plesmiear M, Aisenijevic Maksimovie I, et al.Effects of nitrogen on photosynthesis in Cd-treated sunflower plants [J]. Annal of Botany,2000,86(4): 841-847.
    [81]VanAssche F, Clijsters H.Effeets of metal on enzyme aetivity in pants [J]. Plant Cell Environ.,1990,13:195-206.
    [82]Assche F, Clijster H. Effects of metal on enzyme activity in plants [J]. Plant Cell Environ,1990,13:195-206.
    [83]王焕校.污染生态学基础[M].昆明:云南大学出版社,1990,91-108.
    [84]Walker WM, Miller JE, Hassett JJ. Effects of Pb and Cd upon the Ca, Mg, K and P concentration in young corn [J]. Plant Soil Science,1977,124:145-151.
    [85]Prasad MNV. Cadmium toxicity and tolerance in vascular plants [J]. Envir. Exper. Botany,1995,35(4):524-545.
    [86]Sheregin IV, Ivanov VB.Physiological aspects of cadmium and lead toxic effects on higher plants [J].Russian Journal of Plant Physiology,2001,48(4):606-603.
    [87]Guo Yantiang. Up take, distribution, and binding of cadmium and nickel in differ-rent plant species [J]. Plant Nutr.,1995,18(12):2691-2706.
    [88]Obata H et al. Cadmium to lerance of calli induced from roots of plants with differences in cadmium to lerance [J]. Soil Sci.Plant Nutr.,1994,40(2):251-354.
    [89]罗立新,孙铁晰等.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998,18(5):495-499.
    [90]Luna CM, Gonzalez CA, Tripp VS. Oxidative damage caused by on excels of copper in oat leaves [J]. Plant Cell Physiol,1994,35:1-15.
    [91]冀玉良.镉胁迫的生理机制研究进展[J].陕西农业科学,2007,6:124-126.
    [92]程永盛,廖耀平等.磁场处理对农作物产生的效应概述.世界科技研究与发展,2004,26(6):57-60.
    [93]王海林.磁肥在春小麦上的增产效应研究.山西农业科学,2001,29(2):29-31.
    [94]Belyavskaya N.A.. Biological effects due to weak magnetic field on plants [J]. Advances in Space Research,2004,34:1566-1574.
    [95]Mercedes Florez, Maria Victoria Carbonell, et al. Exposure of maize seeds to stationary magnetic field:Effects on germination and early growth. Environmental and Experimental Botany,2007,59:68-75.
    [96]Yao Yinan, Li Yuan, et al. Effect of seeds pretratment by magnetic field on the sensitivity of cucumber(Cucumis sativus) seedings to ultraviolet-B radiation. Environmental and Experimental Botany,2005,54:286-294.
    [97]于海秋,沈秀瑛,白宝璋. 磁场处理种子对玉米籽粒灌浆过程和产量性状的影响[J].沈阳农业大学学报,2001,32(5):339-342.
    [98]刘录祥,王晶,金海强等.零磁空间诱变小麦的生物效应研究[J].核农学报,2002,16(1):2-7.
    [99]吴士筠,卞平官,黄德盈.磁场对水稻染色体G显带核型的影响[J].中南民族学院学报(自然科学版),1995,14(2):6-12.
    [100]郭令威,张富琴,张永矩等. 电激和磁场对大麦诱变的遗传变异研究[J].浙江农业学报,1998,10(3):154-157.
    [101]虞秋成,刘录祥,徐国沾等.零磁空间处理水稻干种子诱变效应研究[J].核农学报,2002,16(3):139-143.
    [102]周凌云,任兆鸿,徐卫华等. 激光加电磁场诱变滇稻“三角大香糯”的育种初探[J].光电子·激光,2002,13(10):1074-1076.
    [103]习岗,傅志东.外磁场对小麦过氧化物酶酶促反应动力学的影响[J].生物物理学报,1992,8(3):512-515.
    [104]彭运生,焉岿然.梯度磁场对水稻幼苗生长发育影响的研究[J].激光生物学,1996,5(3):884-887.
    [105]林廷安等.梯度磁场对农作物产量的影响及其机质的探讨[J].北京农业大学学报,1992,18:357-360.
    [106]杨林楠,王晋,陈德万.恒定磁场对小麦种子的生物物理机制研究[J].西南农业大学学报,1999,21(4):342-344.
