中国近岸海域表层沉积硅藻的地理分布特征及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国近海包括渤海、黄海、东海和南海,是西北太平洋的边缘海,自北向南呈弧状分布。其中,渤海和北黄海受大陆气候影响明显,南黄海和东海受外海暖流(黑潮及其分支)的影响较大,而南海地处亚热带和热带,具有热带深海的特征。硅藻的生物地理特征决定其无论是群落结构、组合特征和分布状态均与太平洋、印度洋等世界上其它海区有一定的区别。了解各海区硅藻的生态分布特征,分析硅藻生态与沉积的对应程度和误差范围,及其与生态环境和沉积条件的关系,探讨各海区沉积物中硅藻生态特征对指示环境的可靠性和特殊性,建立硅藻解释环境的判别指标,对深入研究中国近岸海洋地质资源环境、全球变化及其区域响应、圈层作用与事件地质等具有必要性和重要的科学意义。
     对我国近岸海域新采集的145个表层沉积硅藻样品进行硅藻分析,并在此基础上结合908调查资料、前人成果和历史资料,进行了我国近岸海域表层沉积硅藻分类学研究,分析了我国近岸各海域表层沉积硅藻种属特征以及与前人研究成果的对比,探讨了表层沉积硅藻与环境因子的关系,并尝试建立了它们之间的转换函数。主要研究结果如下:
     (1)研究区内共鉴定出表层沉积硅藻211种(包括变种和变型),隶属43个属。其中,包括2个中国新纪录种:线性圆筛藻混杂变种Coscinodiscus lineatusvar.confusus Chen et Lan和流水双菱藻缢缩变种Surirella fluminensisvar.constricta Chen et Lan;
     (2)与开阔大洋相接水体循环通畅的黄海近岸,硅藻特征在较大范围内相似,而渤海为内海,腹地内近岸受地域环境控制增强,造成各海湾近岸硅藻差异性较大。作为西太平洋边缘浅海的东海、台湾海峡和南海近岸,硅藻种群在较大范围内相似。而台湾海峡和南海处于热带与亚热带过渡地带,受外洋水团控制增强,造成各站位暖水种硅藻含量上升;
     (3)渤海和东海近岸海域沉积硅藻绝对丰度有随水深增加而减小的趋势,黄海近岸海域沉积硅藻绝对丰度随水深分布规律与前两个海域相反,而台湾海峡和南海近岸海域沉积硅藻绝对丰度分布与水深的关系不明显;
     (4)采样水深(h)和冬季海表温度(ST-wi)这两个环境变量对于硅藻的分布起着重要作用。在这两个环境因子中,制约中国近岸海域表层沉积硅藻的分布最重要的环境变量是采样水深(h);
     (5)尝试建立了中国近岸海域现代表层沉积硅藻属种-水深和温度转换函数,但还不能运用到近岸海域全新世的钻孔沉积物中,若想建立一个能适用于中国近岸海域的转换函数的话,还需将近岸海域现代表层沉积硅藻数据库逐步扩展成包括小型硅藻(20~200μm)和微型硅藻(2~20μm)的数据库。
Chinese inshore waters, is the edge of the northwestern Pacific, witharch distribution from north to south, including Bohai Sea, Yellow Sea,East China Sea and South China Sea. Bohai Sea and the north of Yellow Seawas significantly affected by the continental climate, while the southof Yellow Sea and East China Sea was obviously influenced by the warmcurrent in open sea (Kuroshio and its branches). South China Sea waslocated between subtropical and tropical, which has the deep-sea andtropical characteristics. The community structure, portfoliocharacteristics and distribution of state of the diatom in the study areawas different from the Pacific, Indian Ocean and other oceanic areas inthe world because of their bio-geographical characteristics. It had greatsignificance in the academic aspect that to know about the ecologicaldistribution characteristics of diatoms in each sea and to analysis thecorresponding degree and its error range between the ecology and thedeposition of diatoms was, as well as to analysis the relationship betweenthe ecological environment and their deposition conditions. Toinvestigate the reliability and particularity of sediment diatoms in eachsea for using the ecological characteristics to indicate environment andto establishment the discriminant index using diatoms to interpretenvironment was necessary, which would be helpful to the further studyon the inshore marine geological resources and environment, global changeand its regional response, and circle effect and geological events.
