大鼠海马抑制性氨基酸受体的功能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-氨基丁酸A型受体(GABA_AR)和甘氨酸受体是中枢神经系统两大重要的抑制性受体,根据二者在突触内、外所介导的抑制性电导特性的不同,将其介导的抑制效应分为相位性抑制(phasic inhibition)和紧张性抑制(tonicinhibition)两大类。突触传递过程中,突触前瞬时释放的高浓度神经递质γ-氨基丁酸(GABA)或甘氨酸,作用并激活分布在突触后区域的GABA_AR或甘氨酸受体,导致通道开放而引起氯离子内流,进一步使突触后细胞产生抑制。由于突触释放不是持续存在的,因而突触后受体的激活也是间歇式的。抑制性氨基酸受体的这种间歇式激活所产生的对神经元的抑制称为相位性抑制。抑制性氨基酸受体除了介导由突触内受体产生的相位性抑制以外,近年来的研究越来越关注其介导的另外一种抑制形式——紧张性抑制,紧张性抑制是突触外高亲和力的抑制性氨基酸受体由细胞外本底就持续存在的内源性氨基酸类递质,如GABA、甘氨酸以及牛磺酸等激活而产生。紧张性抑制的特点是,它不像相位性抑制那样严格受突触传递的限制,其介导的抑制效应持续存在,因而,紧张性抑制在控制神经元兴奋性方面被认为比相位性抑制发挥了更为重要的作用。
     在中枢神经系统海马区域,已经有很多有关GABA_AR介导的紧张性抑制的报道。研究认为紧张性抑制不仅参与了海马学习记忆等功能的调节,还参与了像癫痫、经前期焦虑失调等神经系统疾病的发病过程。在海马的不同区域,其介导紧张性抑制的GABA_AR亚基也不尽相同,如齿状回颗粒细胞上的δ亚基、CA1和CA3锥体神经元上的α5亚基,甚至是仅由α和β亚基(不含任何第三类亚基)组成的功能性GABA_AR等都参与了海马神经元紧张性抑制的调节。
     现有的研究认为大脑海马组织内没有功能性甘氨酸能突触,然而却有大量的甘氨酸受体亚基表达,并且无论是在急性分离的海马神经元、体外培养的海马神经元,还是在海马脑片上的研究,都能记录到明显的甘氨酸受体激活的电流。此外,海马神经元细胞外有大量的能激活甘氨酸受体的内源性配体如牛磺酸和β-丙氨酸等存在,这也使甘氨酸受体的激活并发挥功能成为可能。近年来的研究也证明了甘氨酸受体在海马中扮演的功能性角色,它能抑制海马的突触传递,并影响海马的短期可塑性。目前认为,甘氨酸受体的这种功能是通过细胞外持续存在的内源性氨基酸配体(甚至一些未知的调节剂)激活突触外甘氨酸受体,产生紧张性抑制而发挥的。
     虽然紧张性抑制的功能越来越被人们所重视,然而,到目前为止,选择性调节GABA能紧张性抑制的药物并不多见。另外,对高位脑区甘氨酸受体介导的紧张性抑制的功能也在逐渐被揭露。由于紧张性抑制在控制神经元兴奋性方面的重要作用,使得选择性调节紧张性抑制的药物的开发具有很好的前景。
     因此在本课题中,一方面,我们从天然化合物入手,筛选并研究了以薄荷醇(menthol)为代表的萜类化合物对海马抑制性氨基酸受体介导的紧张性抑制的调节作用。另一方面,通过异源表达甘氨酸受体的方法,发现并研究了环噻嗪(cyclothiazide,CTZ)对含有α2亚基的甘氨酸受体的选择性抑制作用及其分子机制。
     1.薄荷醇通过增强GABA能紧张性抑制下调中枢神经元兴奋
     运用电生理方法,我们发现薄荷醇可以降低培养海马神经元的兴奋性。同时行为学实验表明,薄荷醇可以抑制小鼠戊四氮(PTZ)注射以及大鼠电刺激海马点燃所产生的癫痫发作。进一步的机制研究显示,薄荷醇能增强低浓度GABA(与报道的在体动物脑内神经元细胞外空间存在的GABA浓度相接近)在培养的海马神经元上激活GABA_AR所产生的电流。同时相对较高浓度的薄荷醇还可以激活培养海马神经元上的GABA_AR。进一步在海马脑片CA1区锥体神经元上的研究显示,薄荷醇选择性抑制GABA_AR介导的紧张性电流,而对突触部位GABA_AR介导的相位性突触后电流无影响。这些结果因而表明薄荷醇可通过增强GABA_AR介导的紧张性抑制来下调海马神经元的兴奋性。
     为了进一步排除薄荷醇抑制海马神经元兴奋性是否有GABA_AR以外的机制的参与,我们利用电生理的手段,观察了薄荷醇对海马神经元离子型谷氨酸受体和神经元内在兴奋性的影响。实验结果表明薄荷醇不影响谷氨酸对离子型谷氨酸受体的激活,并对微小兴奋性突触后电流(mEPSCs)无影响;同时对在阻断兴奋性和抑制性氨基酸受体离子通道的情况下,薄荷醇对神经元电流注射所产生的动作电位的发放特性无影响。表明薄荷醇不影响神经元的内在膜兴奋性。此外,胞内游离钙离子螯合实验表明薄荷醇对GABA_AR的增强效应不受细胞内游离钙离子浓度的影响。这些结果进一步显示薄荷醇是通过选择性增强GABA_AR介导的紧张性抑制来发挥对海马神经元的抑制。
     紧接着对薄荷醇增强GABA_AR功能的结构效应关系的研究表明,薄荷醇的几种旋光异构体均具有明显的增强GABA_AR的作用。而薄荷醇的醇羟基取代物menthyl chloride和JE207对GABA_AR介导的电流无明显增强作用,因而表明醇羟基在薄荷醇增强GABA_AR方面起关键作用。
     2.薄荷醇对异聚体甘氨酸受体的相对高敏感性抑制
     通过全细胞电压钳技术,我们发现,薄荷醇浓度依赖性地抑制甘氨酸在海马神经元上激活的电流,并且这种抑制作用具有非竞争性和电压不依赖性的特性。同时,薄荷醇对甘氨酸受体的抑制不依赖于其产生的GABA_AR激活。胞内钙离子螯合实验表明这种抑制作用同时也是细胞内游离钙离子浓度不依赖性的。通过对不同给药模式下,薄荷醇抑制甘氨酸电流的特点进行分析表明,薄荷醇可能同时通过变构调控和开放通道阻断两种方式对甘氨酸受体产生抑制效应。进一步在异源表达甘氨酸受体的HEK293T细胞上的研究提示,薄荷醇对含有α2亚基的甘氨酸受体具有更高的敏感性,而甘氨酸异聚体中β亚基的加入,可以进一步增加薄荷醇的敏感性,导致薄荷醇对α2β异聚体甘氨酸受体具有更强的抑制效应。
     3.环噻嗪对含有α2亚基的甘氨酸受体的特异性抑制
     在培养的海马神经元上,致痫剂环噻嗪强有力地抑制甘氨酸激活的电流。其抑制作用具有甘氨酸浓度依赖的特性,对饱和浓度甘氨酸激活的电流,环噻嗪不能产生抑制,因而表明环噻嗪对甘氨酸受体抑制的竞争性特性。在异源表达甘氨酸受体的HEK293T细胞上,我们发现环噻嗪只抑制含有α2亚基的甘氨酸受体所介导的电流,因此表明环噻嗪对甘氨酸受体抑制的α2亚基选择性。由于脊髓神经元甘氨酸受体在发育过程中有着从α2亚基向α1亚基转变的模式,因此,我们在不同培养天数的脊髓神经元上观察了环噻嗪对甘氨酸激活电流的抑制情况,结果表明环噻嗪对体外培养5-7天的脊髓背角神经元上甘氨酸激活的电流具有显著的抑制作用,而随着体外培养时间的延长,到了体外培养两周后,其抑制作用显著减弱。因此进一步证实了环噻嗪对甘氨酸受体抑制作用的α2亚基选择性。
     通过序列比对和点突变的方法,我们对环噻嗪抑制甘氨酸受体的作用位点进行了研究,结果证实α2亚基细胞外N末端第59位上的苏氨酸在环噻嗪抑制含有α2亚基的甘氨酸受体方面起非常重要的作用。
     综上所述,本研究有如下创新之处:1)首次研究并发现了日常生活中广泛应用的天然化合物薄荷醇可以通过调节GABA_AR和甘氨酸受体所介导的紧张性抑制而产生中枢效应。并发现一些其他萜类化合物也能调节GABA_AR介导的效应。2)通过药理学的方法进一步凸显了GABA_AR介导的紧张性抑制在中枢神经系统网络调控方面的重要性,并揭示了紧张性抑制可能作为抗癫痫药物治疗具有前景的靶点。3)发现了环噻嗪可选择性抑制含有α2亚基的甘氨酸受体的功能,并找到了其作用位点。环噻嗪对α2亚基的这种特异性抑制将有可能为研究海马等高级脑区甘氨酸受体的功能提供方便。
GABA_A receptor(GABA_AR)and glycine receptor(GlyR)are two kinds of important inhibitory amino acid receptor in central nervous system(CNS).According to the differential characteristic of inhibitory conductance mediated by synaptic and extrasynaptic receptors,the inhibition induced by inhibitory amino acid system is divided into two forms:phasic inhibition and tonic inhibition.During synaptic transmission,postsynaptic GABA_ARs or GlyRs are activated by high concentration of GABA or glycine released from presynaptic neurons and then exert inhibitory conductance on postsynaptic neuron.Because vesicle release of presynaptic neuron is not persistent,the inhibition induced by the activation of postsynaptic GABA_AR or GlyR is intermittent.Therefore,this kind of intermittent inhibition is named of phasic inhibition which is strictly controlled by synaptic transmission.But over the last decade,diffusional inhibitory transmission mediated by GABA_ARs or GlyRs located outside the synapses and activated by endogenous ligand(such as GABA,glycine and taurine)present in the extracellular space has triggered a great deal of interest.This form of inhibition is named of tonic inhibition which is characterized by uninterrupted inhibitory conductance and is not strictly restricted by synaptic transmission.Tonic inhibition thus plays a more important role in controlling neuronal excitability than phasic inhibition.
     In hippocampus,a lot of studies about GABA_AR mediated tonic inhibition were reported.Tonic inhibition is involved in not only the regulation of learning and memory of hippocampus,but also the nosogenesis of diseases such as epilepsy and premenstrual dysphoric disorder.Different GABA_AR subunit,such asδsubunit in dentate gyrus granule cells andα5 subunit in CA1 and CA3 pyramidal cell, contributes to the tonic conductance in different area of hippocampus.And even, receptors devoid of a third type of subunit,i.e.,only containingαandβsubunits that are highly sensitive to Zn~(2+),have been shown to contribute to the tonic current recorded in hippocampal neurons.
     Although no functional glycinergic synapse was observed in hippocampus,the wide expression of GlyR subunits was revealed by previous studies.Glycine activated current was recorded not only in acutely isolated and cultured hippocampal neurons but also in neurons of hippocampal slices.In addition,endogenous ligand of GlyRs,such as taurine andβ-alanine were highly spread in extracellular space of hippocampus,supporting the possibility of GlyR activation.Recently,some studies have revealed the functional role of GlyR in synaptic transmission and short-term plasticity of hippocampus.The present idea presumes that tonic activation of extrasynaptic GlyR by some endogenous amino acid ligands and modulators exerts the functional role of GlyR in hippocampus.
     Although tonic inhibition triggered a great deal of interest in last year,few selective modulator of tonic inhibition by far was found.In addition,the functional role of tonic inhibition mediated by GlyR was gradually revealed.Therefore, selective modulator of tonic inhibition will become promising drugs for treating disease such as epilepsy.
     In present study,we first investigated the modulatory effects of menthol,a representative terpenoid,on the currents mediated by GABA_AR and GlyR.Besides, through site-directed mutagenesis and exogenously expression of GlyR,we investigatedα2 subunit specificity of cyclothiazide(CTZ)inhibition on GlyR.
     1.Menthol suppresses central neuronal excitation by enhancing tonic GABA inhibition
     Using electrophysiological recording and behavior study of epileptic animals,we found menthol suppressed the excitability of cultured rat hippocampal neurons and the hyper-excitability of CNS neurons induced by pentylenetetrazole(PTZ)injection and electrical kindling in vivo.Menthol enhanced the response of cultured hippocampal neurons to low concentrations of GABA and also activated GABA_AR with higher concentrations of menthol.Furthermore,in the CA1 region of rat hippocampal slices, menthol enhanced tonic GABAergic inhibition while leaving phasic(synaptic) GABAergic inhibition unaffected.These results thus suggest menthol inhibited neuronal excitability through enhancing GABA_AR mediated tonic inhibition in hippocampus.
     In order to rule out that menthol inhibited neuronal excitability through other molecular target,we firstly investigated the effect of menthol on the current activated by glutamate in hippocampal neurons.No significant modulation was observed in the experiments.Secondly,we test the effect of menthol on action potential induced by current injection after blocking excitatory and inhibitory amino acid receptor,and found that the firing characteristic and frequency were not affected by menthol.This result suggests that menthol does not alter the intrinsic neuronal excitability.Lastly,we examine the inhibitory effect of menthol on GABA_AR after chelating extracellular free calcium with BAPTA-AM and observed the similar inhibitory effect with that produced in the absence of BAPTA.Taken together,these results further support that menthol inhibited neuronal excitability through selective enhancement of GABA_AR mediated tonic inhibition.
     Finally,we investigated the effects of menthol isomers and structure-related agents(menthyl chloride,(-)-isopulegol,and JE207)on the current activated by GABA(1μM)in cultured hippocampal neurons.We found that all menthol isomers significantly enhanced GABA-activated current.No significant enhancement was observed by menthyl chloride and JE207 in which the hydroxyl of menthol is substituted by other group.Therefore,the hydroxyl of menthol plays an important role in menthol enhancement of GABA_AR.
     2.Menthol preferentially inhibitsα2βheteromeric glycine receptors
     Using whole-cell voltage-clamp recording,we firstly investigated the effect of menthol on GlyRs in cultured hippocampal neurons.Menthol noncompetitively inhibited glycine-activated currents(I_(Gly))in a concentration-dependent and voltage-independent manner.The inhibitory effect was not influenced by blocking menthol activation of GABA_AR with bicuculline methiodide(BMI)or chelating intracellular free calcium with BAPTA.By analyzing the differential effect of menthol on I_(Gly)with different sequences of drug application,we found that open channel block and allosteric modulation were all involved in the inhibition, suggesting that menthol may inhibit GlyRs via at least two different sites. Furthermore,we assessed the subunit selectivity of menthol inhibition on recombinant GlyRs expressed in HEK293T cells.Menthol did not significantly affect I_(Gly)mediated by recombinantα1 homomeric GlyRs.Although menthol showed a relatively high inhibitory potency for the recombinantα2 GlyRs,it displayed markedly higher potency atαβheteromeric receptors.In summary,these results indicated that menthol directly inhibited GlyRs via at least one allosteric site and another blocking site on the GlyRs.The inhibitory effect of menthol was not the result of cross-inhibition between GlyRs and GABA_ARs.Moreover,the change of intracellular free calcium concentration did not contribute to menthol inhibition of GlyRs.In addition,menthol preferentially inhibitedα2 subunit-containing GlyRs, and theβsubunit also significantly increased the efficacy of menthol inhibition.
     3.Alpha 2 subunit specificity of eyclothiazide inhibition on glyeine receptors
     In cultured rat hippocampal neurons,we found that CTZ,an epilepitogenic agent, potently inhibited I_(Gly).The inhibition was glycine concentration-dependent, suggesting a competitive mechanism.Notably,when being heterologously expressed in HEK293T cells,GlyRs containing theα2 but not oil orα3 subunit were inhibited by CTZ,indicating subunit specificity of CTZ action.In addition,the degree of CTZ inhibition on I_(Gly)in rat spinal neurons declined with time in culture,in parallel with a decline ofα2 subunit expression,which is known to occur during spinal cord development.Furthermore,site-directed mutagenesis indicates that a single amino acid threonine at position 59 near the N-terminal of theα2 subunit confers the specificity of CTZ action.Thus CTZ is a potent and selective inhibitor ofα2-GlyRs, and threonine at position 59 plays a critical role in the susceptibility of GlyR to CTZ inhibition.
     In conclusion,there are several novelties residing in the present studies:1)For the first time,we find that menthol,a widely used natural chemical in daily life, inhibits neuronal excitability of the hippocampus through modulating tonic inhibition mediated by GABA_AR and GlyR.2)Our results underscore the importance of tonic inhibition by GABA_ARs in regulating neuronal activity and reveal that tonic inhibition may be the promising target of treating disease such as epilepsy.3)For the first time,we find that cyclothiazide preferentially inhibitsα2-GlyR which mainly produces tonic inhibition in hippocampus.In addition,the binding site of cyclothiazide on GlyR was also revealed by site-directed mutagenesis.The selective inhibition of cyclothiazide onα2 GlyR may be helpful to explore the functional role ofα2-GlyR in hippocampus.
引文
Akbarian,S.,Kim,J.J.,Potkin,S.G.,Hagman,J.O.,Tafazzoli,A.,Bunney,W.E.,Jr. and Jones, E. G, 1995. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry. 52,258-266.
    Alicke, B. and Schwartz-Bloom, R. D., 1995. Rapid down-regulation of GABAA receptors in the gerbil hippocampus following transient cerebral ischemia. J Neurochem. 65,2808-2811.
    Attwell, D., Barbour, B. and Szatkowski, M., 1993. Nonvesicular release of neurotransmitter. Neuron. 11,401-407.
    Augustine, G. J. and Charlton, M. P., 1986. Calcium dependence of presynaptic calcium current and post-synaptic response at the squid giant synapse. J Physiol.381, 619-640.
    Augustine, G. J., Charlton, M. P. and Smith, S. J., 1985. Calcium entry and transmitter release at voltage-clamped nerve terminals of squid. J Physiol. 367,163-181.
    Austin, J. E. and Buckmaster, P. S., 2004. Recurrent excitation of granule cells with basal dendrites and low interneuron density and inhibitory postsynaptic current frequency in the dentate gyms of macaque monkeys. J Comp Neurol.476,205-218.
    Axelrod, J. and Felder, C. C, 1998. Cannabinoid receptors and their endogenous agonist, anandamide. Neurochem Res. 23,575-581.
    Azad, S. C, Eder, M., Marsicano, G, Lutz, B;, Zieglgansberger, W. and Rammes, G,2003. Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse.Learn Mem. 10, 116-128.
    Bartho, P., Payne, J. A., Freund, T. F. and Acsady, L, 2004. Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei. Eur J Neurosci. 20,965-975.
    Baulac, S., Huberfeld, G, Gourfinkel-An, I., Mitropoulou, G, Beranger, A.,Prud'homme, J. F., Baulac, M., Brice, A., Bruzzone, R. and LeGuern, E., 2001.First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet. 28,46-48.
    Baumann, S. W., Baur, R. and Sigel, E., 2002. Forced subunit assembly in alpha Ibeta2gamma2 GABAA receptors. Insight into the absolute arrangement.J Biol Chem. 277,46020-46025.
    Baumgartner, B. J., Harvey, R. J., Darlison, M. G. and Barnes, E. M, Jr., 1994.Developmental up-regulation and agonist-dependent down-regulation of GABAA receptor subunit mRNAs in chick cortical neurons. Brain Res Mol Brain Res.26,9-17.
    Benes, F. M, Todtenkopf, M. S., Logiotatos, P. and Williams, M., 2000. Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain. In: J Chem Neuroanat), vol. 20. no.3-4, pp. 259-269.
    Benke, D., Fakitsas, P., Roggenmoser, C, Michel, C, Rudolph, U. and Mohler, H.,2004. Analysis of the presence and abundance of GABAA receptors containing two different types of alpha subunits in murine brain using point-mutated alpha subunits. J Biol Chem. 279,43654-43660.
    Berrettini, W. H., Nurnberger, J. I., Jr., Hare, T. A., Simmons-Ailing, S. and Gershon,E. S., 1986. CSF GABA in euthymic manic-depressive patients and controls.Biol Psychiatry. 21, 844-846.
    Berrettini, W. H., Nurnberger, J. I., Jr., Hare, T. A., Simmons-Ailing, S., Gershon, E. S. and Post, R. M., 1983. Reduced plasma and CSF gamma-aminobutyric acid in affective illness: effect of lithium carbonate. Biol Psychiatry. 18,185-194.
    Berrettini, W. H., Umberkoman-Wiita, B., Nurnberger, J. I., Jr., Vogel, W. H.,Gershon, E. S. and Post, R. M, 1982. Platelet GABA-transaminase in affective illness. Psychiatry Res. 7,255-260.
    Bianchi, M. T., Song, L., Zhang, H. and Macdonald, R. L, 2002. Two different mechanisms of disinhibition produced by GABAA receptor mutations linked to epilepsy in humans. J Neurosci. 22,5321-5327.
    Binder, D. K., Croll, S. D., Gall, C. M. and Scharfman, H. E, 2001. BDNF and epilepsy: too much of a good thing? Trends Neurosci. 24,47-53.
    Bohlen, P., Huot, S. and Palfreyman, M. G, 1979. The relationship between GABA concentrations in brain and cerebrospinal fluid. Brain Res. 167,297-305.
    Borden, L. A., Dhar, T. G, Smith, K. E., Branchek, T. A., Gluchowski, C. and Weinshank, R. L., 1994. Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Receptors Channels. 2,207-213.
    