    [107]何士敏,张国成.磁化水对大豆种子萌发期和幼苗期抗盐碱性质的影响[J].高师理科学刊.2000,20(1):4144.
    [108]彭海玉,邓政寰.磁处理水对水稻种子萌发的影响[J].广东农业科学,1997,6: 15-16.
    [109]范玲娟.不同磁处理对几种植物生理特性的影响[J].山西大学报,2007,30(1):98-101.
    [110]孙克刚,张子武,焦有等.粉煤灰磁化肥对杂交水稻效应研究[J].土壤通报,2001,32(5):225-227.
    [111]依艳丽,张大庚,谢修鸿等.磁处理种子对小麦生物学性状的影响[J].沈阳农业大学学报,2001,32(5):333-338.
    [112]陈晓春,程文琳,杨佩芳,古润泽.磁化复合肥对新红星苹果树光合作用的影响[J].山西农业大学学报,1996,16(1):16-18.
    [113]李庚新,唐树延.磁场对光合色素分子荧光光谱的影响及其作用机理研究 [J].科学通报,1992,16:1503-1506.
    [114]Serikov A. Vibration spectra of molecular systems exposed to microwaves radiation [J]. J Phisics condensed Matter,1995,7:2755-2766.
    [115]Fritze K, Wiessner C, Kuster N et al. Effect of global system for mobile communication microwave exposure on the genomic response of rate brain [J]. Neuroscience,1997,81(3):627-639.
    [116]刘亚丽,岳树松,刘凌等.磁化水对农作物的生理生化效应[J].河南师范大学学报(自然科学版),2002,30(3):82-84.
    [117]韩士群,邹德乙,高定等.稻苗在磁化营养液中生长状况及吸收K+动力学研究简报[J].土壤通报,2000,31(4):185-187.
    [118]Zubkus V, Stamenkovic, Slobodan. Kinetics of enzymic reactions in a. c. electric field [J]. Biofizicka,1989,34(4):541-544.
    [119]马毅红,徐正敏.臭氧及高压电磁场防治大麦条纹病试验初报[J].宁夏农林科技,2002,3:14-15.
    [120]杨亚玲,李光林.磁场对水稻幼苗抗冷害能力的影响研究[J].西南农业大学学报,1998,20(3):260-262.
    [121]Romana R, Igor J. Weak magnetic field decreases heat stress in cress seedlings [J]. E lectrom ag n. B iol. Med.,2002,21(1):69-80.
    [122]刘新成,李秋祯.磁场和Cu2+对蚕豆幼根生长、细胞分裂和过氧化物酶同工酶谱的影响[J].天津师范大学学报(自然科学版),2000,23(9):27-29.
    [123]Xi G, Fu ZD, Ling J. Change of peroxidase activity in wheat seedlings induced by magnetic field and its response under dehydration condition [J]. Acta Bot Sin,1994, 36(suppl):113-118.
    [124]P iacen T, Pefra T, Edkpia T et al. Senescence delay and change of antioxidant enzyme levels in Cucum is sativus L.etio lated seedlings by EL F magnetic fields [J]. P lant S ci.,2001,161(1):45-53.
    [125]Ruzic R, Vodnik D, Jerman I. Influence of aluminum in biologic effects of elf magnetic field stimulation [J]. Electro Magneto Biol,2000,19(1):57-68.
    [126]Piacentini MP, Fraternale D, Piatti E et al. Senescence delay and change of anti-oxidant enzyme levels in Cucumis sativusL. etiolated seedlings by ELF magnetic fields [J]. Plant Sci,2001,161(1):45-53.
    [127]Garcia RF, Arza PL. Influence of a stationary magnetic field on water relations in lettuce seeds. Part Ⅰ:theoretical considerations [J]. Bioelectromagnetics,2001,22(8): 589-595.
    [128]Souza TE, Porras LE, Casate FR. Effect of magnetic treatment of tomato (Lycopersicon esculentum Mill.) seeds on germination and seedling growth [J]. Hortic Abs,1999,70(8):68-92.
    [129]朱建楚,刘思春,陈建文等.磁环境条件下番茄抗逆性的初探[J].干旱地区农业研究,2001,19(4):58-64.
    [130]Smith G C, Brenman E G, Grenhalgh B J. Cadmium sensitivity of soybean related to efficiency in iron utilization [J]. Enoiron Expeir.Bot,1985,25(2):99-106.
    [131]赫再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004,106-108.