     The diatoms in145surface sediment samples freshly obtained fromChinese inshore waters were analyzed. Moreover, based on908survey data,previous results and historical data, taxonomic studies were developed. The characteristics of surface sediment diatom genera and species werealso studied, which were compared with previous results, and so as toexplore relationship between surface sediment diatoms and environmentalfactors. Then try to establish a transfer function between them. The mainfindings were as follows:
     (1)211surface sediment diatom species and their varieties belongedto43genera in the study area were identified. Two new record specieswere found in Chinese inshore waters, which were Coscinodiscus lineatusvar.confusus Chen et Lan and Surirella fluminensis var.constricta Chenet Lan.
     (2) The distribution characteristics of diatoms are similar in a widerange in the Yellow Sea coastal waters, because it contacts closely withthe open ocean. While the Bohai Sea was an inland sea, its coastal waterswas impacted by geographical environments, resulting the distributioncharacteristics of diatoms a larger differences in inshore of every gulf.The inshore waters of the East China Sea, the Taiwan Strait and the SouthChina Sea are the edge of the western Pacific, and the diatom populationsare similar in a wide range. The Taiwan Strait and the South China Sealie in the transition zone between tropical and subtropical areas, whichare impacted by the open sea waters, resulting the content of warm-waterspecies rise in the various stations.
     (3) The absolute abundance of sedimentary diatom decreases in thecoastal waters of the Bohai Sea and the East China Sea with the water depthincreasing. Contrast with the first two waters, the absolute abundanceof sedimentary diatom increases in coastal waters of the Yellow Sea withthe water depth increasing. While the relationship between the absoluteabundance of sedimentary diatom in coastal waters of the Taiwan Straitand the South China Sea and the water depth is not obvious.
     (4) Water depth of sampling (h) and winter sea-surface temperature (WST) play an important role for the diatom distribution. Between theenvironmental factors, water depth of sampling is the most important,controlling the distribution of diatoms in the surface sediments fromChinese inshore waters.
     (5) We have developed a transfer function between modern surfacesediment diatom species in Chinese inshore waters and temperature andwater depth. While they cannot be applied to the Holocene drillingsediments in coastal areas of China. In order to build a transfer functionwhich can be applied to the whole Chinese coastal waters, the modernsurface sediment diatom database in inshore areas should be expanded intoa database which contain minor diatoms and micro diatoms gradually.