    Borden, L. A., Smith, K. E., Gustafson, E. L, Branchek, T. A. and Weinshank, R. L,1995. Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem. 64, 977-984.
    
    Borden, L. A., Smith, K. E., Hartig, P. R., Branchek, T. A. and Weinshank, R. L,1992. Molecular heterogeneity of the gamma-aminobutyric acid (GABA) transport system. Cloning of two novel high affinity GABA transporters from rat brain. J Biol Chem. 267,21098-21104.
    
    Bormann, J., 2000. The 'ABC of GABA receptors. Trends Pharmacol Sci. 21,16-19.
    Borsini, F., Mancinelli, A., D'Aranno, V., Evangelista, S. and Meli, A., 1988. On the role of endogenous GABA in the forced swimming test in rats. Pharmacol Biochem Behav. 29,275-279.
    Borst, J. G. and Sakmann, B., 1996. Calcium influx and transmitter release in a fast CNS synapse. Nature. 383,431-434.
    
    Breivogel, C. S., Childers, S. R., Deadwyler, S. A., Hampson, R. E., Vogt, L. J. and Sim-Selley, L. J., 1999. Chronic delta9-tetrahydrocannabinol treatment produces a time-dependent loss of cannabinoid receptors and cannabinoid receptor-activated G proteins in rat brain. J Neurochem. 73,2447-2459.
    Brochet, D., Chermat, R., DeFeudis, F. V. and Drieu, K., 1999. Effects of single intraperitoneal injections of an extract of Ginkgo biloba (EGb 761) and its terpene trilactone constituents on barbital-induced narcosis in the mouse. Gen Pharmacol. 33,249-256.
    
    Brooks-Kayal, A. R., Shumate, M. D., Jin, H., Rikhter, T. Y. and Coulter, D. A., 1998. Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med. 4,1166-1172.
    Buhl, E. H., Halasy, K. and Somogyi, P., 1994. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature. 368, 823-828.
    Calignano, A., La Rana, G, Giuffrida, A. and Piomelli, D., 1998. Control of pain initiation by endogenous cannabinoids. Nature. 394,277-281.
    Cammack, J. N., Rakhilin, S. V. and Schwartz, E. A., 1994. A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron. 13,949-960.
    Campos-Caro, A., Sala, S., Ballesta, J. J., Vicente-Agullo, F., Criado, M. and Sala, F.,1996. A single residue in the M2-M3 loop is a major determinant of coupling between binding and gating in neuronal nicotinic receptors. Proc Natl Acad Sci U S A.93,6118-6123.
    Carter, C. S., Robertson, L. C, Chaderjian, M. R., Celaya, L. J. and Nordahl, T. E.,1992. Attentional asymmetry in schizophrenia: controlled and automatic processes. Biol Psychiatry. 31,909-918.
    Casasola, C, Bargas, J., Arias-Montano, J. A., Calixto, E., Montiel, T., Galarraga, E.and Brailowsky, S., 2001. Hippocampal hyperexcitability induced by GABA withdrawal is due to down-regulation of GABA(A) receptors. Epilepsy Res.47,257-271.
    Chan, P. K., Chan, S. C. and Yung, W. H., 1998. Presynaptic inhibition of GABAergic inputs to rat substantia nigra pars reticulata neurones by a cannabinoid agonist.Neuroreport. 9,671-675.
    Chan, P. K. and Yung, W. H., 1998. Occlusion of the presynaptic action of cannabinoids in rat substantia nigra pars reticulata by cadmium. Neurosci Lett.249,57-60.
    Chandra, D., Korpi, E. R., Miralles, C. P., De Bias, A. L. and Homanics, G E., 2005.GABAA receptor gamma2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines.BMC Neurosci. 6,30.
    Chang, Y., Wang, R., Barot, S. and Weiss, D. S., 1996. Stoichiometry of a recombinant GABAA receptor. J Neurosci. 16, 5415-5424.
    Chebib, M. and Johnston, G. A., 2000. GABA-Activated ligand gated ion channels:medicinal chemistry and molecular biology. J Med Chem. 43,1427-1447.
    Cheetham, S. C, Crompton, M. R., Katona, C. L. and Horton, R. W., 1988. Brain 5-HT2 receptor binding sites in depressed suicide victims. Brain Res. 443, 272-280.
    Christgau, S., Aanstoot, H. J., Schierbeck, H., Begley, K., Tullin, S., Hejnaes, K. and Baekkeskov, S., 1992. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J Cell Biol. 118,309-320.
    Clark, J. A., Deutch, A. Y., Gallipoli, P. Z. and Amara, S. G, 1992. Functional expression and CNS distribution of a beta-alanine-sensitive neuronal GABA transporter. Neuron. 9, 337-348.
    Condie, B. G, Bain, G, Gottlieb, D. I. and Capecchi, M. R., 1997. Cleft palate in mice with a targeted mutation in the gamma-aminobutyric acid-producing enzyme glutamic acid decarboxylase 67. Proc Natl Acad Sci U S A. 94,11451-11455.
    Cornblatt, B. A., Lenzenweger, M. F. and Erlenmeyer-Kimling, L, 1989. The continuous performance test, identical pairs version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Res. 29,65-85.
    Cortez, M. A., Wu, Y., Gibson, K. M. and Snead, O. C, 3rd, 2004. Absence seizures in succinic semialdehyde dehydrogenase deficient mice: a model of juvenile absence epilepsy. Pharmacol Biochem Behav. 79, 547-553.
    Cossette, P., Liu, L, Brisebois, K., Dong, H., Lortie, A., Vanasse, M., Saint-Hilaire, J.M., Carmant, L, Verner, A., Lu, W. Y., Wang, Y. T. and Rouleau, G. A., 2002.Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 31,184-189.
    Cotter, D., Landau, S., Beasley, C, Stevenson, R., Chana, G, MacMillan, L. and Everall, I., 2002. The density and spatial distribution of GABAergic neurons,labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry.51,377-386.
    Coull, J. A., Boudreau, D., Bachand, K., Prescott, S. A., Nault, F., Sik, A., De Koninck, P. and De Koninck, Y., 2003. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 424,938-942.
    Crestani, F., Lorez, M., Baer, K., Essrich, C, Benke, D., Laurent, J. P., Belzung, C,Fritschy, J. M., Luscher, B. and Mohler, H., 1999. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci. 2,833-839.
    Czlonkowska, A. I., Krzascik, P., Sienkiewicz-Jaros, H., Siemiqtkowski, M., Szyndler,J., Maciejak, P., Bidzinski, A. and Plaznik, A., 2001. Rapid down-regulation of GABA-A receptors after pretreatment of mice with progesterone. Pol J Pharmacol. 53, 385-388.
    De Biasi, S., Vitellaro-Zuccarello, L. and Brecha, N. C, 1998. Immunoreactivity for the GABA transporter-1 and GABA transporter-3 is restricted to astrocytes in the rat thalamus. A light and electron-microscopic immunolocalization.Neuroscience. 83, 815-828.
    de Lago, E., Fernandez-Ruiz, J., Ortega-Gutierrez, S., Viso, A., Lopez-Rodriguez, M.L. and Ramos, J. A., 2002. UCM707, a potent and selective inhibitor of endocannabinoid uptake, potentiates hypokinetic and antinociceptive effects of anandamide. Eur J Pharmacol. 449,99-103.
    de Lanerolle, N. C, Kim, J. H., Robbins, R. J. and Spencer, D. D., 1989.Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy.In: Brain Res), vol. 495. no. 2, pp. 387-395.
    Deadwyler, S. A., Hampson, R. E., Bennett, B. A., Edwards, T. A., Mu, J., Pacheco,M. A., Ward, S. J. and Childers, S. R., 1993. Cannabinoids modulate potassium current in cultured hippocampal neurons. Receptors Channels. 1,121-134.
    Delpire, E. and Mount, D. B., 2002. Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol. 64, 803-843.
    Diana, M. A., Levenes, C, Mackie, K. and Marty, A., 2002. Short-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids. J Neurosci. 22,200-208.
    Dibbens, L. M., Feng, H. J., Richards, M. C, Harkin, L. A., Hodgson, B. L, Scott, D.,Jenkins, M., Petrou, S., Sutherland, G. R., Scheffer, I. E., Berkovic, S. F.,Macdonald, R. L. and Mulley, J. C, 2004. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet. 13,1315-1319.
    
