沥青稳定碎石技术特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高速公路沥青路面在运营期间出现了较多的反射裂缝、水损坏等病害,而沥青稳定碎石基层凭借在解决以上病害等方面的优势而受到越来越多的重视,但是该混合料在国内使用较少,因此深入研究沥青稳定碎石关键技术特性,对于优化我国道路结构、改善道路使用水平和延长道路服务年限等都具有重要意义。
     本文首先对沥青稳定碎石级配设计进行了研究。通过对粗集料松装、干捣和振实密度的测试,提出了新的粗集料体积指标测试用容量筒规格;基于均匀设计法系统测试了不同粒径矿料对粗集料体积性质的影响;通过车辙试验证实级配对混合料高温性能有重要影响,且粗型沥青稳定碎石混合料抗变形能力未必优于细型混合料;回归分析显示骨架接触度和粗集料干捣空隙率与混合料动稳定度间有良好相关性。汇总以上研究成果,提出了基于粗集料干捣试验的沥青稳定碎石级配设计方法。
     通过混合料路用性能测试,发现使用级配形状表征参数可有效区分不同混合料级配,并可与动稳定度建立良好联系;随车辙板厚度的增加,沥青稳定碎石动稳定度增大,同时变形率数据显示混合料压实厚度不宜超过最大公称粒径的2.5倍;浸水马歇尔试验和冻融劈裂试验数据间具有良好的相关性,且空隙率是决定混合料水稳定性能的主要因素。基于理论分析和室内试验系统研究了混合料抗裂功能,数据显示沥青饱和度可较好预测混合料抗裂性能;轮压对沥青层断裂性能影响显著;使用终裂次数作为混合料冲击韧性试验评价指标,不仅可以有效区分不同混合料的抗裂性能,且可与APA模拟试验结果间建立良好联系。
     开发了新的沥青混合料离析测试仪,能有效模拟现场混合料离析状况;通过集料和沥青混合料的燃烧测试,证实燃烧法可准确测试混合料沥青含量,但是由于烧裂等原因级配测试结果误差较大;混合料离析测试结果显示级配是混合料离析倾向性的主要影响因素,且主要受到9.5mm以下颗粒的作用,沥青含量的影响作用次之,而沥青标号对其影响较小。
Many diseases appear during asphalt pavement operation period of expressway, just as reflection crack and water damage, and asphalt treated base (ATB) have received more attention for its advantage in settling the diseases. According to the less use condition, it have great sense to research the key technique character of ATB for optimizing road structure、improving road employment level and extending road service period.
     Aggregate gradation of ATB is researched firstly. It is brought forward of new kettle specification for coarse aggregate through aggregate loose、dry-rod compact and libration density tests. The effect of different size aggregate on volume character is tested based uniformity design method. It is concluded form rutting test that gradation have great influence on mixture high-temperature performance, and the anti-distortion performance of coarse mixture is not better than fine mixture. Regression analysis proves that there have good pertinence between SSC、VCADRC and mixture dynamic stability. Finally it is putted forward new ATB mixture gradation design method basing on coarse aggregate dry-rod compact test.
     It is found that gradation curve shape index can distinguish effectively different mixture gradation, and have good relation with dynamic stability. ATB mixture’s dynamic stability augments with mixture board thickness increasing, and the thickness do not bigger than 2.5 times of nominal maximum particle size. There have good correlation between Marshall immersion test and freeze thaw split test, and void is the key factor determining the mixture water stability. The anti-crack function is studied though theory analysis and laboratory test, then data proves that VFA can forecast the mixture anti-crack performance preferably. Wheel press have great influence on asphalt layer performance. Final crack time, using as the index of mixture impact tenacity test, can distinguish different mixture efficiently, and establish good correlation with APA test result.