引文
[1]鲍颖.全球碳循环过程的数值模拟与分析:[博士学位论文].青岛:中国海洋大学,2011
    [2]黄元辉,黄玥.南海北部15kaBP以来表层海水温度变化_来自海洋硅藻的记录.海洋地质与第四纪地质,2007,27(5):65~74
    [3]陆钧,陈木宏,陈忠.南海南部现代水体与表层沉积硅藻的分布特征.科学通报,2006,51(增刊II):66~70
    [4]谭红建,蔡榕硕,陈际龙,等.全球变暖背景下中国近海表层海温变异及其与东亚季风的关系.气候与环境研究,2011,16(1):94~104
    [5] Stoermer E F, Smol J P. The Diatom: Applications for the Environmental and Earth Sciences:Cambridge University Press,1999.1~482
    [6] Lopes C, Mix A C, Abrantes F. Diatoms in northeast Pacific surface sediments aspaleoceanographic proxies. Marine Micropaleontology,2006,60(1):45~65
    [7] Esper O, Gersonde R, Kadagies N. Diatom distribution in southeastern Pacific surfacesediments and their relationship to modern environmental variables. PalaeogeographyPalaeoclimatology Palaeoecology,2010,287(1-4):1~27
    [8] Pichon J-J, Sikes E L. Comparison of U37k′and diatom assemblage sea surface temperatureestimates with atlas derived data in Holocene sediments from the Southern West IndianOcean. Journal of Marine Systems,1998,17(1):541~554
    [9] Crosta X, Sturm A. Late Quaternary sea ice history in the Indian sector of the Southern Oceanas recorded by diatom assemblages. Marine Micropaleontology,2004,50(3~4):209~223
    [10] Gürel A, Y ld z A. Diatom communities, lithofacies characteristics and paleoenvironmentalinterpretation of Pliocene diatomite deposits in the Ihlara–Selime plain (Aksaray, CentralAnatolia, Turkey). Journal of Asian Earth Sciences,2007,30(1):170~180
    [11] Romero O, Hensen C. Oceanographic control of biogenic opal and diatoms in surfacesediments of the Southwestern Atlantic. Marine Geology,2002,186(3-4):263~280
    [12] Allen J T, Brown L, Sanders R, et al. Diatom carbon export enhanced by silicate upwelling inthe northeast Atlantic. nature,2005,437(29):728~734
    [13] Fitzpatrick Joan J, Alley Richard B. Arctic Paleoclimate Synthesis Thematic Papers.Quaternary Science Reviews,2010,29(15-16):1674~1678
    [14] Miller Gifford H, Alley Richard B. Arctic amplification: can the past constrain the future?Quaternary Science Reviews,2010,29(15-16):1779~1790
    [15] Pike J, Allen C S. Comparison of contemporary and fossil diatom assemblages from thewestern Antarctic Peninsula shelf. Marine Micropaleontology,2008,67(3-4):274~287
    [16] Rosemary D Cody, Richard H Levy. Thinking outside the zone: High-resolution quantitativediatom biochronology for the Antarctic Neogene. Palaeogeography, Palaeoclimatology,Palaeoecology,2008,260(1-2):92~121
    [17] Huber K, Weckstr m K, Drescher-Schneider R, et al. Climate changes during the last glacialtermination inferred from diatom-based temperatures and pollen in a sediment core fromL ngsee (Austria). J Paleolimnol,2009,43(1):131~147
    [18] Woodroffe S A, Long A J. Reconstructing recent relative sea-level changes in WestGreenland: Local diatom-based transfer functions are superior to regional models.Quaternary International,2010,221(1-2):91~103