    Dinkel, K., Meinck, H. M., Jury, K. M., Karges, W. and Richter, W., 1998. Inhibition of gamma-aminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann Neurol. 44,194-201.
    
    Dinkel, K., Rickert, M., Moller, G, Adamski, J., Meinck, H. M. and Richter, W., 2002.Stiff-man syndrome: identification of 17 beta-hydroxysteroid dehydrogenase type 4 as a novel 80-kDa antineuronal antigen. J Neuroimmunol.. 130,184-193.
    
    Dobrunz, L. E. and Stevens, C. F., 1997. Heterogeneity of release probability,facilitation, and depletion at central synapses. Neuron. 18,995-1008.
    
    Dodge, F. A., Jr. and Rahamimoff, R., 1967. Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol. 193,419-432.
    
    Drugan, R. C, Morrow, A. L., Weizman, R., Weizman, A., Deutsch, S. I., Crawley, J.N. and Paul, S. M., 1989. Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res. 487,45-51.
    
    Dzhala, V. I., Talos, D. M., Sdrulla, D. A., Brumback, A. C, Mathews, G C, Benke,T. A, Delpire, E., Jensen, F. E. and Staley, K. J., 2005. NKCC1 transporter facilitates seizures in the developing brain. Nat Med.
    
    Elvevag, B. and Goldberg, T. E., 2000. Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol. 14,1-21.
    
    Feng, H. J., Kang, J. Q., Song, L., Dibbens, L., Mulley, J. and Macdonald, R. L., 2006.Delta subunit susceptibility variants E177A and R220H associated with complex epilepsy alter channel gating and surface expression of alpha4beta2delta GABAA receptors. J Neurosci. 26,1499-1506.
    
    Ferraro, L, Tomasini, M. C, Cassano, T., Bebe, B. W., Siniscalchi, A., O'Connor, W.T., Magee, P., Tanganelli, S., Cuomo, V. and Antonelli, T., 2001. Cannabinoid receptor agonist WIN 55,212-2 inhibits rat cortical dialysate gamma-aminobutyric acid levels. J Neurosci Res. 66,298-302.
    
    Fisher, J. L, 2004. A mutation in the GABAA receptor alpha 1 subunit linked to human epilepsy affects channel gating properties. Neuropharmacology. 46,629-637.
    Flint, A. C, Liu, X. and Kriegstein, A. R., 1998. Nonsynaptic glycine receptor activation during early neocortical development. Neuron. 20,43-53.
    Frahm, C, Engel, D., Piechotta, A., Heinemann, U. and Draguhn, A., 2000. Presence of gamma-aminobutyric acid transporter mRNA in interneurons and principal cells of rat hippocampus. Neurosci Lett. 288,175-178.
    Fritschy, J. M, Kiener, T., Bouilleret, V. and Loup, F., 1999. GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy. Neurochem Int. 34,435-445.
    Galeffi, F., Sah, R., Pond, B. B., George, A. and Schwartz-Bloom, R. D., 2004.Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: effect of diazepam. J Neurosci. 24,4478-4488.
    Gallagher, M. J., Song, L., Arain, F. and Macdonald, R. L., 2004. The juvenile myoclonic epilepsy GABA(A) receptor alphal subunit mutation A322D produces asymmetrical, subunit position-dependent reduction of heterozygous receptor currents and alphal subunit protein expression. J Neurosci. 24,5570-5578.
    Gerner, R. H., Fairbanks, L., Anderson, G M., Young, J. G, Scheinin, M., Linnoila,M., Hare, T. A., Shaywitz, B. A. and Cohen, D. J., 1984. CSF neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. Am J Psychiatry. 141, 1533-1540.
    Gerner, R. H. and Hare, T. A., 1981. CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry. 138,1098-1101.
    Gold, B. I., Bowers, M. B., Jr., Roth, R. H. and Sweeney, D. W., 1980. GABA levels in CSF of patients with psychiatric disorders. Am J Psychiatry. 137, 362-364.
    Gold, J. M., Carpenter, C, Randolph, C, Goldberg, T. E. and Weinberger, D. R., 1997.Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Arch Gen Psychiatry. 54,159-165.
    
    Gram, L., Larsson, O. M., Johnsen, A. H. and Schousboe, A., 1988. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res. 2, 87-95.
    Granger, R. E., Campbell, E. L. and Johnston, G A., 2005. (+)- And (-)-borneol:efficacious positive modulators of GABA action at human recombinant alpha 1 beta2gamma2L GABA(A) receptors. Biochem Pharmacol. 69,1101-1111.
    
    Green, A. R., Cross, A. J., Snape, M. F. and De Souza, R. J., 1992. The immediate consequences of middle cerebral artery occlusion on GABA synthesis in mouse cortex and cerebellum. Neurosci Lett. 138,141-144.
    Grove, J., Schechter, P. J., Hanke, N. F., de Smet, Y., Agid, Y., Tell, G. and Koch-Weser, J., 1982. Concentration gradients of free and total gamma-aminobutyric acid and homocarnosine in human CSF: comparison of suboccipital and lumbar sampling. J Neurochem. 39, 1618-1622.
    Guastella, J., Nelson, N., Nelson, H., Czyzyk, L, Keynan, S., Miedel, M. C,Davidson, N., Lester, H. A. and Kanner, B. I., 1990. Cloning and expression of a rat brain GABA transporter. Science. 249,1303-1306.
    
    Guidotti, A., Auta, J., Davis, J. M, Di-Giorgi-Gerevini, V., Dwivedi, Y, Grayson, D.R., Impagnatiello, F., Pandey, G, Pesold, C, Sharma, R., Uzunov, D. and Costa, E., 2000. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 57,1061 -1069.
    
    Gulacsi, A., Lee, C. R., Sik, A., Viitanen, T., Kaila, K., Tepper, J. M. and Freund, T. F.,2003. Cell type-specific differences in chloride-regulatory mechanisms and GABA(A) receptor-mediated inhibition in rat substantia nigra. J Neurosci. 23,8237-8246.
    
    Gulledge, A. T. and Stuart, G J., 2003. Excitatory actions of GABA in the cortex.Neuron. 37,299-309.
    
    Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I. and Hamberger,A., 1985. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab. 5,413-419.
    
    Hajos, N., Katona, I., Naiem, S. S., MacKie, K., Ledent, C, Mody, I. and Freund, T. F., 2000. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci. 12,3239-3249.
    Hajos, N., Ledent, C. and Freund, T. F., 2001. Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus.Neuroscience. 106,1-4.
    Harkin, L. A., Bowser, D. N., Dibbens, L. M., Singh, R., Phillips, F., Wallace, R. H.,Richards, M. C, Williams, D. A., Mulley, J. C, Berkovic, S. F., Scheffer, I. E.and Petrou, S., 2002. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet. 70,530-536.
    Heckers, S., Stone, D., Walsh, J., Shick, J., Koul, P. and Benes, F. M., 2002.Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry. 59,521-529.
    Heidelberger, R., Heinemann, C, Neher, E. and Matthews, G, 1994. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature. 371,513-515.
    Heinemann, C, Chow, R. H., Neher, E. and Zucker, R. S., 1994. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J. 67,2546-2557.
    Herzberg, U., Eliav, E., Bennett, G J. and Kopin, I. J., 1997. The analgesic effects of R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci Lett. 221,157-160.
    Hevers, W. and Luddens, H., 1998. The diversity of GABAA receptors.Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol Neurobiol. 18,35-86.
    Hiki, K., D'Andrea, R. J., Furze, J., Crawford, J., Woollatt, E., Sutherland, G. R.,Vadas, M. A. and Gamble, J. R., 1999. Cloning, characterization, and chromosomal location of a novel human K+-C1- cotransporter. J Biol Chem.274,10661-10667.
    Hirao, T., Morimoto, K., Yamamoto, Y., Watanabe, T., Sato, H., Sato, K., Sato, S.,
    Yamada, N., Tanaka, K. and Suwaki, H., 1998. Time-dependent and regional expression of GABA transporter mRNAs following amygdala-kindled seizures in rats. Brain Res Mol Brain Res. 54,49-55.
    
    Hoffman, A. F. and Lupica, C. R., 2000. Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J Neurosci. 20,2470-2479.
    
    Hoffman, A. F. and Lupica, C. R., 2001. Direct actions of cannabinoids on synaptic transmission in the nucleus accumbens: a comparison with opioids. J Neurophysiol. 85, 72-83.
    
    Hohmann, A. G. and Herkenham, M., 2000. Localization of cannabinoid CB(1) receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study. Synapse. 37,71-80.
    Huang, E. J. and Reichardt, L. F., 2001. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 24, 677-736.
    Huang, E. J. and Reichardt, L. F., 2003. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 72,609-642.
    
    Ikegaki, N., Saito, N., Hashima, M. and Tanaka, C, 1994. Production of specific antibodies against GABA transporter subtypes (GAT1, GAT2, GAT3) and their application to immunocytochemistry. Brain Res Mol Brain Res. 26,47-54.
    
    Irving, A. J., Coutts, A. A., Harvey, J., Rae, M. G, Mackie, K., Bewick, G S. and Pertwee, R. G, 2000. Functional expression of cell surface cannabinoid CB(1) receptors on presynaptic inhibitory terminals in cultured rat hippocampal neurons. Neuroscience. 98,253-262.
    
    Jennings, E. A., Vaughan, C. W. and Christie, M. J., 2001. Cannabinoid actions on rat superficial medullary dorsal horn neurons in vitro. J Physiol. 534, 805-812.
    Jeon, S. G, Bahn, J. H., Jang, J. S., Jang, S. H., Lee, B. R., Lee, K. S., Park, J., Kang,T. C, Won, M. H., Kim, H. B., Kwo, O. S., Cho, S. W. and Choi, S. Y., 2001.Molecular cloning and functional expression of bovine brain GABA transaminase. Mol Cells. 12, 91-96.
    Jones, D. M., Esmaeil, N., Maren, S. and Macdonald, R. L., 2002. Characterization of pharmacoresistance to benzodiazepines in the rat Li-pilocarpine model of status epilepticus. Epilepsy Res. 50,301-312.
    Kaiya, H., Namba, M, Yoshida, H. and Nakamura, S., 1982. Plasma glutamate decarboxylase activity in neuropsychiatry. Psychiatry Res. 6,335-343.
    Kananura, C, Haug, K., Sander, T., Runge, U., Gu, W., Hallmann, K., Rebstock, J.,Heils, A. and Steinlein, O. K., 2002. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol. 59, 1137-1141.
    Kang, T. C, An, S. J., Park, S. K., Hwang, I. K., Yoon, D. K., Shin, H. S. and Won, M.H., 2002. Changes in Na(+)-K(+)-Cl(-) cotransporter immunoreactivity in the gerbil hippocampus following transient ischemia. Neurosci Res. 44,249-254.
    Kapur, J. and Coulter, D. A., 1995. Experimental status epilepticus alters gamma-aminobutyric acid type A receptor function in CA1 pyramidal neurons.Ann Neurol. 38, 893-900.
    Kapur, J. and Macdonald, R. L, 1997. Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci. 17,7532-7540.
    Kasa, K., Otsuki, S., Yamamoto, M., Sato, M., Kuroda, H. and Ogawa, N., 1982.Cerebrospinal fluid gamma-aminobutyric acid and homovanillic acid in depressive disorders. Biol Psychiatry. 17,877-883.
    Kash, T. L, Jenkins, A., Kelley, J. C, Trudell, J. R. and Harrison, N. L., 2003.Coupling of agonist binding to channel gating in the GABA(A) receptor.Nature. 421, 272-275.
    Katona, I., Rancz, E. A., Acsady, L, Ledent, C, Mackie, K., Hajos, N. and Freund, T.F., 2001. Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GAB Aergic transmission. J Neurosci. 21, 9506-9518.
    Katona, I., Sperlagh, B., Magloczky, Z., Santha, E., Kofalvi, A., Czirjak, S., Mackie,K., Vizi, E. S. and Freund, T. F., 2000. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience. 100,797-804.
    Katz, B. and Miledi, R., 1970. Further study of the role of calcium in synaptic transmission. J Physiol. 207,789-801.
    