     New mixture segregation test instrument is developed, which can simulate the actual segregation situation. Trough burning test of aggregate and asphalt mixture, it is proved that burning method can testing asphalt content exactly, but gradation result have big error. Test result show that gradation is the key influence factor of mixture segregation, in which the aggregate that is small than 9.5mm have the main effect, and asphalt content have some effect, finally the asphalt grade have little effect.
引文
1.何仁清, ATB-30沥青稳定碎石下面层在工程实践中的应用[J].公路, 2005(10):125-130.
    2. Huang, B., et al., Fundamentals of permeability in asphalt mixtures[J]. Proceedings of the Association of Asphalt Paving Technologists, 1999. 68:479-500.
    3.张起森,沥青路面在美国的应用与发展[J].国外公路, 2001. 21(01):1-5.
    4.潘勐,永久性路面综述[J].北方交通, 2006(08):38-42.
    5. Coree, B. and J.W. Button, Full-scale rutting tests of large-stone asphalt mixtures[J]. Transportation Research Record, 1997:62-72.
    6. Brown, E.R., J.L. McRae, and A. Crawley, Effect of Aggregates on Performance of Bituminous Concrete, Implication of Aggregates in the Design, Construction, and Performance of Flexible Pavement, in ASTM Special Technical Publication 1016. 1989, ASTM.
    7. Brown, E.R. and C.E. Bassett, Effects of maximum aggregate size on rutting potential and other properties of asphalt-aggregate mixtures[J]. Transportation Research Record, 1990(1259):107-119.
    8. Haider, S.W., The use of long term pavement performance data for quantifying the relative effects of structural and environmental factors on the response and performance of new flexible pavements[D], Doctor, Michigan State University, 2005
    9. Sargand, S.M., S. Wu, and J.L. Figueroa, Rational approach for base type selection[J]. Journal of Transportation Engineering, 2006. 132(10):753-762.
    10.陆长兵,大粒径沥青稳定碎石基层性能研究[D],硕士,东南大学,南京, 2004
    11.胡斌,沥青路面柔性基层(沥青稳定碎石)应用研究[D],硕士,长安大学,西安, 2005
    12.蔡声珮,沥青碎石基层在老路改造中的应用研究[J].公路, 2003(12):115-117.
    13.葛折圣,沥青稳定碎石基层混合料矿料级配的优化[J].中国公路学报, 2002. 15(04):4-6.
    14.葛折圣,沥青稳定基层疲劳性能研究[J].华东公路, 2001(03):62-66.
    15. Wong, W.G., Y. Qun, and K.C.P. Wang, Performances of asphalt-treated base and semi-rigid base[J]. Transactions Hong Kong Institution of Engineers, 2003. 10(3):54-58.
    16.许爱丽,大粒径沥青碎石基层沥青路面力学分析[J].河北工业大学学报, 2007. 36(06):115-118.
    17.赵新坡,密级配沥青稳定碎石基层材料与性能研究[D],硕士,长安大学,西安, 2006
    18.王国忠,高寒地区沥青稳定碎石基层柔性路面适应性研究[D],博士,南京林业大学,南京,2006
    19.冯新军,郝培文,查旭东, ATB40在旧水泥混凝土路面改建中的应用技术研究[J].公路, 2007(03):12-16.
    20.李冬仓,朱敏慧,高速公路沥青稳定碎石柔性基层试验段的施工[J].公路交通科技(应用技术版), 2007(06):52-54.
    21.李福普,沥青稳定碎石与级配碎石应用技术研究[J].公路交通科技(应用技术版), 2007(07):42-46.
    22.邱仁科,沥青稳定碎石atb-25的配合比优选及施工工艺研究[J].公路交通科技(应用技术版), 2007(07):47-50.
    23.李立寒,麻旭荣,级配离析沥青混合料性能的试验研究[J].同济大学学报(自然科学版), 2007. 35(12):1622-1626.
    24.胡德明,级配变化对混合料性质及路用性能的影响[J].武汉理工大学学报, 2007. 29(09):47-50.