    [19] Byrne R, Lynn Ingram B, Starratt S, et al. Carbon-Isotope, Diatom, and Pollen Evidence forLate Holocene Salinity Change in a Brackish Marsh in the San Francisco Estuary.Quaternary Research,2001,55(1):66~76
    [20] Brandi B B, Stone J R, Fritz S C. A diatom record of late Holocene climate variation in thenorthern range of Yellowstone National Park, USA. Quaternary International,2008,188:149~155
    [21] Koizumia I, Irinob T, Oba T. Paleoceanography during the last150kyr off central Japanbased on diatom floras. Marine Micropaleontology,2004,53(3):293~365
    [22] Koizumi I, Sato M, Matoba Y. Age and significance of Miocene diatoms and diatomaceoussediments from northeast Japan. Palaeogeography, Palaeoclimatology, Palaeoecology,2009,272(1-2):85~98
    [23] Solovieva N, Jones V, Birks J H B, et al. Diatom responses to20th century climate warmingin lakes from the northern Urals, Russia. Palaeogeography, Palaeoclimatology,Palaeoecology,2008,259(2-3):96~106
    [24]陈敏.北仑河口晚更新世以来的硅藻植物群及其古环境研究:[博士学位论文].武汉:中国地质大学,2011
    [25] Burckle. Size changes in the marine diatom Coscinodiscus nodulifer A. Schmidt in theequatorial Pacific. Micropalaeontology,1977,23(2):216~222
    [26] Sancetta. Oceanography of the North Pacific during the last18.000years:Evidence fromfossil diatoms. Marine Micropaleontology,1979,4(1):103~123
    [27] Hutson. The Agulhas Current during the Late Pleistocene: Analysis of modern faunal analogs.Science,1980,207(4426):64~66
    [28] Vyverman W, Sabbe K. Diatom~temperature transfer functions based on the altitudinalzonation of diatom assemblages in Papua New Guinea a possible tool in the reconstruction ofregional palaeoclimatic changes. Journal of Paleolimnology,1995,13(1):65~77
    [29] Abrantes F, Lopes C. Diatoms in Southeast Pacific surface sediments reflect environmentalproperties. Quaternary Science Reviews,2007,26(1-2):155~169
    [30] Buffen A, Leventer A. Diatom assemblages in surface sediments of the northwestern WeddellSea, Antarctic Peninsula. Marine Micropaleontology,2007,62(1):7~30
    [31] Koizumi I. Diatom-derived SSTs (Td′ratio) indicate warm seas off Japan during themiddle Holocene (8.2-3.3kyr BP). Marine Micropaleontology,2008,69(3-4):263~281
    [32] Cochran U, Neil H. Diatom (63μm) distribution offshore of eastern New Zealand Surfacesediment record and temperature transfer function. Marine Geology,2010,270(1):257~271
    [33] Hassan G S, Espinosa M A, Isla F I. Diatom-based inference model for paleosalinityreconstructions in estuaries along the northeastern coast of Argentina. Palaeogeography,Palaeoclimatology, Palaeoecology,2009,275(1-4):77~91
    [34] Justwan A, Koc N, Jennings A. E. Evolution of the Irminger and East Icelandic Currentsystems through the Holocene, revealed by diatom-based sea surface temperaturereconstructions. Quaternary Science Reviews,2008,27(15-16):1571~1582