    [132]罗芬兰.外源NO对Cd2+胁迫下绿豆幼苗生长发育的影响及其机理研究[D].陕西:陕西师范大学,2007.
    [133]Beauehamp C, Fridovich I. SuPeroxide dismutase:ImProved assays and an assay applicable to acryl amid egels[J]. AnalBrioche,1971,44(1):276-287.
    [134]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2005,169-179.
    [135]张志良.植物生理学实验指导[M].北京:高等教育出版社,1990,154-155.
    [136]丁海东,齐乃敏,朱为民,万延慧.镉、锌胁迫对番茄幼苗生长及其脯氨酸与谷胱甘肽含量的影响[J].中国生态农业学报,2006,14(2):53-55.
    [137]黄晓华,周青.镧对水培菜豆和玉米幼苗镉胁迫的缓解作用[J].中国稀土学报,2005,23(2):245-249.
    [138]纪淑娟,王俊伟,黄莉萍等.重金属镉胁迫对小麦生长的影响及小麦镉污染预测的研究[J].粮食加工,2008,33(1):51-53.
    [139]杨小光,黄运湘,包海田.土壤添加镉对大豆生长及氮、磷、钾、镉含量和分布的影响[J].湖南农业科学,2008,2:75-79.
    [140]孙建云,王桂萍,沈振国.不同基因型甘蓝对福胁迫的响应[J].南京农业大学学报,2005,28(4):40-44.
    [141]祝建等.低频电磁场与绿豆种子萌发[J].西北植物学报,2003,23(5):792-796.
    [142]尹美强,张家强等.梯度磁场对芝麻种子生物效应的影响[J].中国生态农业学报,2006,14(1):51-53.
    [143]Pietruszewski S. Effect of magnetic seed treatment on yields of wheat [J]. Seed Sci. Technol.,1993,21:621-626.
    [144]Alexander M P, Doijode S D. Electromagnetic field, a novel tool to increase germination and seedling vigour of conserved onion (Allium cepa, L.) and rice (Oryza sativa L.) seeds with low viability [J]. Plant Genet.Resour. Newslett.,1995,104:1-5.
    [145]Florez M, Carbonell M V, Martinez E. Early sprouting and first stages of growth of rice seeds exposed to a magnetic field [J]. Electromagnetobiol.Med.,2004,23(2): 167-176.
    [146]Martinez E, Carbonell M V, Amaya J M. A static magnetic field of 125Mt stimul-ates the initial growth stages of barley (Hordeum vulagare,L.) [J].Electro-Magnetobiol. 2000,19(3):271-277.
    [147]Martinez E, Carbonell M V, Fl'orez M. Magnetic biostimulation of initial growth stages of wheat (Triticum aestivum, L.) [J]. Electromagn.Biol. Med.2002,21(1):43-53.
    [148]Podlesni J, Pietruszewski S, Podlesna A. Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions [J]. Int. Agrophys.,2004, 18(1):65-71.
    [149]Aladjadjiyan A. Study of the influence of magnetic field on some biological char-acteristics of Zea mais. [J]. Central Eur. Agric.,2002,3(2):89-94.
    [150]Asadak K, Yoshikawa K. Univalent reduction of mo lecular oxygen by spinash ch locvop lasts on illumination [J]. J. Biol. Chem.,1974,249:2175-2184.
    [151]林植芳,李双顺.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,6:605-615.
    [152]王建华等.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989,1:1-7.
    [153]黄薇,林栖凤,李冠一等.盐度对秋茄幼苗的某些生理特性的影响[J].海南大学学报(自然版),2002,20(4):328-331.
    [154]Idov ich i FR. Oxygen radicals, hydrogen peroxide, and oxygen toxicity In: PRYORW A, eds. Free Radical in Biology [C]. New York:A cadem ic Press,1976: Chap ter 6.
    [155]Idovichi F R. The biology of oxygen radicals. The syperoxide radical is an agent of oxygen toxicity:superoxide dismutase p rovide an impo rtant defence [J]. Science, 1978,201:875-880.
    [156]王宝山,赵思齐.干旱对小麦幼苗膜脂过氧化及保护酶的影响[J].山东师范大学学报(自然科学版),1987,1:29-37.
    [157]Shutzendubel A, Nikolova P, Rudolf C, et al. Cadmium and H2O2-induced oxidative stress in populus canescens roots [J]. Plant Physiol Biochem,2002,40: 577-584.