    25.叶松,大粒径沥青混凝土路用性能及施工特性研究[D],硕士论文,长安大学,西安, 2005
    26.李平,基于胶浆特性的沥青混合料设计[D],博士,长安大学,西安, 2007
    27. Birgisson, B. and R. Roque, Evaluation of the gradation effect on the dynamic modulus[J]. Transportation Research Record, 2005(1929):193-199.
    28. Shen, D.-H., M.-F. Kuo, and J.-C. Du, Properties of gap-aggregate gradation asphalt mixture and permanent deformation[J]. Construction and Building Materials, 2005. 19(2):147-153.
    29.于新,贝雷方法应用探讨[J].公路, 2003(08):83-87.
    30.郝培文,应用贝雷法进行级配组成设计的关键技术[J].长安大学学报(自然科学版), 2004. 24(06):1-6.
    31. Vavrik, W.R., W.J. Pine, and S.H. Carpenter, Aggregate blending for asphalt mix design Bailey method[J]. Transportation Research Record, 2002:146-153.
    32.吕文江,贝雷法参数ca比对沥青混合料性能的影响[J].长安大学学报(自然科学版), 2005. 25(04):5-8.
    33.许志鸿, Superpave级配范围[J].交通运输工程学报, 2003. 3(3):1-6.
    34.林绣贤,论Superpave组成配比的特色[J].华东公路, 2002(1):3-7.
    35. Hand, A.J. and A.L. Epps, Impact of gradation relative to superpave restricted zone on hot-mix asphalt performance[J]. Transportation Research Record, 2001(1767):158-166.
    36. Kandhal, P.S. and R.B. Mallick, Effect of mix gradation on rutting potential of dense-graded asphalt mixtures[J]. Transportation Research Record, 2001(1767):146-151.
    37. Stiady, J., et al. Identification of aggregate role in performance of superpave mixtures employing accelerated testing facility. 2001. Orlando, FL, United States: American Society for Testing and Materials, West Conshohocken, PA 19428-2959, United States.
    38. Zhang, J., et al., Effect of superpave defined restricted zone on hot-mix asphaltperformance[J]. Transportation Research Record, 2004(1891):103-111.
    39.张肖宁,设计沥青混合料[J].哈尔滨建筑大学学报, 2002. 35(1):108-112.
    40. JTG E42,公路工程集料试验规程[S],中华人民共和国交通部, 2005
    41. Lu, W.-J., et al., Effect of CA ratio on asphalt mixture property based on Bailey method[J]. Chang'an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang'an University (Natural Science Edition), 2005. 25(4):5-8.
    42. Pan, T., E. Tutumluer, and S.H. Carpenter, Effect of coarse aggregate morphology on the resilient modulus of hot-mix asphalt[J]. Transportation Research Record, 2005(1929):1-9.
    43. Shu, X., et al. Effect of coarse aggregate angularity on rutting performance of HMA. 2006. Shanghai, China: American Society of Civil Engineers, Reston, VA 20191-4400, United States.
    44.夏之宁,正交设计与均匀设计的初步比较[J].重庆大学学报(自然科学版), 1999. 22(05):112-117.
    45.吴旷怀,张肖宁,密断级配抗滑层沥青混合料设计(英文)[J].东南大学学报(英文版), 2006. 22(01):101-105.
    46.彭波,多级嵌挤密实型沥青混合料路用性能研究[J].重庆交通学院学报, 2005. 24(06):63-66.
    47.刘中林,大粒径沥青混合料组成结构的研究[J].土木工程学报, 2004. 37(07):59-63.
    48. JTG F40,公路沥青路面施工技术规范[S],中华人民共和国交通部, 2004
    49.解晓光,压实工艺对沥青混凝土力学性能的影响[J].东北公路, 2001. 24(02):29-31.
    50.蒋国良,级配和成型方法对沥青混合料性能的影响[J].公路, 2002(06):129-133.