    Kavvadias, D., Sand, P., Youdim, K. A., Qaiser, M. Z., Rice-Evans, C, Baur, R., Sigel,E., Rausch, W. D., Riederer, P. and Schreier, P., 2004. The flavone hispidulin,a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br J Pharmacol.142,811-820.
    
    Kneussel, M. and Betz, H., 2000. Receptors, gephyrin and gephyrin-associated proteins: novel insights into the assembly of inhibitory postsynaptic membrane specializations. J Physiol. 525 Pt 1,1-9.
    
    Kudo, T. and Wada, J. A., 1990. The effect of unilateral claustral lesion on intermittent light stimulation induced seizure in D, L-allylglycine treated cats.Jpn J Psychiatry Neurol. 44,436-437.
    
    Lam, D. M., Fei, J., Zhang, X. Y., Tam, A. C, Zhu, L. H., Huang, F., King, S. C. and Guo, L. H., 1993. Molecular cloning and structure of the human (GABATHG) GABA transporter gene. Brain Res Mol Brain Res. 19,227-232.
    Langosch, D., Thomas, L. and Betz, H., 1988. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer.Proc Natl Acad Sci U S A. 85,7394-7398.
    
    Ledoux, V. A. and Woolley, C. S., 2005. Evidence that disinhibition is associated with a decrease in number of vesicles available for release at inhibitory synapses. J Neurosci. 25,971-976.
    Lees, K. R., 1997. Cerestat and other NMDA antagonists in ischemic stroke.Neurology. 49, S66-69.
    Lewis, D. A. and Lieberman, J. A., 2000. Catching up on schizophrenia: natural history and neurobiology. Neuron. 28,325-334.
    
    Li, R. W., Yu, W., Christie, S., Miralles, C. P., Bai, J., Loturco, J. J. and De Blas, A. L,2005. Disruption of postsynaptic GABA receptor clusters leads to decreased GABAergic innervation of pyramidal neurons. J Neurochem. 95, 756-770.
    Lloyd, K. G, Morselli, P. L., Depoortere, H., Fournier, V., Zivkovic, B., Scatton, B.,Broekkamp, C, Worms, P. and Bartholini, G, 1983. The potential use of GABA agonists in psychiatric disorders: evidence from studies with progabide in animal models and clinical trials. Pharmacol Biochem Behav. 18,957-966.
    Lopez-Corcuera, B., Liu, Q. R., Mandiyan, S., Nelson, H. and Nelson, N., 1992.Expression of a mouse brain cDNA encoding novel gamma-aminobutyric acid transporter. J Biol Chem. 267,17491-17493.
    Loscher, W., 1982. Relationship between GABA concentrations in cerebrospinal fluid and seizure excitability. J Neurochem. 38,293-295.
    Loscher, W. and Frey, H. H., 1982. Transport of GABA at the blood-CSF interface. J Neurochem. 38,1072-1079.
    Luhmann, H. J. and Prince, D. A., 1991. Postnatal maturation of the GABAergic system in rat neocortex. JNeurophysiol. 65,247-263.
    Lynch, J. W., Rajendra, S., Pierce, K. D., Handford, C. A., Barry, P. H. and Schofield,P. R., 1997. Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel. Embo J.16,110-120.
    Macdonald, R. L. and Kapur, J., 1999. Acute cellular alterations in the hippocampus after status epilepticus. Epilepsia. 40 Suppl 1, S9-20; discussion S21-22.
    Maloteaux, J. M., Octave, J. N., Gossuin, A., Laterre, C. and Trouet, A., 1987. GABA induces down-regulation of the benzodiazepine-GABA receptor complex in the rat cultured neurons. Eur J Pharmacol. 144,173-183.
    Mangan, P. S., Sun, C, Carpenter, M, Goodkin, H. P., Sieghart, W. and Kapur, J.,2005. Cultured Hippocampal Pyramidal Neurons Express Two Kinds of GABAA Receptors. Mol Pharmacol. 67, 775-788.
    Manzoni,O. J. and Bockaert, J., 2001. Cannabinoids inhibit GABAergic synaptic transmission in mice nucleus accumbens. Eur J Pharmacol. 412, R3-5.
    Marsicano, G and Lutz, B., 1999. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci.11,4213-4225.
    Martin, D. L. and Rimvall, K., 1993. Regulation of gamma-aminobutyric acid synthesis in the brain. J Neurochem. 60,395-407.
    Martin, W. J., Hohmann, A. G. and Walker, J. M., 1996. Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects. J Neurosci. 16,6601-6611.
    
    Mascia, M. P., Mihic, S. J., Valenzuela, C. F., Schofield, P. R. and Harris, R. A., 1996.A single amino acid determines differences in ethanol actions on strychnine-sensitive glycine receptors. Mol Pharmacol. 50,402-406.
    Masereel, B., Rolin, S., Abbate, R, Scozzafava, A. and Supuran, C. T., 2002.Carbonic anhydrase inhibitors: anticonvulsant sulfonamides incorporating valproyl and other lipophilic moieties. J Med Chem. 45, 312-320.
    Massat, I., Souery, D., Del-Favero, J., Oruc, L, Jakovljevic, M., Folnegovic, V.,Adolfsson, R., Kaneva, R., Papadimitriou, G, Dikeos, D., Jazin, E., Milanova,V., Van Broeckhoven, C. and Mendlewicz, J., 2001. Lack of association between GABRA3 and unipolar affective disorder: a multicentre study. Int J Neuropsychopharmacol. 4,273-278.
    
    Massat, L, Souery, D., Del-Favero, J., Oruc, L, Noethen, M. M., Blackwood, D.,Thomson, M., Muir, W., Papadimitriou, G. N., Dikeos, D. G, Kaneva, R.,Serretti, A., Lilli, R., Smeraldi, E., Jakovljevic, M., Folnegovic, V., Rietschel,M., Milanova, V., Valente, F., Van Broeckhoven, C. and Mendlewicz, J., 2002.Excess of allelel for alpha3 subunit GABA receptor gene (GABRA3) in bipolar patients: a multicentric association study. Mol Psychiatry. 7,201-207.
    Matsuda, L. A., 1997. Molecular aspects of cannabinoid receptors. Crit Rev Neurobiol.11, 143-166.
    
    Meldrum, B. S., Menini, C, Naquet, R., Laurent, H. and Stutzmann, J. M., 1979.Proconvulsant, convulsant and other actions of the D- and L-stereoisomers of allylglycine in the photosensitive baboon, Papio papio. Electroencephalogr Clin Neurophysiol. 47,383-395.
    
    Melone, M., Cozzi, A., Pellegrini-Giampietro, D. E. and Conti, R, 2003. Transient focal ischemia triggers neuronal expression of GAT-3 in the rat perilesional cortex. Neurobiol Dis. 14,120-132.
    Meng, I. D., Manning, B. H., Martin, W. J. and Fields, H. L., 1998. An analgesia circuit activated by cannabinoids. Nature. 395, 381-383.
    Mercado, A., Mount, D. B. and Gamba, G, 2004. Electroneutral cation-chloride cotransporters in the central nervous system. Neurochem Res. 29,17-25.
    Miletic, G, Draganic, P., Pankratz, M. T. and Miletic, V., 2003. Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1.Pain. 105,347-353.
    Miller, A. S. and Walker, J. M, 1995. Effects of a cannabinoid on spontaneous and evoked neuronal activity in the substantia nigra pars reticulata. Eur J Pharmacol. 279,179-185.
    Minelli, A, Brecha, N. C, Karschin, C, DeBiasi, S. and Conti, F., 1995. GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci. 15,7734-7746.
    Minelli, A., DeBiasi, S., Brecha, N. C, Zuccarello, L. V. and Conti, F., 1996. GAT-3,a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci. 16,6255-6264.
    Mintz, I. M., Sabatini, B. L. and Regehr, W. G, 1995. Calcium control of transmitter release at a cerebellar synapse. Neuron. 15,675-688.
    Mimics, K., Middleton, F. A., Marquez, A., Lewis, D. A. and Levitt, P., 2000.Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron. 28,53-67.
    Mirsky, A. F., 1969. Neuropsychological bases of schizophrenia. Annu Rev Psychol.20, 321-348.
    Miyazawa, A., Fujiyoshi, Y. and Unwin, N., 2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature. 423, 949-955.
    Mody, I., 2001. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res. 26,907-913.
    Moldrich, G and Wenger, T., 2000. Localization of the CB1 cannabinoid receptor in the rat brain. An immunohistochemical study. Peptides. 21,1735-1742.
    Moore, K. A., Kohno, T., Karchewski, L. A., Scholz, J., Baba, H. and Woolf, C. J.,2002. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 22, 6724-6731.
    
    Morales-Aza, B. M., Chillingworth, N. L, Payne, J. A. and Donaldson, L. F., 2004.Inflammation alters cation chloride cotransporter expression in sensory neurons. Neurobiol Dis. 17,62-69.
    
    Morara, S., Brecha, N. C, Marcotti, W., Provini, L. and Rosina, A., 1996. Neuronal and glial localization of the GABA transporter GAT-1 in the cerebellar cortex.Neuroreport. 7,2993-2996.
    
    Naylor, D. E., Liu, H. and Wasterlain, C. G, 2005. Trafficking of GABA(A) receptors,loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 25, 7724-7733.
    Nelson, H., Mandiyan, S. and Nelson, N., 1990. Cloning of the human brain GABA transporter. FEBS Lett. 269,181 -184.
    
    Northoff, G, Steinke, R., Czcervenka, C, Krause, R., Ulrich, S., Danos, P., Kropf, D.,Otto, H. and Bogerts, B., 1999. Decreased density of GABA-A receptors in the left sensorimotor cortex in akinetic catatonia: investigation of in vivo benzodiazepine receptor binding. J Neurol Neurosurg Psychiatry. 67,445-450.
    Nuechterlein, K. H. and Dawson, M. E., 1984. Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bull. 10,160-203.
    
    Nusser, Z., Sieghart, W. and Somogyi, P., 1998. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells.J Neurosci. 18, 1693-1703.
    
    Okabe, A., Ohno, K., Toyoda, H., Yokokura, M., Sato, K. and Fukuda, A., 2002.Amygdala kindling induces upregulation of mRNA for NKCC1, a Na(+),K(+)-2Cl(-) cotransporter, in the rat piriform cortex. Neurosci Res. 44,225-229.
    
    Orozco-Suarez, S., Brunson, K. L., Feria-Velasco, A. and Ribak, C. E., 2000.Increased expression of gamma-aminobutyric acid transporter-1 in the forebrain of infant rats with corticotropin-releasing hormone-induced seizures but not in those with hyperthermia-induced seizures. Epilepsy Res. 42,141-157.
    Otis, T. S., Staley, K. J. and Mody, I., 1991. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res.545,142-150.
    Papadimitriou, G. N., Dikeos, D. G, Karadima, G, Avramopoulos, D., Daskalopoulou,E. G, Vassilopoulos, D. and Stefanis, C. N., 1998. Association between the GABA(A) receptor alpha5 subunit gene locus (GABRA5) and bipolar affective disorder. Am J Med Genet. 81,73-80.
    Park, S. and Holzman, P. S., 1992. Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry. 49,975-982.
    Pasternack, M., Voipio, J. and Kaila, K., 1993. Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in isolated rat hippocampal pyramidal neurones. Acta Physiol Scand. 148,229-231.
    Patneau, D. K., Vyklicky, L, Jr. and Mayer, M. L., 1993. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J Neurosci. 13,3496-3509.
    Payne, J. A., Rivera, C, Voipio, J. and Kaila, K., 2003. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26,199-206.
    Peng, Z., Huang, C. S., Stell, B. M., Mody, 1. and Houser, C. R., 2004. Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci. 24,8629-8639.
    Perry, E. K., Gibson, P. H., Blessed, G, Perry, R. H. and Tomlinson, B. E., 1977.Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci. 34,247-265.
    Pertwee, R. G, 1997. Pharmacology of cannabinoid CB1 and CB2 receptors.Pharmacol Ther.74, 129-180.
    
    Pertwee, R. G, 2001. Cannabinoid receptors and pain. Prog Neurobiol. 63, 569-611.
    Petrie, J., Sapp, D. W., Tyndale, R. F., Park, M. K., Fanselow, M. and Olsen, R. W.,2001. Altered gabaa receptor subunit and splice variant expression in rats treated with chronic intermittent ethanol. Alcohol Clin Exp Res. 25, 819-828.
    Petty, F., 1994. Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood test for manic depressive disease? Clin Chem. 40,296-302.
    Petty, F., Kramer, G and Feldman, M, 1987. Is plasma GABA of peripheral origin? Biol Psychiatry. 22,725-732.
    Petty, F., Kramer, G. L, Dunnam, D. and Rush, A. J., 1990. Plasma GABA in mood disorders. Psychopharmacol Bull. 26,157-161.
    
    Petty, F., Kramer, G L, Fulton, M., Davis, L. and Rush, A. J., 1995. Stability of plasma GABA at four-year follow-up in patients with primary unipolar depression. Biol Psychiatry. 37, 806-810.
    
    Petty, F., Kramer, G L, Fulton, M., Moeller, R G and Rush, A. J., 1993. Low plasma GABA is a trait-like marker for bipolar illness. Neuropsychopharmacology. 9,125-132.
    
    Petty, F., Kramer, G. L, Gullion, C. M. and Rush, A. J., 1992. Low plasma gamma-aminobutyric acid levels in male patients with depression. Biol Psychiatry. 32,354-363.
    Petty, F. and Schlesser, M. A., 1981. Plasma GABA in affective illness. A preliminary investigation. J Affect Disord. 3,339-343.
    Petty, F. and Sherman, A. D., 1981. GABAergic modulation of learned helplessness.Pharmacol Biochem Behav. 15,567-570.
    Petty, F. and Sherman, A. D., 1984. Plasma GABA levels in psychiatric illness. J Affect Disord. 6,131-138.
    
    Phillis, J. W., Smith-Barbour, M., Perkins, L. M. and O'Regan, M. H., 1994.Characterization of glutamate, aspartate, and GABA release from ischemic rat cerebral cortex. Brain Res Bull. 34,457-466.
    