    [35] Jousé A P, Kozlova O G, Muhina V V. Distribution of diatoms in the surface layer ofsediment from the Pacific Ocean. In: Riedel W R, Funnell B M (Eds.). TheMicropaleontology of the Oceans. Cambridge: Cambridge University Press,1971.263~269
    [36]程广芬,曹玉强.渤海中、南部表层沉积硅藻的定量分析.中国海洋大学学报(自然科学版),1991,21(04):56~74
    [37]商志文,王宏,车继英,等.渤海湾表层沉积硅藻组合.海洋地质与第四纪地质,2006,26(05):21~26
    [38]李冬玲,范昌福,黄玥,等.渤海湾西北岸中全新世埋藏牡蛎礁的硅藻记录及古环境意义.海洋通报,2009,28(03):22~28
    [39]刘师成,金德祥,蓝东兆.南黄海及东海近岸海域表层沉积硅藻.海洋学报(中文版),1984,5(S1):927~947
    [40]王开发,蒋辉,张玉兰,等.黄海表层沉积物中硅藻分布与环境关系探讨.海洋与湖沼,1985,16(05):400~409
    [41]金德祥,程兆第,林均民,等.东海表层沉积硅藻.海洋学报,1980,2(1):97~110
    [42]金德祥,程兆第,林均民,等.中国海洋底栖硅藻类上卷.北京:海洋出版社,1982.1~323
    [43]俞建銮,张子云,程兆第. Distribution of diatoms in continental shelf of the East China Sea.Acta Oceanologica Sinica,1983,2(01):147~154
    [44]王开发,蒋辉,支崇远,等.东海表层沉积硅藻组合与环境关系研究.微体古生物学报,2001,18(04):379~384
    [45]王开发,郑玉龙,支崇远,等.东海南部陆缘(莆、泉段)全新世沉积硅藻.古生物学报,2002,41(02):273~279
    [46]王开发,支崇远,郑玉龙,等.东海陆缘(闽北段)晚第四纪沉积的硅藻学研究.沉积学报,2002,20(01):135~143
    [47]王开发,支崇远,陶明华.东海陆缘(浙南段)晚第四纪硅藻的发现及古环境分析.微体古生物学报,2003,20(04):350~357
    [48]支崇远,王开发,蓝东兆,等.台湾海峡表层沉积硅藻栖性生态类型及其分布.同济大学学报(自然科学版),2005,33(07):971~975
    [49]范彦斌,李超,吴翔恩.台湾海峡西北部海坛岛东南沿岸上升流对表层沉积硅藻的影响.安徽农业科学,2012,40(1):363~366
    [50]王开发,蒋辉,冯文科.南海深海盆地硅藻组合的发现及其地质意义.海洋学报(中文版),1985,7(05):90~99
    [51]余家桢,张子安.南海中北部沉积硅藻分布的特征与环境的关系.暨南大学学报,1989,10(1):60~69
    [52]冉莉华,蒋辉.南海某些表层沉积硅藻的分布及其古环境意义.微体古生物学报,2005,22(01):97~106
    [53]陆钧.南海深海表层沉积中的硅藻组合及其环境特征.热带海洋,1999,18(1):16~22
    [54]陆钧.南海深海表层沉积硅藻的分布.海洋地质与第四纪地质,2001,21(02):27~30
    [55]陆钧,陈木宏,陈忠.南海南部现代水体与表层沉积硅藻的分布特征.科学通报,2006,51(增刊II):66~70
    [56]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999.1~503
    [57]孙湘平.中国近海区域海洋.北京:海洋出版社,2006.1~376
    [58]李凤岐,苏育嵩.海洋水团分析.青岛:青岛海洋大学出版社,2000.1~397
    [59] Lapointe M. Modern diatom assemblages in surface sediments from the Maritime Estuaryand the Gulf of St. Lawrenee, Quebec (Canada). Marine Micropaleontology,2000,40(1-2):43~65
    [60]支崇远.硅藻与环境-东海南部陆缘硅藻与古环境.北京:科学出版社,2005.1~142
    [61]李扬.中国近海海域微型硅藻的生态学特征和分类学研究:[博士学位论文].厦门:厦门大学,2006
    [62] Jiang H, Seidenkrantza M-S, Knudsena K L, et al. Diatom surface sediment assemblagesaround Iceland and their relationships to oceanic environmental variables. MarineMicropaleontology,2001,41(1-2):73~96
    [63] Schrader H, Gersonde R. Diatoms and silicoflagellates. In: Zachariasse, W (eds).Microplaeontological counting methods and techniques-an excercise on an eight metressection of the lower Pliocene of Capo Rossello, Sicily: Utrecht MicropaleontologicalBulletins,1978.129~176
    [64]金德祥,陈金环,黄凯歌.中国海洋浮游硅藻类.上海:上海科学技术出版社,1965.1~229
    [65]金德祥,程兆第,刘师成,等.中国海洋底栖硅藻类下卷.北京:海洋出版社,1991.1~437
    [66]蓝东兆,程兆弟,刘师成.南海晚第四纪沉积硅藻.北京:海洋出版社,1995.1~138
    [67]程兆第,高亚辉.硅藻彩色图谱.北京:海洋出版社,1996.1~120
    [68]程兆第,高亚辉.中国海藻志(第五卷硅藻门)第二册,羽纹纲1.科学出版社,2012.1~137