    51.王玲娟,沥青稳定碎石基层混合料设计方法和路用性能研究[D],硕士,长安大学,西安, 2004
    52.张争奇,沥青混合料旋转压实密实曲线信息及其应用[J].中国公路学报, 2005. 18(03):1-6.
    53.李宇峙,沥青混合料压实特性分析[J].公路交通科技, 2005. 22(03):28-34.
    54. McGennis, R.B., et al., Issues pertaining to use of superpave gyratory compactor[J]. Transportation Research Record, 1996(1543):139-144.
    55. Romero, P., et al., Control of superpave gyratory compactor's internal angle of gyration: Experience of the Utah Department of Transportation[J]. Transportation Research Record, 2005(1929):126-132.
    56.袁迎捷,周进川,胡长顺,沥青混合料密实性能[J].交通运输工程学报, 2001(03).
    57.张争奇,袁迎捷,王秉纲,沥青混合料旋转压实密实曲线信息及其应用[J].中国公路学报, 2005(03).
    58. Kanitpong, K., Evaluation of the roles of adhesion and cohesion properties of asphalt binders in moisture damage of HMA[D], Ph.D., The University of Wisconsin - Madison,2005
    59.顾辉,王惠勇,沥青稳定碎石不同成型方法对比研究[J].现代交通技术, 2007. 4(01):12-15.
    60.解晓光,沥青混合料马歇尔击实法与振动压实法成型工艺的比较研究[J].中国公路学报, 2001. 14(01):9-12.
    61.魏建国,基于不同成型方法的沥青碎石混合料性能对比[J].交通运输工程学报, 2007. 7(02):41-45.
    62.曹卫东,集料级配评估的贝雷法[J].中外公路, 2005(01):84-87.
    63.王林,嵌挤密级配沥青混合料抗滑磨耗层的设计方法[J].华东公路, 2001(02):59-63.
    64.何爱军,不同厚度的沥青混合料室内车辙试验研究[J].重庆交通学院学报, 2006. 25(05):58-62.
    65.孟书涛,沥青混合料动稳定度试验的分析[J].公路交通科技, 2005. 22(11):14-17.
    66. JTJ 052,公路工程沥青及沥青混合料试验规程[S],中华人民共和国交通部, 2000
    67.齐琳,张争奇,杨慧军,老化对沥青混合料低温抗裂性能的影响研究[J].郑州大学学报(工学版), 2007. 28(04):100-104.
    68.彭勇,沥青混合料劈裂强度的影响因素[J].吉林大学学报(工学版), 2007. 37(06):1304-307.
    69. Christensen, D.W. and R. Bonaquist Jr. Use of strength tests for evaluating the rut resistance of asphalt concrete. 2002. Colorado Springs, CO, United States: Association of Asphalt Paving Technologist.
    70.邓小华,广深高速公路路面结构使用效果评价[J].中外公路, 2003. 23(05):53-55.
    71.李永波,柔性路面透层沥青的选用与施工[J].华东公路, 2000(04):22-23.
    72.陈则韶,葛新石,顾毓沁,量热技术和热物性测定[M]. 1990,合肥:中国科学技术大学出版社.
    73.罗辉,朱宏平,陈传尧,沥青路面的热粘弹性温度应力分析[J].公路交通科技, 2008. 25(02):6-10.
    74. Mohammad, L.N., B. Huang, and M. Cea. Characterization of HMA mixtures with the asphalt pavement analyzer. 2001. Orlando, FL, United States: American Society for Testing and Materials, West Conshohocken, PA 19428-2959, United States.
    75. Park, D.-W. and A. Epps Martin, Use of the asphalt pavement analyzer and repeated simple shear test at constant height to augment superpave volumetric mix design[J]. Journal of Transportation Engineering, 2003. 129(5):522-530.
    76.邹桂莲,应用冲击韧性评价沥青混合料抵抗反射裂缝能力的研究[J].公路, 2004(10):119-122.