    Poncelet, M., Martin, P., Danti, S., Simon, P. and Soubrie, P., 1987. Noradrenergic rather than GABAergic processes as the common mediation of the antidepressant profile of GABA agonists and imipramine-like drugs in animals. Pharmacol Biochem Behav. 28,321-326.
    
    Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R. and Seeburg, P. H., 1989. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature. 338,582-585.
    Race, J. E., Makhlouf, F. N., Logue, P. J., Wilson, F. H., Dunham, P. B. and Holtzman,E. J., 1999. Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol. 277, C1210-1219.
    Radian, R., Bendahan, A. and Kanner, B. I., 1986. Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem. 261, 15437-15441.
    Rasola, A., Galietta, L. J., Barone, V., Romeo, G. and Bagnasco, S., 1995. Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett. 373,229-233.
    Redecker, C, Luhmann, H. J., Hagemann, G, Fritschy, J. M. and Witte, O. W., 2000.Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J Neurosci.20,5045-5053.
    Reetz, A., Solimena, M., Matteoli, M., Folli, F., Takei, K. and De Camilli, P., 1991.GABA and pancreatic beta-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. Embo J. 10, 1275-1284.
    Ribak, C. E., Tong, W. M. and Brecha, N. C, 1996a. Astrocytic processes compensate for the apparent lack of GABA transporters in the axon terminals of cerebellar Purkinje cells. Anat Embryol (Berl). 194,379-390.
    Ribak, C. E., Tong, W. M. and Brecha, N. C, 1996b. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol. 367,595-606.
    Richardson, J. D., Kilo, S. and Hargreaves, K. M., 1998. Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors.Pain. 75,111-119.
    Rivera, C, Voipio, J. and Kaila, K., 2005. Two developmental switches in GABAergic signalling: the K+-C1- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol. 562,27-36.
    Rudick, C. N., Gibbs, R. B. and Woolley, C. S., 2003. A role for the basal forebrain cholinergic system in estrogen-induced disinhibition of hippocampal pyramidal cells. J Neurosci. 23,4479-4490.
    Rudick, C. N. and Woolley, C. S., 2001. Estrogen regulates functional inhibition of hippocampal CA1 pyramidal cells in the adult female rat. J Neurosci. 21,6532-6543.
    Sanacora, G, Mason, G. F., Rothman, D. L, Behar, K. L, Hyder, F., Petroff, O. A., Berman, R. M, Charney, D. S. and Krystal, J. H., 1999. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 56,1043-1047.
    Sanacora, G, Mason, G F., Rothman, D. L. and Krystal, J. H., 2002. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry. 159, 663-665.
    Sanudo-Pena, M. C, Tsou, K. and Walker, J. M., 1999. Motor actions of cannabinoids in the basal ganglia output nuclei. Life Sci. 65,703-713.
    Schikorski, T. and Stevens, C. F., 1997. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci. 17,5858-5867.
    Schousboe, A., Sarup, A., Bak, L. K., Waagepetersen, H. S. and Larsson, O. M., 2004.Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem Int. 45,521-527.
    Schwartz-Bloom, R. D. and Sah, R., 2001. gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem. 77,353-371.
    Schwarzer, C, Tsunashima, K., Wanzenbock, C, Fuchs, K., Sieghart, W. and Sperk,G, 1997. GABA(A) receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience. 80,1001-1017.
    Seeburg, P. H., 1990. Elucidating GABAA receptor heterogeneity: an integrated molecular approach. Adv Biochem Psychopharmacol. 46, 15-21.
    Seligman, M. E. and Maier, S. F., 1967. Failure to escape traumatic shock. J Exp Psychol. 74,1-9.
    
    Semyanov, A., Walker, M. C. and Kullmann, D. M., 2003. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci. 6, 484-490.
    Sherif, F. M. and Ahmed, S. S., 1995. Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clin Biochem. 28,145-154.
    Sherman, A. D. and Petty, F., 1980. Neurochemical basis of the action of antidepressants on learned helplessness. Behav Neural Biol. 30,119-134.
    Sherman, A. D. and Petty, F., 1982. Additivity of neurochemical changes in learned helplessness and imipramine. Behav Neural Biol. 35,344-353.
    Shuaib, A., Ijaz, S., Miyashita, H., Mainprize, T. and Kanthan, R., 1994. Progressive decrease in extracellular GABA concentrations in the post-ischemic period in the striatum: a microdialysis study. Brain Res. 666,99-103.
    Sills, G J., 2003. Pre-clinical studies with the GABAergic compounds vigabatrin and tiagabine. Epileptic Disord. 5,51-56.
    Sills, G J., Butler, E., Forrest, G, Ratnaraj, N., Patsalos, P. N. and Brodie, M. J., 2003.Vigabatrin, but not gabapentin or topiramate, produces concentration-related effects on enzymes and intermediates of the GABA shunt in rat brain and retina. Epilepsia. 44, 886-892.
    Sinha, S. R., Wu, L. G. and Saggau, P., 1997. Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses. Biophys J. 72,637-651.
    Smoller, J. W., Rosenbaum, J. F., Biederman, J., Susswein, L. S., Kennedy, J., Kagan,J., Snidman, N., Laird, N., Tsuang, M. T., Faraone, S. V., Schwarz, A. and Slaugenhaupt, S. A., 2001. Genetic association analysis of behavioral inhibition using candidate loci from mouse models. Am J Med Genet. 105,226-235.
    Snow, H., Lowrie, M. B. and Bennett, J. P., 1992. A postsynaptic GABA transporter in rat spinal motor neurones. Neurosci Lett. 143,119-122.
    Soghomonian, J. J. and Martin, D. L., 1998. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci. 19, 500-505.
    Sperk, G, Schwarzer, C, Tsunashima, K., Fuchs, K. and Sieghart, W., 1997.GABA(A) receptor subunits in the rat hippocampus I: immunocytochemical distribution of 13 subunits. Neuroscience. 80, 987-1000.
    Spreafico, R., Battaglia, G, Arcelli, P., Andermann, F., Dubeau, F., Palmini, A.,Olivier, A., Villemure, J. G, Tampieri, D., Avanzini, G. and Avoli, M., 1998.Cortical dysplasia: an immunocytochemical study of three patients. Neurology.50,27-36.
    
    Staley, K. J., Soldo, B. L. and Proctor, W. R., 1995. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science. 269, 977-981.
    Sudhof, T. C, 1995. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 375,645-653.
    
    Sun, M. K., Nelson, T. J., Xu, H. and Alkon, D. L, 1999. Calexcitin transformation of GABAergic synapses: from excitation filter to amplifier. Proc Natl Acad Sci U S A. 96, 7023-7028.
    
    Takahashi, K. A. and Linden, D. J., 2000. Cannabinoid receptor modulation of synapses received by cerebellar Purkinje cells. J Neurophysiol. 83,1167-1180.
    Taylor, C. P., Weber, M. L, Gaughan, C. L, Lehning, E. J. and LoPachin, R. M,1999. Oxygen/glucose deprivation in hippocampal slices: altered intraneuronal elemental composition predicts structural and functional damage.J Neurosci. 19,619-629.
    
    Tersigni, T. J. and Rosenberg, H. C, 1996. Local pressure application of cannabinoid agonists increases spontaneous activity of rat substantia nigra pars reticulata neurons without affecting response to iontophoretically-applied GABA. Brain Res.733,184-192.
    
    Tian, N., Petersen, C, Kash, S., Baekkeskov, S., Copenhagen, D. and Nicoll, R., 1999.The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc Natl Acad Sci U S A. 96,12911-12916.
    
    Toney, M. D., Pascarella, S. and De Biase, D., 1995. Active site model for gamma-aminobutyrate aminotransferase explains substrate specificity and inhibitor reactivities. Protein Sci. 4,2366-2374.
    
    Tsunashima, K., Schwarzer, C, Kirchmair, E., Sieghart, W. and Sperk, G, 1997.GABA(A) receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience. 80, 1019-1032.
    Twitchell, W., Brown, S. and Mackie, K., 1997. Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. J Neurophysiol. 78,43-50.
    Uhlhaas, S., Lange, H., Wappenschmidt, J. and Olek, K., 1986. Free and conjugated CSF and plasma GABA in Huntington's chorea. Acta Neurol Scand. 74,261-265.
    Valeyev, A. Y., Hackman, J. C, Holohean, A. M., Wood, P. M, Katz, J. L. and Davidoff, R. A., 1999. GABA-Induced Cl- current in cultured embryonic human dorsal root ganglion neurons. J Neurophysiol. 82,1-9.
    Van Sickle, M. D., Duncan, M, Kingsley, P. J., Mouihate, A., Urbani, P., Mackie, K.,Stella, N., Makriyannis, A., Piomelli, D., Davison, J. S., Marnett, L. J., Di Marzo, V., Pittman, Q. J., Patel, K. D. and Sharkey, K. A., 2005. Identification and functional characterization of brainstem cannabinoid CB2 receptors.Science. 310,329-332.
    Vasconcelos, O. M. and Dalakas, M. C, 2003. Stiff-person Syndrome. Curr Treat Options Neurol. 5,79-90.
    Vaughan, C. W., McGregor, I. S. and Christie, M. J., 1999. Cannabinoid receptor activation inhibits GABAergic neurotransmission in rostral ventromedial medulla neurons in vitro. Br J Pharmacol. 127, 935-940.
    Vawter, M. P., Crook, J. M., Hyde, T. M., Kleinman, J. E., Weinberger, D. R., Becker,K. G and Freed, W. J., 2002. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res. 58,11-20.
    Viola, H., Wasowski, C, Levi de Stein, M., Wolfman, C, Silveira, R., Dajas, F.,Medina, J. H. and Paladini, A. C, 1995. Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med. 61,213-216.
    Volk, D., Austin, M., Pierri, J., Sampson, A. and Lewis, D., 2001. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry. 158,256-265.
    Volk, D. W., Austin, M. C, Pierri, J. N., Sampson, A. R. and Lewis, D. A., 2000.Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 57,237-245.
    
    Waagepetersen, H. S., Sonnewald, U. and Schousboe, A., 2003. Compartmentation of glutamine, glutamate, and GABA metabolism in neurons and astrocytes:functional implications. Neuroscientist. 9, 398-403.
    
    Walker, J. M., Huang, S. M., Strangman, N. M., Tsou, K. and Sanudo-Pena, M. C,1999. Pain modulation by release of the endogenous cannabinoid anandamide.Proc Natl Acad Set U S A. 96,12198-12203.
    
    Wallace, R. H., Marini, C, Petrou, S., Harkin, L. A., Bowser, D. N., Panchal, R. G,Williams, D. A., Sutherland, G. R., Mulley, J. C, Scheffer, I. E. and Berkovic,S. F., 2001. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 28,49-52.
    
    Wallmichrath, I. and Szabo, B., 2002. Analysis of the effect of cannabinoids on GABAergic neurotransmission in the substantia nigra pars reticulata. Naunyn Schmiedebergs Arch Pharmacol. 365,326-334.
    
    Wang, H., Hui, K. M, Chen, Y., Xu, S., Wong, J. T. and Xue, H., 2002.Structure-activity relationships of flavonoids, isolated from Scutellaria baicalensis, binding to benzodiazepine site of GABA(A) receptor complex.PlantaMed.68,1059-1062.
    
    Watabe, A. M., Carlisle, H. J. and O'Dell, T. J., 2002. Postsynaptic induction and presynaptic expression of group 1 mGluR-dependent LTD in the hippocampal CA1 region. J Neurophysiol. 87,1395-1403.
    
    White, H. S., Sarup, A., Bolvig, T., Kristensen, A. S., Petersen, G, Nelson, N.,Pickering, D. S., Larsson, O. M., Frolund, B., Krogsgaard-Larsen, P. and Schousboe, A., 2002. Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-l,2-benzisoxazoIe and its N-alkylated analogs. J Pharmacol Exp Ther. 302,636-644.
    Wittner, L, Eross, L., Czirjak, S., Halasz, P., Freund, T. F. and Magloczky, Z., 2005.Surviving CAl pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Brain. 128,138-152.
    Wu, L. G and Saggau, P., 1997. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci. 20,204-212.
    Yamauchi, A., Uchida, S., Kwon, H. M., Preston, A. S., Robey, R. B., Garcia-Perez,A., Burg, M. B. and Handler, J. S., 1992. Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem. 267,649-652.
    Yan, X. X. and Ribak, C. E., 1998a. Developmental expression of gamma-aminobutyric acid transporters (GAT-1 and GAT-3) in the rat cerebellum: evidence for a transient presence of GAT-1 in Purkinje cells.Brain Res Dev Brain Res. 111, 253-269.
    Yan, X. X. and Ribak, C. E., 1998b. Increased expression of GABA transporters,GAT-1 and GAT-3, in the deafferented superior colliculus of the rat. Brain Res.783,63-76.
    Yan, Y, Dempsey, R. J. and Sun, D., 2001. Na+-K+-Cl- cotransporter in rat focal cerebral ischemia. J Cereb Blood Flow Metab. 21,711-721.
    Young-Pearse, T. L, Ivic, L, Kriegstein, A. R. and Cepko, C. L, 2006.Characterization of mice with targeted deletion of glycine receptor alpha 2. Mol Cell Biol. 26,5728-5734.
    Zhang, L, Spigelman, I. and Carlen, P. L., 1991. Development of GABA-mediated,chloride-dependent inhibition in CAl pyramidal neurones of immature rat hippocampal slices. J Physiol. 444, 25-49.
    Atack,J.R.,Bayley,P.J.,Seabrook,G.R.,Wafford,K.A.,McKernan,R.M.and
    Dawson, G. R., 2006. L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for alpha5-containing GABA_A receptors.Neuropharmacology. 51,1023-1029.
    
    Attwell, D., Barbour, B. and Szatkowski, ML, 1993. Nonvesicular release of neurotransmitter. Neuron. 11,401-407.
    