    [158]尚庆茂,陈淑芳,张志刚.硒对高温胁迫下辣椒叶片抗氧化酶活性的调节作用[J].园艺学报,2005,32(1):35-35.
    [159]马文丽,金小弟,王转花.镉处理对乌麦种子萌发幼苗生长及抗氧化酶的影响[J].农业环境科学学报,2004,23(1):55-59.
    [160]L.E. Murr. Plant growth response in electrostatic field [J]. Nature,1965,207: 1177-1178.
    [161]Jia-Ming Y, Elects of high-voltage electrostatic field on growth in plants [M]. Proceedings of the International Conference on Modern Electrostatics, Beijing, China, 1988, pp.140-143.
    [162]Morar R, Iuga A, Dascalescu L, Munteanu I, Electric field influence on the bio-logical processes of seeds, Proceedings of the International Symposium on High Volt-age Engineering[M]. Yokohama, Japan,1993, pp.286.
    [163]Morar R, Munteanu R, Simion E, Muteanu I, Dascalescu L, Electrostatic treatm-ent of bean seeds[J]. IEEE-IA,1999,35(1):208-212.
    [164]Kurinobu S, Okazaki Y, Dielectric constant and conductivity of one seed in ger-mination process[M].Annual Conference Record of IEEE/IAS,1995, pp.1329-1334.
    [165]蔡素雯,杨军,张红梅等.磁场处理对玉米幼苗自由基清除系统的影响[J].西北植物学报,1996,16(2):184-188.
    [166]刘赞,翁恩琪,戴雅奇等.极低频电磁场对萌发期大豆的生物学效应[J].应用与环境生物学报,2002,8(5):482-484.
    [167]Townsend JS. The dilusion and mobility of ions in magnetic field, Proc. Roy. Soc. A&B,1912,571-577.
    [168]Johnson C C, Guy A W. Nonionizing electrostatic wave elects in biological materi-als and system [J]. Proc. IEEE,1972,60(6):692-718.
    [169][奥地利]Walter Laucher著.翟志席,郭玉海,马永泽等译.植物生态生理学,第5版[M].北京:中国农业大学出版社,1997,321.
    [170]Weigel H J. The effect of on photosynthetic reaction of mesophyll protoplasts [J]. Physiol Plant,1985,63:192-200.
    [171]Sawhney V, Sheoran IS, Singh R. Nitrogen fixation, photosynthesis and Enzymes of ammonia assimilation and ureide biogenesis in nodules of mung bean(Vigna radiata)grown in presenee of cadmium [J]. Indian J Exp Biol,1990,28:883-886.
    [172]Sheoran I S,Agarwal N, Singh R. Effect of cadmium and miekel on in vivo cathon dioxide exchange rate of pigeon pea(Cajanus cajan L.) [J]. Plant Soil,1990,129: 243-249.
    [173]Sheoran IS, Singal HR, Singh R. Effect of cadmium and niekel on photosynthesis and the enzymes of the photosynthetic carbon reduetion cyele in pigeon pea (Cajanus cajan L.)[J].Photosynth Res,1990,23:345-351.
    [174]Siedleka A, Baszynsky T.Inhibition of election flow around photosystem in chloroplasts of cadmium treated maize plants is due to cadmium induced iron Defiency[J].Physiol Plant,1993,87:199-202.
    [175]Padmaja K,parsad DDK, parsad ARK.Inhibition of chlorophyll synthesis in Phaseolus vulgaris L.seedlings by cadmium acetate[J]. Photosynthetiea,1990,24: 399-404.
    [176]Prasad MNV.Cadmium toxicity and tolerance in vascular plants [J]. Envir. Exper. Botany,1995,35(4):524-545.
    [177]惠俊爱,党志,叶庆生.镉胁迫对玉米光合特性的影响[J].农业环境科学学报,2010,29(2):205-210.
    [178]Baszynski T, Wazada L, Krol M, Wolinsky D. Phytosynthetic activities of cadmium-treated tomato plants [J]. Plant Soil Science,1977,124:145-151.
    [179]杨丹慧,许春辉,赵福洪等.镉离子对菠菜叶绿体光系统的影响[J].植物学报,1989,31(9):702-707.
    [180]陈国祥,施国新,何兵等.Hg、Cd对药菜越冬芽光合膜光化学活性及多肤组分的影响[J].环境科学学报,1999,19(5):521-525.
    [181]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4): 241-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700