    77.傅志勇,剪切试验评价沥青混合料的高温性能[J].湖南交通科技, 2007. 33(04):24-27.
    78.黎霞,傅志勇,恒高度重复剪切试验评价沥青混合料的高温性能[J].公路与汽运, 2007(06):100-104.
    79. Romero, P. and W.S. Mogawer, Evaluation of ability of superpave shear tester to differentiate between mixtures with different aggregate sizes[J]. Transportation Research Record, 1998(1630):69-76.
    80. Shenoy, A. and P. Romero, Superpave Shear Tester as a Simple Standardized Measure to Evaluate Aggregate-Asphalt Mixture Performance[J]. Journal of Testing and Evaluation, 2001. 29(5):472-484.
    81. Tayebali, A.A., et al., Evaluation of Superpave repeated shear at constant height test to predict rutting potential of mixes: Performance of three pavement sections in North Carolina[J]. Transportation Research Record, 1999(1681):97-105.
    82. Wang, J.-N., C.-K. Yang, and T.-Y. Luo, Mechanistic analysis of asphalt pavements, using superpave shear tester and Hamburg wheel-tracking device[J]. Transportation Research Record, 2001(1767):102-110.
    83.刘涛,沥青路面抗滑磨耗层水损害的原因与对策[J].公路交通技术, 2007(02):1-6.
    84.孙宏宇,半刚性基层沥青路面水损坏的预防对策[J].公路交通科技(应用技术版), 2007(06):162-164.
    85.彭勇,董瑞琨,孙立军,沥青混合料离析评价新方法[J].中南公路工程, 2006. 31(02):4-6.
    86.麻旭荣,李立寒,沥青混合料级配离析判别指标的探讨[J].公路交通科技, 2006. 23(02):48-51.
    87.石红星,沥青混合料中沥青含量的几种测定方法[J].国外公路, 1999(02):48-50.
    88.吴桂金,燃烧法测定沥青混合料中沥青含量应用的探讨[J].公路, 2004(06):123-127.
    89.吴立强,燃烧法测定沥青混合料中沥青含量在威乌高速公路中的应用[J].华东公路, 2008(01):17-20.
    90.赵子安,燃烧法测定沥青含量初探[J].东北公路, 2003. 26(04):55-56.
    91.胡利琼,翟全礼,何晓鸣,高速公路沥青路面离析的检测与处理[J].武汉工业学院学报, 2006. 25(02):67-69.
    92.郭雨佶,高速公路沥青路面离析原因分析与对策[J].中外公路, 2003(01):9-11.
    93.汪海年,郝培文,热拌沥青混合料的工作性测试新方法[J].中外公路, 2006. 26(02):194-196.
    94. Bissada, A.F., COMPACTIBILITY OF ASPHALT PAVING MIXTURES AND RELATION TO PERMANENT DEFORMATION[J]. Transportation Research Record, 1983:1-10.
    95. Celik, O.N. and C.D. Atis, Compactibility of hot bituminous mixtures made with crumb rubber-modified binders[J]. Construction and Building Materials, 2008. 22(6):1143-1147.
    96. Khedaywi, T.S. and T.D. White, Development and analysis of laboratory techniques for simulating segregation[J]. Transportation Research Record, 1995(1492):36-45.
    97. Wang, X., Q. Su, and Z. Wang, High temperature stability and workability of crumb rubber-modified and fibers-reinforced asphalt mixture[J]. Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2006. 30(5):846-849.
    98.孙宏宇,半刚性基层沥青路面水损坏的预防对策[J].公路交通科技(应用技术版), 2007(06):38-39.
    99.李长来,温度对沥青混合料压实性能的影响[J].公路, 1999(12):26-28.
    100.曹加府,方金珠,浅谈沥青混凝土路面施工接缝的处理方法[J].公路, 2008(02):176-177.
    101.于明辉,李大鹏,张旭, SBS改性沥青混凝土路面的施工工艺[J].公路, 2008(02):184-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700