    Bai, D., Zhu, G, Pennefather, P., Jackson, M. F., MacDonald, J. F. and Orser, B. A.,2001. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol Pharmacol. 59, 814-824.
    
    Belelli, D., Casula, A., Ling, A. and Lambert, J. J., 2002. The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors.Neuropharmacology.43,651-661.
    
    Belelli, D. and Lambert, J. J., 2005. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci. 6, 565-575.
    
    Bianchi, M. T. and Macdonald, R. L., 2003. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci. 23,10934-10943.
    
    Borghese, C. M., Storustovu, S., Ebert, B., Herd, M. B., Belelli, D., Lambert, J. J.,Marshall, G, Wafford, K. A. and Harris, R. A., 2006. The delta subunit of gamma-aminobutyric acid type A receptors does not confer sensitivity to low concentrations of ethanol. J Pharmacol Exp Ther. 316,1360-1368.
    
    Brickley, S. G, Cull-Candy, S. G and Farrant, M., 1996. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol. 497 (Pt 3), 753-759.
    
    Bright, D. P., Aller, M. I. and Brickley, S. G, 2007. Synaptic release generates a tonic GABA(A) receptor-mediated conductance that modulates burst precision in thalamic relay neurons. J Neurosci. 27,2560-2569.
    
    Brown, N., Kerby, J., Bonnert, T. P., Whiting, P. J. and Wafford, K. A., 2002.Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol. 136,965-974.
    
    Burgard, E. C, Tietz, E. I., Neelands, T. R. and Macdonald, R. L, 1996. Properties of recombinant gamma-aminobutyric acid A receptor isoforms containing the alpha 5 subunit subtype. Mol Pharmacol. 50,119-127.
    Buzsaki, G. and Chrobak, J. J., 1995. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol. 5,504-510.
    Caraiscos, V. B, Elliott, E. M., You-Ten, K. E., Cheng, V. Y., Belelli, D., Newell, J. G,Jackson, M. F., Lambert, J. J., Rosahl, T. W., Wafford, K. A., MacDonald, J.F.and Orser, B. A., 2004a. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A. 101,3662-3667.
    Caraiscos, V. B, Newell, J. G, You-Ten, K. E., Elliott, E. M, Rosahl, T. W., Wafford,K. A., MacDonald, J. F. and Orser, B. A., 2004b. Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. J Neurosci. 24, 8454-8458.
    
    Carta, M., Mameli, M. and Valenzuela, C. F., 2004. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci. 24, 3746-3751.
    Cavelier, P., Hamann, M., Rossi, D., Mobbs, P. and Attwell, D., 2005. Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog Biophys Mol Biol. 87, 3-16.
    Chadderton, P., Margrie, T. W. and Hausser, M., 2004. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428, 856-860.
    Chandra, D., Jia, F., Liang, J., Peng, Z., Suryanarayanan, A., Werner, D. F., Spigelman,I., Houser, C. R., Olsen, R. W., Harrison, N. L. and Homanics, G. E., 2006. GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc Natl Acad Sci USA. 103,15230-15235.
    
    Chen, N. H., Reith, M. E. and Quick, M. W., 2004. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6.PflugersArch.447, 519-531.
    Cheng, V. Y., Martin, L. J., Elliott, E. M., Kim, J. H., Mount, H. T., Taverna, F. A.,Roder, J. C, Macdonald, J. F., Bhambri, A., Collinson, N, Wafford, K. A. and Orser, B. A., 2006. Alpha5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J Neurosci. 26,3713-3720.
    
    Chiu, C. S., Brickley, S., Jensen, K., Southwell, A., McKinney, S., Cull-Candy, S.,Mody, I. and Lester, H. A., 2005. GABA transporter deficiency causes tremor,ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci. 25,3234-3245.
    
    Chiu, C. S., Jensen, K., Sokolova, I., Wang, D., Li, M., Deshpande, P., Davidson, N.,Mody, I., Quick, M. W., Quake, S. R. and Lester, H. A., 2002. Number,density, and surface/cytoplasmic distribution of GABA transporters at presynaptic structures of knock-in mice carrying GABA transporter subtype 1-green fluorescent protein fusions. J Neurosci. 22,10251-10266.
    
    Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. and Somogyi, P., 1995.Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 378, 75-78.
    
    Collinson, N., Kuenzi, F. M., Jarolimek, W., Maubach, K. A., Cothliff, R., Sur, C,Smith, A., Otu, F. M., Howell, O., Atack, J. R., McKernan, R. M., Seabrook, G.R., Dawson, G. R., Whiting, P. J. and Rosahl, T. W., 2002. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. J Neurosci. 22,5572-5580.
    
    Cope, D. W., Hughes, S. W. and Crunelli, V., 2005. GABAA receptor-mediated tonic inhibition in thalamic neurons. J Neurosci. 25,11553-11563.
    
    Dawson, G. R., Maubach, K. A., Collinson, N., Cobain, M., Everitt, B. J., MacLeod,A. M., Choudhury, H. I., McDonald, L. M., Pillai, G, Rycroft, W., Smith, A. J.,Sternfeld, F., Tattersall, F. D., Wafford, K. A., Reynolds, D. S, Seabrook, G R.and Atack, J. R., 2006. An inverse agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther.316,1335-1345.
    
    Demarque, M., Represa, A., Becq, H., Khalilov, I., Ben-Ari, Y. and Aniksztejn, L., 2002. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron. 36, 1051-1061.
    Drasbek, K. R. and Jensen, K., 2006. THIP, a hypnotic and antinociceptive drug,enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex. 16,1134-1141.
    Farrant, M. and Nusser, Z., 2005. Variations on an inhibitory theme: phasic and tonic activation of GAB A(A) receptors. Nat Rev Neurosci. 6,215-229.
    Freund, T. F., 2003. Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26,489-495.
    Galarreta, M. and Hestrin, S., 2001. Electrical synapses between GABA-releasing interneurons. Nat Rev Neurosci. 2,425-433.
    Gether, U., Andersen, P. H., Larsson, O. M. and Schousboe, A., 2006.Neurotransmitter transporters: molecular function of important drug targets.Trends Pharmacol Sci. 27,375-383.
    Givens, B. S. and Breese, G R., 1990. Electrophysiological evidence that ethanol alters function of medial septal area without affecting lateral septal function. J Pharmacol Exp Then 253,95-103.
    Glykys, J. and Mody, I., 2006. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J Neurophysiol. 95,2796-2807.
    Glykys, J. and Mody, I., 2007a. Activation of GABA(A) Receptors: Views from Outside the Synaptic Cleft. Neuron. 56,763-770.
    Glykys, J. and Mody, I., 2007b. The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol. 582, 1163-1178.
    Grobin, A. C, Matthews, D. B., Devaud, L. L. and Morrow, A. L., 1998. The role of GABA(A) receptors in the acute and chronic effects of ethanol.Psychopharmacology (Berl). 139,2-19.
    Haas, K. F. and Macdonald, R. L., 1999. GABAA receptor subunit gamma2 and delta subtypes confer unique kinetic properties on recombinant GABAA receptor currents in mouse fibroblasts. J Physiol. 514 (Pt 1), 27-45.
    Hamann, M., Rossi, D. J. and Attwell, D., 2002. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron. 33,625-633.
    Hanchar, H. J., Chutsrinopkun, P., Meera, P., Supavilai, P., Sieghart, W., Wallner, M.and Olsen, R. W., 2006. Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to alpha4/6beta3delta GABAA receptors.Proc Natl Acad Sci US A. 103, 8546-8551.
    Hanchar, H. J., Dodson, P. D., Olsen, R. W., Otis, T. S. and Wallner, M., 2005.Alcohol-induced motor impairment caused by increased extrasynaptic GABA(A) receptor activity. Nat Neurosci. 8, 339-345.
    Harris, R. A., Mihic, S. J., Brozowski, S., Hadingham, K. and Whiting, P. J., 1997.Ethanol, flunitrazepam, and pentobarbital modulation of GABAA receptors expressed in mammalian cells and Xenopus oocytes. Alcohol Clin Exp Res.21,444-451.
    Hevers, W. and Luddens, H., 2002. Pharmacological heterogeneity of gamma-aminobutyric acid receptors during development suggests distinct classes of rat cerebellar granule cells in situ. Neuropharmacology. 42,34-47.
    Isaacson, J. S., Solis, J. M. and Nicoll, R. A., 1993. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron. 10,165-175.
    Jensen, K., Chiu, C. S., Sokolova, I., Lester, H. A. and Mody, I., 2003. GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol. 90, 2690-2701.
    
    Jonas, P., Bischofberger, J., Fricker, D. and Miles, R., 2004. Interneuron Diversity series: Fast in, fast out-temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci. 27,30-40.
    Kaneda, M., Farrant, M. and Cull-Candy, S. G, 1995. Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum.JPhysiol. 485 (Pt 2), 419-435.
    Kato, T., 2007. Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci. 61, 3-19.
    Keros, S. and Hablitz, J. J., 2005. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex. J Neurophysiol. 94,2073-2085.
    
    Korpi, E. R., Kuner, T., Seeburg, P. H. and Luddens, H., 1995. Selective antagonist for the cerebellar granule cell-specific gamma-aminobutyric acid type A receptor. Mol Pharmacol. 47,283-289.
    
    Kozlov, A. S., Angulo, M. C, Audinat, E. and Charpak, S., 2006. Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A. 103,10058-10063.
    
    Kullmann, D. M., Ruiz, A., Rusakov, D. M., Scott, R., Semyanov, A. and Walker, M.C, 2005. Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS:where and why? Prog Biophys Mol Biol. 87,33-46.
    Laurent, G, 2002. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci. 3, 884-895.
    
    Liang, J., Zhang, N., Cagetti, E., Houser, C. R., Olsen, R. W. and Spigelman, I., 2006.Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal GABAA receptors. J Neurosci. 26,1749-1758.
    
    LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. and Kriegstein, A. R., 1995.GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron. 15,1287-1298.
    
    Lovick, T. A., 2006. Plasticity of GABAA receptor subunit expression during the oestrous cycle of the rat: implications for premenstrual syndrome in women.ExpPhysiol.91, 655-660.
    
    Maguire, J. L., Stell, B. M., Rafizadeh, M. and Mody, I., 2005. Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci. 8, 797-804.
    
    Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L. and Paul, S. M.,1986. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 232,1004-1007.
    