    [69]郭玉洁,钱树本.中国海藻志(第五卷硅藻门)第一册,中心纲.北京:科学出版社,2003.1~493
    [70] Hasle G, Syvertsen E E. Marine diatoms. In: Tomas C R (eds). Identifying Marine Diatomsand Dinoflagellates. London: Academic Press Limited,1996.5~385
    [71]沈国英,施并章.海洋生态学(第二版).北京:科学出版社,2002.1~392
    [72] Pokras E M, Molfino B. Oceanographic control of diatom abundances and speciesdistributions in surface sediments of the tropical and southeast Atlantic. MarineMicropaleontology,1986,10(1-3):165~188
    [73] Ter Braak C J F, Smilauer P. CANOCO4.5. Biometris: Wageningen University andResearch Centre,2002.1~500
    [74]黄玥.末次冰期以来南海及日本海硅藻及其古环境变化:[博士学位论文].上海:华东师范大学,2009
    [75] Jiang H, Seidenkrantz M-S, Knudsen K L, et al. Late-Holocene summer sea-surfacetemperature based on a diatom record from the north Icelandic shelf. Holocene,2002,12(2):137~147
    [76] Birks H. J. B. Quantitative Palaeoenvironmental reconstructions. In: Maddy D., Brew J. S.Statistical Modelling of Quaternary Science Data. Cambridge: Quaternary University Press,1995.161~236
    [77] Payne R J, Kishaba K, Blackford J J, et al. Edward A.D. Mitchell Ecology of testate amoebae(Protista) in south-central Alaska peatlands: building transfer-function models forpalaeoenvironmental studies. The Holocene,2006,16(3):403~414
    [78] Ter Braak C J F, Juggins S. Weighted averaging partial least squares regression (WA-PLS):an improved method for reconstructing environmental variables from species assemblages.Hydrobiologia,1993,269:485~502
    [79] Sawai Y, Horton B P, Nagumo T. The development of a diatom-based transfer function alongthe Pacific coast of eastern Hokkadio, northern Japan-an aid in paleoseismic studies of theKurilesubduction zone. Quaternary Science Reviews,2004,23:2467~2483
    [80] Line J M, Ter Braak C J F, Birks H J B. WACALIBversion3.3-a computer program toreconstruct environmental variables from fossil assemblages by weighted averaging and toderive sample-specific errors of prediction. Journal of Paleolimnology,1994,10:147~152
    [81] Horton B R. Quantification of the indicative meaning of a range of Holocene sea-level indexpoints from the western North Sea:[PhD Thesis]. UK: University of Durham.1997
    [82] Zong Y, Horton B P. Diatom-based tidal-level transfer functions as an aid in reconstructingQuaternary history of sea-level movements in the UK. Journal of Quaternary Science,1999,14:153~167
    [83] Upton G., Cook I. Oxford Dictionary of Statistics. New York: Oxford University Press,2006
    [84]庄陈程.利用长江口现代潮滩硅藻建立海平面转换函数的尝试性研究:[硕士学位论文].上海:华东师范大学,2012
    [85]赵一阳,李凤业,DeMaster D. J.,等.南黄海沉积速率和沉积通量的初步研究.海洋与湖沼,1991,22(1):38~43
    [86]李凤业,高抒,贾建军,等.黄、渤海泥质沉积区现代沉积速率.海洋与湖沼,2002,33(4):364~369
    [87]牟德海.大亚湾放射生态学及沉积物的生物地球化学研究:[博士学位论文].广州:暨南大学,2002
    [88]齐君,李凤业,宋金明,等.北黄海沉积速率及其沉积通量.海洋地质与第四纪地质,2004,24(2):9~18
    [89]张志忠,李双林,董岩翔,等.浙江近岸海域沉积物沉积速率及地球化学.海洋地质与第四纪地质,2005,25(3):15~24