    Martz, A., Deitrich, R. A. and Harris, R. A,, 1983. Behavioral evidence for the involvement of gamma-aminobutyric acid in the actions of ethanol. Eur J Pharmacol. 89,53-62.
    McCartney, M. R, Deeb, T. Z., Henderson, T. N. and Hales, T. G, 2007. Tonically active GABAA receptors in hippocampal pyramidal neurons exhibit constitutive GABA-independent gating. Mol Pharmacol. 71, 539-548.
    Mihic, S. J., Ye, Q., Wick, M. J., Koltchine, V. V., Krasowski, M. D, Finn, S. E.,Mascia, M. P., Valenzuela, C. F., Hanson, K. K, Greenblatt, E. P., Harris, R. A.and Harrison, N. L, 1997. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 389,385-389.
    Minier, F. and Sigel, E., 2004. Positioning of the alpha-subunit isoforms confers a functional signature to gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A. 101,7769-7774.
    Mitchell, S. J. and Silver, R. A., 2003. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron. 38,433-445.
    Mody, I., 2001. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res. 26,907-913.
    Mody, I., Glykys, J. and Wei, W., 2007. A new meaning for "Gin & Tonic": tonic inhibition as the target forethanol action in the brain. Alcohol. 41, 145-153.
    Mody, I. and Pearce, R. A., 2004. Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci. 27, 569-575.
    Mortensen, M. and Smart, T. G, 2006. Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol. 577, 841-856.
    Mozrzymas, J. W., Zarnowska, E. D., Pytel, M. and Mercik, K., 2003. Modulation of GABA(A) receptors by hydrogen ions reveals synaptic GABA transient and a crucial role of the desensitization process. J Neurosci. 23, 7981-7992.
    Nestoros, J. N., 1980. Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science. 209,708-710.
    Nicholson, C. and Sykova, E., 1998. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21,207-215.
    Nusser, Z. and Mody, I., 2002. Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol. 87,2624-2628.
    Nusser, Z., Sieghart, W. and Somogyi, P., 1998. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells.J Neurosci. 18,1693-1703.
    Nyitrai, G, Kekesi, K. A. and Juhasz, G, 2006. Extracellular level of GABA and Glu:in vivo microdialysis-HPLC measurements. Curr Top Med Chem. 6, 935-940.
    Orser, B. A., 2006. Extrasynaptic GABAA receptors are critical targets for sedative-hypnotic drugs. J Clin Sleep Med. 2, S12-18.
    Owens, D. F., Liu, X. and Kriegstein, A. R., 1999. Changing properties of GABA(A) receptor-mediated signaling during early neocortical development. J Neurophysiol. 82, 570-583.
    Palmer, M. R, and Hoffer, B. J., 1990. GABAergic mechanisms in the electrophysiological actions of ethanol on cerebellar neurons. Neurochem Res.15,145-151.
    Peng, Z., Huang, C. S., Stell, B. M., Mody, I. and Houser, C. R., 2004. Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci. 24,8629-8639.
    Porcello, D. M., Huntsman, M. M., Mihalek, R. M., Homanics, G. E. and Huguenard,J. R., 2003. Intact synaptic GABAergic inhibition and altered neurosteroid modulation of thalamic relay neurons in mice lacking delta subunit. J Neurophysiol. 89,1378-1386.
    Prenosil, G A., Schneider Gasser, E. M., Rudolph, U., Keist, R., Fritschy, J. M. and Vogt, K. E., 2006. Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. J Neurophysiol.96, 846-857.
    Quirk, K., Blurton, P., Fletcher, S., Leeson, P., Tang, F., Mellilo, D., Ragan, C. I. and McKernan, R. M., 1996. [3H]L-655,708, a novel ligand selective for the benzodiazepine site of GABAA receptors which contain the alpha 5 subunit.Neuropharmacology. 35,1331-1335.
    Richerson, G. B. and Wu, Y., 2003. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol. 90,1363-1374.
    Richerson, G. B. and Wu, Y., 2004. Role of the GABA transporter in epilepsy. Adv Exp Med Biol. 548,76-91.
    Roberto, M, Madamba, S. G, Stouffer, D. G, Parsons, L. H. and Siggins, G. R., 2004.Increased GAB A release in the central amygdala of ethanol-dependent rats. J Neurosci.24,10159-10166.
    Rossi, D. J., Hamann, M. and Attwell, D., 2003. Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol. 548, 97-110.
    Saxena, N. C. and Macdonald, R. L, 1994. Assembly of GABAA receptor subunits: role of the delta subunit. J Neurosci. 14, 7077-7086.
    Schwartz, T. L. and Nihalani, N., 2006. Tiagabine in anxiety disorders. Expert Opin Pharmacother. 7, 1977-1987.
    Scimemi, A., Andersson, A., Heeroma, J. H., Strandberg, J., Rydenhag, B., McEvoy,A. W., Thorn, M., Asztely, F. and Walker, M. C, 2006. Tonic GABA(A) receptor-mediated currents in human brain. Eur J Neurosci. 24,1157-1160.
    Scimemi, A., Semyanov, A., Sperk, G, Kullmann, D. M. and Walker, M. C, 2005.Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci. 25, 10016-10024.
    Sernyanov, A., Walker, M. C. and Kullmann, D. M., 2003. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci. 6,484-490.
    Semyanov, A., Walker, M. C, Kullmann, D. M. and Silver, R. A., 2004. Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci. 27,262-269.
    Singer, W., 1996. Neurophysiology: the changing face of inhibition. Curr Biol. 6,395-397.
    Somogyi, P. and Klausberger, T., 2005. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol. 562,9-26.
    Stell, B. M, Brickley, S. G, Tang, C. Y., Farrant, M. and Mody, I., 2003. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A. 100,14439-14444.
    Stell, B. M. and Mody, I., 2002. Receptors with different affinities mediate phasic and tonic GABA(A) conductances in hippocampal neurons. J Neurosci. 22, RC223.
    Tia, S., Wang, J. F., Kotchabhakdi, N. and Vicini, S., 1996. Developmental changes of inhibitory synaptic currents in cerebellar granule neurons: role of GABA(A) receptor alpha 6 subunit. J Neurosci. 16,3630-3640.
    Traub, R. D., Spruston, N., Soltesz, I., Konnerth, A., Whittington, M. A. and Jefferys,G. R., 1998. Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Prog Neurobiol. 55,563-575.
    Valeyev, A. Y., Cruciani, R. A., Lange, G. D., Smallwood, V. S. and Barker, J. L,1993. Cl- channels are randomly activated by continuous GABA secretion in cultured embryonic rat hippocampal neurons. Neurosci Lett. 155,199-203.
    Wafford, K. A. and Ebert, B., 2006. Gaboxadol--a new awakening in sleep. Curr Opin Pharmacol. 6,30-36.
    Wall, M. J., 2002. Furosemide reveals heterogeneous GABA(A) receptor expression at adult rat Golgi cell to granule cell synapses. Neuropharmacology. 43,737-749.
    Wall, M. J. and Usowicz, M. M, 1997. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci. 9, 533-548.
    Wallner, M., Hanchar, H. J. and Olsen, R. W., 2003. Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc Natl Acad Sci U S A. 100,15218-15223.
    Wallner, M., Hanchar, H. J. and Olsen, R. W., 2006. Low dose acute alcohol effects on GABA A receptor subtypes. Pharmacol Then 112, 513-528.
    Wang, X. J. and Buzsaki, G, 1996. Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci. 16, 6402-6413.
    Wei, W., Faria, L. C. and Mody, I., 2004. Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J Neurosci. 24, 8379-8382.
    Wei, W, Zhang, N., Peng, Z., Houser, C. R. and Mody, I., 2003. Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyms. J Neurosci. 23,10650-10661.
    Weiner, J. L, Zhang, L. and Carlen, P. L, 1994. Potentiation of GABAA-mediated synaptic current by ethanol in hippocampal CA1 neurons: possible role of protein kinase C. J Pharmacol Exp Ther. 268,1388-1395.
    Whittington, M. A. and Traub, R. D., 2003. Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 26, 676-682.
    Wohlfarth, K. M., Bianchi, M. T. and Macdonald, R. L, 2002. Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit. J Neurosci. 22, 1541-1549.
    Yamada, J., Furukawa, T., Ueno, S., Yamamoto, S. and Fukuda, A., 2007. Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb Cortex. 17,1782-1787.
    Yamashita, M., Marszalec, W., Yeh, J. Z. and Narahashi, T., 2006. Effects of ethanol on tonic GABA currents in cerebellar granule cells and mammalian cells recombinantly expressing GABA(A) receptors. J Pharmacol Exp Ther. 319,431-438.
    Yeung, J. Y, Canning, K. J., Zhu, G, Pennefather, P., MacDonald, J. F. and Orser, B.A., 2003. Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA. Mol Pharmacol. 63, 2-8.
    Zhang, N., Wei, W., Mody, I. and Houser, C. R., 2007. Altered localization of GABA(A) receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci. 27,7520-7531.
    Bai,D.,Zhu,G.,Pennefather,P.,Jackson,M.F.,MacDonald,J.F.and Orser,B.A.,2001.Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A)receptors in hippocampal neurons.Mol Pharmacol.59,814-824.
    Brickley,S.G.,Cull-Candy,S.G.and Farrant,M.,1996.Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors.J Physiol.497(Pt 3),753-759.
    Brickley,S.G.,Revilla,V.,Cull-Candy,S.G.,Wisden,W.and Farrant,M.,2001.Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance.Nature.409,88-92.
    Bright,D.P.,Aller,M.I.and Brickley,S.G.,2007.Synaptic release generates a tonic GABA(A) receptor-mediated conductance that modulates burst precision in thalamic relay neurons. J Neurosci. 27,2560-2569.
    
    Caraiscos, V. B., Elliott, E. M., You-Ten, K. E., Cheng, V. Y., Belelli, D., Newell, J. G,Jackson, M. F., Lambert, J. J., Rosahl, T. W., Wafford, K. A., MacDonald, J. F.and Orser, B. A., 2004. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci U S A. 101,3662-3667.
    Chadderton, P., Margrie, T. W. and Hausser, M., 2004. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428, 856-860.
    Cope, D. W., Hughes, S. W. and Crunelli, V., 2005. GABAA receptor-mediated tonic inhibition in thalamic neurons. J Neurosci. 25,11553-11563.
    Croteau, R. B., Davis, E. M., Ringer, K. L. and Wildung, M. R., 2005. (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften. 92, 562-577.de la Pena, E., Malkia, A., Cabedo, H., Belmonte, C. and Viana, R, 2005. The contribution of TRPM8 channels to cold sensing in mammalian neurones. J Physiol.567,415-426.
    
    Drasbek, K. R. and Jensen, K., 2006. THIP, a hypnotic and antinociceptive drug,enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex. 16,1134-1141.
    Farrant, M. and Nusser, Z., 2005. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci. 6, 215-229.
    Glykys, J. and Mody, I., 2006. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J Neurophysiol. 95, 2796-2807.
    
    Huang, R. Q., Bell-Horner, C. L, Dibas, M. I., Covey, D. R, Drewe, J. A. and Dillon,G. H., 2001. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J Pharmacol Exp Ther. 298,986-995.
    
    Lerma, J., Herranz, A. S., Herreras, O., Abraira, V. and Martin del Rio, R., 1986. In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis.Brain Res.384,145-155.
    Liu, Q. Y., Vautrin, J., Tang, K. M. and Barker, J. L, 1995. Exogenous GABA persistently opens Cl- channels in cultured embryonic rat thalamic neurons. J Membr Biol. 145,279-284.
    Mahieu, F., Owsianik, G, Verbert, L., Janssens, A., De Smedt, H., Nilius, B. and Voets, T., 2007. TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem. 282, 3325-3336.
    Majkowski, J., 1999. Kindling: clinical relevance for epileptogenicity in humans. Adv Neurol.81,105-113.
    Mangan, P. S. and Kapur, J., 2004. Factors underlying bursting behavior in a network of cultured hippocampal neurons exposed to zero magnesium. J Neurophysiol.91,946-957.
    Mathers, D. A., Wan, X. and Puil, E., 2007. Barbiturate activation and modulation of GABA(A) receptors in neocortex. Neuropharmacology. 52, 1160-1168.
    Mody, I., 2001. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res. 26, 907-913.
    Mody, I., De Koninck, Y., Otis, T. S. and Soltesz, I., 1994. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 17, 517-525.
    Mortensen, M. and Smart, T. G, 2006. Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J Physiol. 577,841-856.
    Murase, K., Randic, M., Shirasaki, T., Nakagawa, T. and Akaike, N., 1990. Serotonin suppresses N-methyl-D-aspartate responses in acutely isolated spinal dorsal horn neurons of the rat. Brain Res. 525, 84-91.
    Namer, B., Seifert, F., Handwerker, H. O. and Maihofner, C, 2005. TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol. Neuroreport. 16,955-959.
    Nusser, Z. and Mody, I., 2002. Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol. 87,2624-2628.
    Okada, R., Negishi, N. and Nagaya, H., 1989. The role of the nigrotegmental GABAergic pathway in the propagation of pentylenetetrazol-induced seizures. Brain Res. 480, 383-387.
    
    Peier, A. M, Moqrich, A., Hergarden, A. C, Reeve, A. J., Andersson, D. A., Story, G.M., Earley, T. J., Dragoni, I., Mclntyre, P., Bevan, S. and Patapoutian, A.,2002. A TRP channel that senses cold stimuli and menthol. Cell. 108,705-715.
    
    Petrini, E. M., Marchionni, I., Zacchi, P., Sieghart, W. and Cherubini, E., 2004.Clustering of extrasynaptic GABA(A) receptors modulates tonic inhibition in cultured hippocampal neurons. J Biol Chem. 279,45833-45843.
    Prenosil, G A., Schneider Gasser, E. M, Rudolph, U., Keist, R., Fritschy, J. M. and Vogt, K. E., 2006. Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. J Neurophysiol.96, 846-857.
    Racine, R. J., 1972. Modification of seizure activity by electrical stimulation. II.Motor seizure. Electroencephalogr Clin Neurophysiol. 32,281 -294.
    Semyanov, A., Walker, M. C. and Kullmann, D. M., 2003. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci. 6,484-490.
    
    Semyanov, A., Walker, M. C, Kullmann, D. M. and Silver, R. A., 2004. Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262-269.
    Sombati, S. and Delorenzo, R. J., 1995. Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J Neurophysiol. 73,1706-1711.
    Stell, B. M., Brickley, S. G, Tang, C. Y., Farrant, M. and Mody, I., 2003. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A. 100,14439-14444.
    
    Tsunashima, K., Schwarzer, C, Kirchmair, E., Sieghart, W. and Sperk, G, 1997.GABA(A) receptor subunits in the rat hippocampus III: altered messenger RNA expression in kainic acid-induced epilepsy. Neuroscience. 80,1019-1032.
    
    Umezu, T, Sakata, A. and Ito, H., 2001. Ambulation-promoting effect of peppermint oil and identification of its active constituents. Pharmacol Biochem Behav. 69,383-390.
    Wall, M. J. and Usowicz, M. M., 1997. Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci. 9, 533-548.
    Walther, H., Lambert, J. D., Jones, R. S., Heinemann, U. and Hamon, B., 1986.Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci Lett. 69,156-161.
    Wasner, G, Schattschneider, J., Binder, A. and Baron, R., 2004. Topical menthol--a human model for cold pain by activation and sensitization of C nociceptors.Brain. 127,1159-1171.
    Wei, W., Faria, L. C. and Mody, I., 2004. Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J Neurosci. 24,8379-8382.
    White HS, W. J., Franklin MR, Swinyard EA, Wolf HA 1995. Antiepileptic drugs, Ed 4 (Levy RH, Mattson RH, Meldrum BS, eds), 99-110.
    Yamada, J., Furukawa, T., Ueno, S., Yamamoto, S. and Fukuda, A., 2007. Molecular basis for the GABAA receptor-mediated tonic inhibition in rat somatosensory cortex. Cereb Cortex. 17,1782-1787.
    Yeh, J. H., Jeng, C. J, Chen, Y. W., Lin, H. M., Wu, Y. S. and Tang, C. Y, 2005.Selective enhancement of tonic inhibition by increasing ambient GABA is insufficient to suppress excitotoxicity in hippocampal neurons. Biochem Biophys Res Commun. 338,1417-1425.
    Yeung, J. Y, Canning, K. J., Zhu, G, Pennefather, P., MacDonald, J. F. and Orser, B.A., 2003. Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA. Mol Pharmacol. 63, 2-8.
    Zuker, C. S., 2002. Neurobiology: a cool ion channel. Nature. 416, 27-28.
    Aguayo,L.G.,van Zundert,B.,Tapia,J.C.,Carrasco,M.A.and Alvarez,F.J.,2004.Changes on the properties of glycine receptors during neuronal development.Brain Res Brain Res Rev.47,33-45.
    Aoshima,H.and Tenpaku,Y.,1997.Modulation of GABA receptors expressed in Xenopus oocytes by 13-L-hydroxylinoleic acid and food additives.Biosci Biotechnol Biochem.61,2051-2057.
    Betz,H.,Kuhse,J.,Schmieden,V.,Laube,B.,Kirsch,J.and Harvey,R.J.,1999.Structure and functions of inhibitory and excitatory glycine receptors.Ann N Y Acad Sci.868,667-676.
    Chattipakorn,S.C.and McMahon,L,L.,2003.Strychnine-sensitive glycine receptors depress hyperexcitability in rat dentate gyrus.J Neurophysiol.89,1339-1342.
    Chen,Z.,Dillon,G.H.and Huang,R.,2004.Molecular determinants of proton modulation of glycine receptors.J Biol Chem.279,876-883.
    Cronin,J.N.,Bradbury,E.J.and Lidierth,M.,2004.Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord:effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.Pain.112,156-163.
    de la Pena,E.,Malkia,A.,Cabedo,H.,Belmonte,C.and Viana,F.,2005.The contribution of TRPM8 channels to cold sensing in mammalian neurones.J Physiol.567,415-426.
    Eccles,R.,2000.Role of cold receptors and menthol in thirst,the drive to breathe and arousal.Appetite.34,29-35.
    Fucile,S.,De Saint Jan,D.,de Carvalho,L.P.and Bregestovski,P.,2000.Fast potentiation of glycine receptor channels of intracellular calcium in neurons and transfected cells. Neuron. 28, 571-583.
    Galeotti, N., Ghelardini, C, Mannelli, L., Mazzanti, G, Baghiroli, L. and Bartolini, A.,2001. Local anaesthetic activity of (+)- and (-)-menthol. Planta Med. 67,174-176.
    Grudzinska, J., Schemm, R., Haeger, S., Nicke, A., Schmalzing, G, Betz, H. and Laube, B., 2005. The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron. 45,727-739.
    Hall, A. C, Turcotte, C. M., Betts, B. A., Yeung, W. Y., Agyeman, A. S. and Burk, L.A., 2004. Modulation of human GABAA and glycine receptor currents by menthol and related monoterpenoids. Eur J Pharmacol. 506,9-16.
    Harvey, R. J., Depner, U. B., Wassle, H., Ahmadi, S., Heindl, C, Reinold, H., Smart,T. G, Harvey, K., Schutz, B., Abo-Salem, O. M., Zimmer, A., Poisbeau, P.,Welzl, H, Wolfer, D. P., Betz, H., Zeilhofer, H. U. and Muller, U, 2004. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 304,884-887.
    Kirsch, J. and Betz, H., 1998. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature. 392, 717-720.
    Kondratskaya, E. L, Betz, H., Krishtal, O. A. and Laube, B., 2005. The beta subunit increases the ginkgolide B sensitivity of inhibitory glycine receptors. Neuropharmacology. 49, 945-951.
    Kondratskaya, E. L., Lishko, P. V., Chatterjee, S. S. and Krishtal, O. A., 2002.BN52021, a platelet activating factor antagonist, is a selective blocker of glycine-gated chloride channel. Neurochem Int. 40,647-653.
    Kung, A. Y., Rick, C, O'Shea, S., Harrison, N. L. and McGehee, D. S., 2001.Expression of glycine receptors in rat sensory neurons vs. HEK293 cells yields different functional properties. Neurosci Lett. 309, 202-206.
    Lan, J. Y, Skeberdis, V. A., Jover, T., Grooms, S. Y, Lin, Y, Araneda, R. C, Zheng,X., Bennett, M. V. and Zukin, R. S., 2001. Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci. 4,382-390.
    Laube, B., Maksay, G, Schemm, R. and Betz, H., 2002. Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci. 23, 519-527.
    Levitan, I. B., 1994. Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol. 56,193-212.
    Levitan, I. B., 1999. It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron. 22,645-648.
    Li, Y., Wu, L. J., Legendre, P. and Xu, T. L., 2003a. Asymmetric cross-inhibition between GABAA and glycine receptors in rat spinal dorsal horn neurons. J Biol Chem. 278, 38637-38645.
    Li, Y. F., Wu, L. J, Li, Y., Xu, L. and Xu, T. L, 2003b. Mechanisms of H+ modulation of glycinergic response in rat sacral dorsal commissural neurons. J Physiol. 552,73-87.
    Lu, H. and Xu, T. L., 2002. The general anesthetic pentobarbital slows desensitization and deactivation of the glycine receptor in the rat spinal dorsal horn neurons. J Biol Chem. 277,41369-41378.
    Lynch, J. W., 2004. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 84,1051-1095.
    Mahieu, F., Owsianik, G, Verbert, L., Janssens, A., De Smedt, H., Nilius, B. and Voets, T., 2007. TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem. 282,3325-3336.
    Malosio, M. L., Marqueze-Pouey, B., Kuhse, J. and Betz, H., 1991. Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. Embo J. 10,2401-2409.
    Mori, M., Gahwiler, B. H. and Gerber, U., 2002. Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. J Physiol. 539, 191-200.
    Pribilla, I., Takagi, T., Langosch, D., Bormann, J. and Betz, H., 1992. The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J. 11,4305-4311.
    Ragozzino, D. and Eusebi, F., 1993. Inhibition of GABA and glycine responses by glutamate in rat hippocampal neurons. Brain Res. 628,115-120.
    Rajendra, S., Lynch, J. W. and Schofield, P. R., 1997. The glycine receptor. Pharmacol Ther.73,121-146.
    Song, W., Chattipakorn, S. C. and McMahon, L. L, 2006. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus. J Neurophysiol.95,2366-2379.
    Supplisson, S. and Chesnoy-Marchais, D., 2000. Glycine receptor beta subunits play a critical role in potentiation of glycine responses by ICS-205,930. Mol Pharmacol. 58, 763-770.
    Swope, S. L., Moss, S. J., Raymond, L. A. and Huganir, R. L., 1999. Regulation of ligand-gated ion channels by protein phosphorylation. Adv Second Messenger Phosphoprotein Res. 33,49-78.
    Thebault, S., Lemonnier, L, Bidaux, G, Flourakis, M., Bavencoffe, A., Gordienko, D.,Roudbaraki, M., Delcourt, P., Panchin, Y., Shuba, Y., Skryma, R. and Prevarskaya, N., 2005. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem. 280,39423-39435.
    Thio, L. L., Shanmugam, A., Isenberg, K. and Yamada, K., 2003. Benzodiazepines block alpha2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons. J Neurophysiol. 90, 89-99.
    Trombley, P. Q., Hill, B. J. and Horning, M. S., 1999. Interactions between GABA and glycine at inhibitory amino acid receptors on rat olfactory bulb neurons. J Neurophysiol. 82, 3417-3422.
    Tsuzuki, K., Xing, H., Ling, J. and Gu, J. G, 2004. Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission. J Neurosci. 24, 762-771.
    Valeyev, A. Y, Hackman, J. C, Wood, P. M. and Davidoff, R. A., 1996.Pharmacologically novel GABA receptor in human dorsal root ganglion neurons. J Neurophysiol. 76,3555-3558.
    Wu, L. J., Li, Y. and Xu, T. L., 2002. Co-release and interaction of two inhibitory co-transmitters in rat sacral dorsal commissural neurons. Neuroreport. 13,977-981.
    Xu, T. L, Li, J. S., Jin, Y. H. and Akaike, N., 1999. Modulation of the glycine response by Ca2+-permeable AMPA receptors in rat spinal neurones. J Physiol.514(Pt 3), 701-711.
    Yang, C. X. and Xu, T. L, 2006. Thiopental inhibits glycine receptor function in acutely dissociated rat spinal dorsal horn neurons. Neurosci Lett. 397,196-200.
    Zhang, L. H., Xu, L. and Xu, T. L., 2006. Glycine receptor activation regulates short-term plasticity in CAl area of hippocampal slices of rats. Biochem Biophys Res Commun. 344, 721-726.
    Aguayo,L.G.,van Zundert,B.,Tapia,J.C.,Carrasco,M.A.and Alvarez,F.J.,2004.Changes on the properties of glycine receptors during neuronal development.Brain Res Brain Res Rev.47,33-45.
    Antlitz,A.M.and Valle,N.G.,1967.The antihypertensive effect of cyclothiazide,a double blind study.Curr Ther Res Clin Exp.9,288-292.
    Bechade,C.,Colin,I.,Kirsch,J.,Betz,H.and Triller,A.,1996.Expression of glycine receptor alpha subunits and gephyrin in cultured spinal neurons.Eur J Neurosci.8,429-435.
    Becker,C.M.,Hoch,W.and Betz,H.,1988.Glycine receptor heterogeneity in rat spinal cord during postnatal development.EMBO J.7,3717-3726.
    Betz,H.and Laube,B.,2006.Glycine receptors:recent insights into their structural organization and functional diversity.J Neurochem.97,1600-1610.
    Bormann,J.,Rundstrom,N.,Betz,H.and Langosch,D.,1993.Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers.EMBO J.12,3729-3737.
    Brackmann,M.,Zhao,C.,Schmieden,V.and Braunewell,K.H.,2004.Cellular and subcellular localization of the inhibitory glycine receptor in hippocampai neurons.Biochem Biophys Res Commun.324,1137-1142.
    Chattipakorn,S.C.and McMahon,L.L.,2003.Strychnine-sensitive glycine receptors depress hyperexcitability in rat dentate gyrus.J Neurophysiol.89,1339-1342.
    Connolly,C.N.and Wafford,K.A.,2004.The Cys-loop superfamily of ligand-gated ion channels:the impact of receptor structure on function.Biochem Soc Trans.32,529-534.
    Deng,L.and Chen,G.,2003.Cyclothiazide potently inhibits gamma-aminobutyric acid type A receptors in addition to enhancing glutamate responses. Proc Natl Acad Sci U S A. 100,13025-13029.
    Flint, A. C, Liu, X. and Kriegstein, A. R., 1998. Nonsynaptic glycine receptor activation during early neocortical development. Neuron. 20,43-53.
    Grudzinska, J., Schemm, R., Haeger, S., Nicke, A., Schmalzing, G, Betz, H. and Laube, B., 2005. The beta subunit determines the ligand binding properties of synaptic glycine receptors. Neuron. 45,727-739.
    Harvey, R. J., Depner, U. B., Wassle, H., Ahmadi, S., Heindl, C, Reinold, H., Smart,T. G, Harvey, K., Schutz, B., Abo-Salem, O. M., Zimmer, A., Poisbeau, P.,Welzl, H, Wolfer, D. P, Betz, H., Zeilhofer, H. U. and Muller, U., 2004. GlyR alpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 304, 884-887.
    Kling, C, Koch, M., Saul, B. and Becker, C. M., 1997. The frameshift mutation oscillator (Glral(spd-ot)) produces a complete loss of glycine receptor alpha 1-polypeptide in mouse central nervous system. Neuroscience. 78,411-417.
    Li, Y. and Xu, T. L., 2002. State-dependent cross-inhibition between anionic GABA(A) and glycine ionotropic receptors in rat hippocampal CA1 neurons.Neuroreport. 13,223-226.
    Lynch, J. W., 2004. Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 84,1051-1095.
    Malosio, M. L., Marqueze-Pouey, B., Kuhse, J. and Betz, H., 1991. Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J. 10,2401-2409.
    McCool, B. A. and Farroni, J. S., 2001. Subunit composition of strychnine-sensitive glycine receptors expressed by adult rat basolateral amygdala neurons. Eur J Neurosci. 14,1082-1090.
    McDearmid, J. R., Liao, M. and Drapeau, P., 2006. Glycine receptors regulate interneuron differentiation during spinal network development. Proc Natl Acad Sci U S A. 103,9679-9684.
    Mori, M., Gahwiler, B. H. and Gerber, U., 2002. Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. J Physiol. 539,191-200.
    Patneau, D. K., Vyklicky, L, Jr. and Mayer, M. L, 1993. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J Neurosci. 13,3496-3509.
    Pribilla, I., Takagi, T., Langosch, D., Bormann, J. and Betz, H., 1992. The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J. 11,4305-4311.
    Qi, J., Wang, Y., Jiang, M., Warren, P. and Chen, G., 2006. Cyclothiazide induces robust epileptiform activity in rat hippocampal neurons both in vitro and in vivo. J Physiol. 571, 605-618.
    Saul, B., Schmieden, V., Kling, C, Mulhardt, C, Gass, P., Kuhse, J. and Becker, C.M., 1994. Point mutation of glycine receptor alpha 1 subunit in the spasmodic mouse affects agonist responses. FEBS Lett. 350,71-76.
    Sergeeva, O. A. and Haas, H. L, 2001. Expression and function of glycine receptors in striatal cholinergic interneurons from rat and mouse. Neuroscience. 104,1043-1055.
    Song, W., Chattipakorn, S. C. and McMahon, L. L, 2006. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus. J Neurophysiol.95,2366-2379.
    Speranskiy, K., Cascio, M. and Kurnikova, M., 2007. Homology modeling and molecular dynamics simulations of the glycine receptor ligand binding domain. Proteins. 67,950-960.
    
    Sturman, J. A., 1993. Taurine in development. Physiol Rev. 73,119-147.
    Thio, L. L., Shanmugam, A., Isenberg, K. and Yamada, K., 2003. Benzodiazepines block alpha2-containing inhibitory glycine receptors in embryonic mouse hippocampal neurons. J Neurophysiol. 90,89-99.
    Wang, D. S., Mangin, J. M., Moonen, G, Rigo, J. M. and Legendre, P., 2006.Mechanisms for picrotoxin block of alpha2 homomeric glycine receptors. J BiolChem. 281,3841-3855.
    Watanabe, E. and Akagi, H., 1995. Distribution patterns of mRNAs encoding glycine receptor channels in the developing rat spinal cord. Neurosci Res. 23,377-382.
    Yoon, K. W., Covey, D. F. and Rothman, S. M., 1993. Multiple mechanisms of picrotoxin block of GABA-induced currents in rat hippocampal neurons. J Physiol. 464,423-439.
    Young-Pearse, T. L., Ivic, L, Kriegstein, A. R. and Cepko, C. L, 2006.Characterization of mice with targeted deletion of glycine receptor alpha 2.Mol Cell Biol. 26, 5728-5734.
    Young, T. L. and Cepko, C. L, 2004. A role for ligand-gated ion channels in rod photoreceptor development. Neuron. 41,867-879.
    Zhang, L. H., Gong, N., Fei, D., Xu, L. and Xu, T. L, 2007. Glycine Uptake Regulates Hippocampal Network Activity via Glycine Receptor-Mediated Tonic Inhibition. Neuropsychopharmacology.
    Zhang, L. H., Xu, L. and Xu, T. L, 2006. Glycine receptor activation regulates short-term plasticity in CA1 area of hippocampal slices of rats. Biochem Biophys Res Commun. 344,721-726.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700