    [90]许冬,龙江平,钱江初,等.海南岛近海海域7个沉积岩芯的现代沉积速率及其分布特征.海洋学研究,2008,26(3):9~17
    [91]张荣敏,张桂林,黄博,等.山东半岛近岸海区现代沉积速率分析.海洋地质动态,2009,25(9):15-18
    [92]洪华生.中国区域海洋学-化学海洋学.北京:海洋出版社,2012.1~374
    [93]乔方利.中国区域海洋学-物理海洋学.北京:海洋出版社,2012.1~481
    [94]国家海洋信息中心.海洋科学数据共享中心:海洋信息产品——中国近海及其邻近海域海洋环境图集,2009,http://mds.coi.gov.cn/xxcp_hyhjtj.asp
    [95]中国气象局国家气象中心.中国内海及毗邻海域海洋气候图集.北京:气象出版社,1995
    [96]中国标准化与信息分类编码研究所、国家气象中心. GB/T17297-1998.中国气候区划名称与代码——气候带和气候大区.北京:中国标准化与信息分类编码研究所、国家气象中心,1998
    [97]小泉格(日).硅藻分析.北京:地质出版社,1984.1~100
    [98]黄元辉.应用硅藻释读南海东北部晚第四纪沉积环境:[硕士论文].国家海洋局第三海洋研究所,2005
    [99]蓝东兆.台湾海峡西部海域表层沉积物中硅藻和硅鞭毛藻的分布.台湾海峡,1989,8(04):322~328
    [100]孙美琴.应用硅藻释读南海晚第四纪以来的古环境:[博士学位论文].青岛:中国海洋大学,2009
    [101]詹玉芬.南海中部表层沉积硅藻分布的初步研究.东海海洋,1987,5(1-2):48~59
    [102]王颖.中国区域海洋学-海洋地貌学.北京:海洋出版社,2012.1~676
    [103]檀赛春.真光层辐射特性及其对海洋初级生产力遥感的影响:[博士学位论文].北京:中国科学院大学,2007
    [104] Schuette G, Schrader H. Diatoms in surface sediments: a reflection of coastal upwelling. In:Richards, F A (eds). Coastal Upwelling, Washington: American Geophysical Union,1981.372~380
    [105] Lopes C, Mix A C, Abrantes F. Environmental controls of diatom species in northeastPacific sediments. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,297(1):188~200.
    [106] Jiang H, Seidenkrantza M–S, Knudsena K L, et al. Diatom surface sediment assemblagesaround Iceland and their relationships to oceanic environmental variables. MarineMicropaleontology,2001,41(1-2):73~96.
    [107] Jiang Hui, Zheng Yulong, Ran Lihua, et al. Diatoms from the surface sediments of theSouth China Sea and their relationships to modern hydrography. Marine Micropaleontology,2004,53(1):279~292.
    [108] John H, Birks B. Quantitative Palaeoenvironmental reconstructions. In: Maddy D., Brew J.S. Statistical Modelling of Quaternary Science Data (Technical guides5) Cambridge:Quaternary Research Association,1995.161~254
    [109] Hasle G, SyVertsen E. Marine diatoms. California: Academic Press,1997.5~85
    [110]董旭辉,羊向东,王荣,等.长江中下游地区湖泊硅藻-总磷转换函数.湖泊科学,2006,18(1):1~12
    [111] Ter Braak C J F. Canonical correspondence analysis: a new eigenvector technique formultivariate gradient analysis. Ecology,1986,67:1167~1179
    [112] Jiang H., Bj rck S., Svensson N.-O. Reconstruction of Holocene sea surface salinity in theSkagerrak-Kattegat: a climatic and environmental record of Scandinavia. Journal ofQuaternary Science,1998,13(2):107~114
    [113] Morey A. E., Mix A. C., Pisias N. G. Planktonic foraminiferal assemblages preserved insurface sediments correspond to multiple environment variables. Quaternary ScienceReviews,2005,24:925~950
    [114] McGarigal K., Cushman S., Stafford S. Multivariate Statistics for Wildlife and EcologyResearch. New York, U.S.A.: Springer Science and Business Media Inc,2000.
    [115] Zuur A F, Ieno E N, Smith G M. Analyzing Ecological data. New York: Springer,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700